void TMVAClassificationCategory() 
{
   //---------------------------------------------------------------

   std::cout << std::endl << "==> Start TMVAClassificationCategory" << std::endl;

   bool batchMode(false);

   // Create a new root output file.
   TString outfileName( "TMVA.root" );
   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

   // Create the factory object. Later you can choose the methods
   // whose performance you'd like to investigate. The factory will
   // then run the performance analysis for you.
   //
   // The first argument is the base of the name of all the
   // weightfiles in the directory weight/ 
   //
   // The second argument is the output file for the training results
   // All TMVA output can be suppressed by removing the "!" (not) in 
   // front of the "Silent" argument in the option string
   std::string factoryOptions( "!V:!Silent:Transformations=I;D;P;G,D" );
   if (batchMode) factoryOptions += ":!Color:!DrawProgressBar";

   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassificationCategory", outputFile, factoryOptions );

   // If you wish to modify default settings 
   // (please check "src/Config.h" to see all available global options)
   //    (TMVA::gConfig().GetVariablePlotting()).fTimesRMS = 8.0;
   //    (TMVA::gConfig().GetIONames()).fWeightFileDir = "myWeightDirectory";

   // Define the input variables that shall be used for the MVA training
   // note that you may also use variable expressions, such as: "3*var1/var2*abs(var3)"
   // [all types of expressions that can also be parsed by TTree::Draw( "expression" )]
   factory->AddVariable( "var1", 'F' );
   factory->AddVariable( "var2", 'F' );
   factory->AddVariable( "var3", 'F' );
   factory->AddVariable( "var4", 'F' );

   // You can add so-called "Spectator variables", which are not used in the MVA training, 
   // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the 
   // input variables, the response values of all trained MVAs, and the spectator variables
   factory->AddSpectator( "eta" );

   // load the signal and background event samples from ROOT trees
   TFile *input(0);
   TString fname( "" );
   if (UseOffsetMethod) fname = "../execs/data/toy_sigbkg_categ_offset.root";
   else                 fname = "../execs/data/toy_sigbkg_categ_varoff.root";
   if (!gSystem->AccessPathName( fname )) {
      // first we try to find tmva_example.root in the local directory
      std::cout << "--- TMVAClassificationCategory: Accessing " << fname << std::endl;
      input = TFile::Open( fname );
   } 

   if (!input) {
      std::cout << "ERROR: could not open data file: " << fname << std::endl;
      exit(1);
   }

   TTree *signal     = (TTree*)input->Get("TreeS");
   TTree *background = (TTree*)input->Get("TreeB");

   /// global event weights per tree (see below for setting event-wise weights)
   Double_t signalWeight     = 1.0;
   Double_t backgroundWeight = 1.0;
   
   /// you can add an arbitrary number of signal or background trees
   factory->AddSignalTree    ( signal,     signalWeight     );
   factory->AddBackgroundTree( background, backgroundWeight );
   
   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

   // tell the factory to use all remaining events in the trees after training for testing:
   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // Fisher discriminant   
   factory->BookMethod( TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher" );

   // Likelihood
   factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood", 
                        "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" ); 

   // Categorised classifier
   TMVA::MethodCategory* mcat = 0;
   
   // the variable sets
   TString theCat1Vars = "var1:var2:var3:var4";
   TString theCat2Vars = (UseOffsetMethod ? "var1:var2:var3:var4" : "var1:var2:var3");

   // the Fisher 
   TMVA::MethodBase* fiCat = factory->BookMethod( TMVA::Types::kCategory, "FisherCat","" );
   mcat = dynamic_cast<TMVA::MethodCategory*>(fiCat);
   mcat->AddMethod("abs(eta)<=1.3",theCat1Vars, TMVA::Types::kFisher,"Category_Fisher_1","!H:!V:Fisher");
   mcat->AddMethod("abs(eta)>1.3", theCat2Vars, TMVA::Types::kFisher,"Category_Fisher_2","!H:!V:Fisher");

   // the Likelihood
   TMVA::MethodBase* liCat = factory->BookMethod( TMVA::Types::kCategory, "LikelihoodCat","" );
   mcat = dynamic_cast<TMVA::MethodCategory*>(liCat);
   mcat->AddMethod("abs(eta)<=1.3",theCat1Vars, TMVA::Types::kLikelihood,"Category_Likelihood_1","!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50");
   mcat->AddMethod("abs(eta)>1.3", theCat2Vars, TMVA::Types::kLikelihood,"Category_Likelihood_2","!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50");

   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();    

   // --------------------------------------------------------------
   
   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassificationCategory is done!" << std::endl;      

   // Clean up
   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );
}
Example #2
0
//void TMVAClassification( TString myMethodList = "" )
void tmvaClassifier( TString myMethodList = "", TString inputDir="~/work/ewkzp2j_5311/ll/", bool minimalTrain=false, bool useQG=false)
{   
  gSystem->ExpandPathName(inputDir);
  TString pf("base_weights");
  if(!minimalTrain){
    if(useQG) pf="full_weights";
    else      pf="weights";
  }
  TMVA::gConfig().GetIONames().fWeightFileDir = inputDir + pf;
  
  // The explicit loading of the shared libTMVA is done in TMVAlogon.C, defined in .rootrc
  // if you use your private .rootrc, or run from a different directory, please copy the
  // corresponding lines from .rootrc
  
  // methods to be processed can be given as an argument; use format:
  //
  // mylinux~> root -l TMVAClassification.C\(\"myMethod1,myMethod2,myMethod3\"\)
  //
  // if you like to use a method via the plugin mechanism, we recommend using
  //
  // mylinux~> root -l TMVAClassification.C\(\"P_myMethod\"\)
  // (an example is given for using the BDT as plugin (see below),
  // but of course the real application is when you write your own
  // method based)
  
  //---------------------------------------------------------------
  // This loads the library
  TMVA::Tools::Instance();
  
  // Default MVA methods to be trained + tested
  std::map<std::string,int> Use;
  
  // --- Cut optimisation
  Use["Cuts"]            = 0;
  Use["CutsD"]           = 0;
  Use["CutsPCA"]         = 0;
  Use["CutsGA"]          = 0;
  Use["CutsSA"]          = 0;
  // 
  // --- 1-dimensional likelihood ("naive Bayes estimator")
  Use["Likelihood"]      = 0;
  Use["LikelihoodD"]     = 1; // the "D" extension indicates decorrelated input variables (see option strings)
  Use["LikelihoodPCA"]   = 0; // the "PCA" extension indicates PCA-transformed input variables (see option strings)
  Use["LikelihoodKDE"]   = 0;
  Use["LikelihoodMIX"]   = 0;
  //
  // --- Mutidimensional likelihood and Nearest-Neighbour methods
  Use["PDERS"]           = 0;
  Use["PDERSD"]          = 0;
  Use["PDERSPCA"]        = 0;
  Use["PDEFoam"]         = 0;
  Use["PDEFoamBoost"]    = 0; // uses generalised MVA method boosting
  Use["KNN"]             = 0; // k-nearest neighbour method
  //
  // --- Linear Discriminant Analysis
  Use["LD"]              = 0; // Linear Discriminant identical to Fisher
  Use["Fisher"]          = 1;
  Use["FisherCat"]       = 0;//added by loic
  Use["FisherG"]         = 0;
  Use["BoostedFisher"]   = 0; // uses generalised MVA method boosting
  Use["HMatrix"]         = 0;
  //
  // --- Function Discriminant analysis
  Use["FDA_GA"]          = 0; // minimisation of user-defined function using Genetics Algorithm
  Use["FDA_SA"]          = 0;
  Use["FDA_MC"]          = 0;
  Use["FDA_MT"]          = 0;
  Use["FDA_GAMT"]        = 0;
  Use["FDA_MCMT"]        = 0;
  //
  // --- Neural Networks (all are feed-forward Multilayer Perceptrons)
  Use["MLP"]             = 0; // Recommended ANN
  Use["MLPBFGS"]         = 0; // Recommended ANN with optional training method
  Use["MLPBNN"]          = 0; // Recommended ANN with BFGS training method and bayesian regulator
  Use["CFMlpANN"]        = 0; // Depreciated ANN from ALEPH
  Use["TMlpANN"]         = 0; // ROOT's own ANN
  //
  // --- Support Vector Machine 
  Use["SVM"]             = 0;
  // 
  // --- Boosted Decision Trees
  Use["BDT"]             = 0; // uses Adaptive Boost
  Use["BDTG"]            = 0; // uses Gradient Boost
  Use["BDTB"]            = 0; // uses Bagging
  Use["BDTD"]            = 1; // decorrelation + Adaptive Boost
  Use["BDTF"]            = 0; // allow usage of fisher discriminant for node splitting 
  // 
  // --- Friedman's RuleFit method, ie, an optimised series of cuts ("rules")
  Use["RuleFit"]         = 0;
  // ---------------------------------------------------------------

  std::cout << std::endl;
  std::cout << "==> Start TMVAClassification" << std::endl;

  // Select methods (don't look at this code - not of interest)
  if (myMethodList != "") {
    for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;

    std::vector<TString> mlist = TMVA::gTools().SplitString( myMethodList, ',' );
    for (UInt_t i=0; i<mlist.size(); i++) {
      std::string regMethod(mlist[i]);

      if (Use.find(regMethod) == Use.end()) {
	std::cout << "Method \"" << regMethod << "\" not known in TMVA under this name. Choose among the following:" << std::endl;
	for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first << " ";
	std::cout << std::endl;
	return;
      }
      Use[regMethod] = 1;
    }
  }

  // --------------------------------------------------------------------------------------------------

  // --- Here the preparation phase begins

  // Create a ROOT output file where TMVA will store ntuples, histograms, etc.
  TString outfileName( "TMVA.root" );
  TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

  // Create the factory object. Later you can choose the methods
  // whose performance you'd like to investigate. The factory is 
  // the only TMVA object you have to interact with
  //
  // The first argument is the base of the name of all the
  // weightfiles in the directory weight/
  //
  // The second argument is the output file for the training results
  // All TMVA output can be suppressed by removing the "!" (not) in
  // front of the "Silent" argument in the option string
  TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
					      "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );

  // You can add so-called "Spectator variables", which are not used in the MVA training,
  // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the
  // input variables, the response values of all trained MVAs, and the spectator variables
  //   factory->AddSpectator( "spec1 := var1*2",  "Spectator 1", "units", 'F' );
  // factory->AddSpectator( "spec2 := var1*3",  "Spectator 2", "units", 'F' );

  // Read training and test data
  // (it is also possible to use ASCII format as input -> see TMVA Users Guide)
  //   TString fname = "./tmva_class_example.root";
   
  //if (gSystem->AccessPathName( fname ))  // file does not exist in local directory
  //   gSystem->Exec("wget http://root.cern.ch/files/tmva_class_example.root");
   
  
  //   std::cout << "--- TMVAClassification       : Using input file: " << input->GetName() << std::endl;
   
  // --- Register the training and test trees
  TChain *signal     = new TChain("ewkzp2j");
  TChain *background = new TChain("ewkzp2j");
  TSystemDirectory dir(inputDir,inputDir);
  TList *files = dir.GetListOfFiles();
  if (files) {
    TSystemFile *file;
    TString fname;
    TIter next(files);
    while ((file=(TSystemFile*)next())) {
      fname = file->GetName();
      if(!fname.EndsWith("_summary.root")) continue;
      if(fname.Contains("Data")) continue;
      if(!fname.Contains("DY")) continue;
      bool isSignal(false);
      if(fname.Contains("JJ")) { signal->Add(fname); isSignal=true; }
      else if(fname.Contains("50toInf") && fname.Contains("DY")) background->Add(fname);
      cout << fname << " added as " << (isSignal ? "signal" : "background") << endl;
    }
  }else{
    cout << "[Error] no files found in " << inputDir << endl;
  }
  cout << "Signal has " << signal->GetEntries() << " raw events" << endl
       << "Background has " << background->GetEntries() << " raw events"<< endl;

  // global event weights per tree
  Double_t signalWeight     = 1.0;
  Double_t backgroundWeight = 1.0;
  factory->AddSignalTree    ( signal,     signalWeight     );
  factory->AddBackgroundTree( background, backgroundWeight );
  // event-per-event weights per tree
  factory->SetBackgroundWeightExpression( "weight/cnorm" );
  factory->SetSignalWeightExpression( "weight/cnorm" );

  //define variables for the training
  if(minimalTrain)
    {
      factory->AddVariable( "mjj",     "M_{jj}"              "GeV", 'F' );
      factory->AddVariable( "detajj",  "#Delta#eta_{jj}",     "",    'F' );
      factory->AddVariable( "spt",     "#Delta_{rel}",        "GeV", 'F' );
    }
  else
    {
      factory->AddVariable( "mjj",     "M_{jj}"              "GeV",  'F' );
      factory->AddVariable( "detajj",  "#Delta#eta_{jj}",     "",    'F' );
      factory->AddVariable( "setajj",  "#Sigma#eta_{j}",      "",    'F' );
      factory->AddVariable( "eta1",    "#eta(1)",             "",    'F' );
      factory->AddVariable( "eta2",    "#eta(2)",             "",    'F' );
      factory->AddVariable( "pt1",     "p_{T}(1)",            "GeV", 'F' );
      factory->AddVariable( "pt2",     "p_{T}(2)",            "GeV", 'F' );
      factory->AddVariable( "spt",     "#Delta_{rel}",        "GeV", 'F' );
      if(useQG) factory->AddVariable( "qg1",   "q/g(1)",      "",    'F' );
      if(useQG) factory->AddVariable( "qg2",   "q/g(2)",      "",    'F' );
    }
  

  // Apply additional cuts on the signal and background samples (can be different)
  TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
  TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";
  factory->PrepareTrainingAndTestTree( mycuts, mycutb,
				       "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

  // ---- Book MVA methods
  //
  // Please lookup the various method configuration options in the corresponding cxx files, eg:
  // src/MethoCuts.cxx, etc, or here: http://tmva.sourceforge.net/optionRef.html
  // it is possible to preset ranges in the option string in which the cut optimisation should be done:
  // "...:CutRangeMin[2]=-1:CutRangeMax[2]=1"...", where [2] is the third input variable

  // Cut optimisation
  if (Use["Cuts"])
    factory->BookMethod( TMVA::Types::kCuts, "Cuts",
			 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );

  if (Use["CutsD"])
    factory->BookMethod( TMVA::Types::kCuts, "CutsD",
			 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" );

  if (Use["CutsPCA"])
    factory->BookMethod( TMVA::Types::kCuts, "CutsPCA",
			 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" );

  if (Use["CutsGA"])
    factory->BookMethod( TMVA::Types::kCuts, "CutsGA",
			 "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95" );

  if (Use["CutsSA"])
    factory->BookMethod( TMVA::Types::kCuts, "CutsSA",
			 "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );

  // Likelihood ("naive Bayes estimator")
  if (Use["Likelihood"])
    factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood",
			 "H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );

  // Decorrelated likelihood
  if (Use["LikelihoodD"])
    factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodD",
			 "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" );

  // PCA-transformed likelihood
  if (Use["LikelihoodPCA"])
    factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodPCA",
			 "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" ); 

  // Use a kernel density estimator to approximate the PDFs
  if (Use["LikelihoodKDE"])
    factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodKDE",
			 "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" ); 

  // Use a variable-dependent mix of splines and kernel density estimator
  if (Use["LikelihoodMIX"])
    factory->BookMethod( TMVA::Types::kLikelihood, "LikelihoodMIX",
			 "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" ); 

  // Test the multi-dimensional probability density estimator
  // here are the options strings for the MinMax and RMS methods, respectively:
  //      "!H:!V:VolumeRangeMode=MinMax:DeltaFrac=0.2:KernelEstimator=Gauss:GaussSigma=0.3" );
  //      "!H:!V:VolumeRangeMode=RMS:DeltaFrac=3:KernelEstimator=Gauss:GaussSigma=0.3" );
  if (Use["PDERS"])
    factory->BookMethod( TMVA::Types::kPDERS, "PDERS",
			 "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" );

  if (Use["PDERSD"])
    factory->BookMethod( TMVA::Types::kPDERS, "PDERSD",
			 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" );

  if (Use["PDERSPCA"])
    factory->BookMethod( TMVA::Types::kPDERS, "PDERSPCA",
			 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" );

  // Multi-dimensional likelihood estimator using self-adapting phase-space binning
  if (Use["PDEFoam"])
    factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoam",
			 "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );

  if (Use["PDEFoamBoost"])
    factory->BookMethod( TMVA::Types::kPDEFoam, "PDEFoamBoost",
			 "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T" );

  // K-Nearest Neighbour classifier (KNN)
  if (Use["KNN"])
    factory->BookMethod( TMVA::Types::kKNN, "KNN",
			 "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );

  // H-Matrix (chi2-squared) method
  if (Use["HMatrix"])
    factory->BookMethod( TMVA::Types::kHMatrix, "HMatrix", "!H:!V:VarTransform=None" );

  // Linear discriminant (same as Fisher discriminant)
  if (Use["LD"])
    factory->BookMethod( TMVA::Types::kLD, "LD", "H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );

  // Fisher discriminant (same as LD)
  if (Use["Fisher"])
    factory->BookMethod( TMVA::Types::kFisher, "Fisher", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
   
  if (Use["FisherCat"]){
    TMVA::MethodBase* fiCat = factory->BookMethod( TMVA::Types::kCategory, "FisherCat","" );
    TMVA::MethodCategory* mcategory = dynamic_cast<TMVA::MethodCategory*>(fiCat);
    mcategory->AddMethod( "mjj<250", "mjj:detajj:spt:", TMVA::Types::kFisher, "Fisher_Cat1", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
    mcategory->AddMethod( "mjj>=250&&mjj<350" , "mjj:detajj:spt:", TMVA::Types::kFisher, "Fisher_Cat0000", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
    mcategory->AddMethod( "mjj>=350&&mjj<450" , "mjj:detajj:spt:", TMVA::Types::kFisher, "Fisher_Cat0350", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
    mcategory->AddMethod( "mjj>=450&&mjj<550" , "mjj:detajj:spt:", TMVA::Types::kFisher, "Fisher_Cat0450", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
    mcategory->AddMethod( "mjj>=550&&mjj<750" , "mjj:detajj:spt:", TMVA::Types::kFisher, "Fisher_Cat0550", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
    mcategory->AddMethod( "mjj>=750&&mjj<1000", "mjj:detajj:spt:", TMVA::Types::kFisher, "Fisher_Cat0750", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
    mcategory->AddMethod( "mjj>=1000"         , "mjj:detajj:spt:", TMVA::Types::kFisher, "Fisher_Cat1000", "H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
  }


  // Fisher with Gauss-transformed input variables
  if (Use["FisherG"])
    factory->BookMethod( TMVA::Types::kFisher, "FisherG", "H:!V:VarTransform=Gauss" );

  // Composite classifier: ensemble (tree) of boosted Fisher classifiers
  if (Use["BoostedFisher"])
    factory->BookMethod( TMVA::Types::kFisher, "BoostedFisher", 
			 "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2:!Boost_DetailedMonitoring" );

  // Function discrimination analysis (FDA) -- test of various fitters - the recommended one is Minuit (or GA or SA)
  if (Use["FDA_MC"])
    factory->BookMethod( TMVA::Types::kFDA, "FDA_MC",
			 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" );

  if (Use["FDA_GA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options])
    factory->BookMethod( TMVA::Types::kFDA, "FDA_GA",
			 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=300:Cycles=3:Steps=20:Trim=True:SaveBestGen=1" );

  if (Use["FDA_SA"]) // can also use Simulated Annealing (SA) algorithm (see Cuts_SA options])
    factory->BookMethod( TMVA::Types::kFDA, "FDA_SA",
			 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );

  if (Use["FDA_MT"])
    factory->BookMethod( TMVA::Types::kFDA, "FDA_MT",
			 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );

  if (Use["FDA_GAMT"])
    factory->BookMethod( TMVA::Types::kFDA, "FDA_GAMT",
			 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );

  if (Use["FDA_MCMT"])
    factory->BookMethod( TMVA::Types::kFDA, "FDA_MCMT",
			 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );

  // TMVA ANN: MLP (recommended ANN) -- all ANNs in TMVA are Multilayer Perceptrons
  if (Use["MLP"])
    factory->BookMethod( TMVA::Types::kMLP, "MLP", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" );

  if (Use["MLPBFGS"])
    factory->BookMethod( TMVA::Types::kMLP, "MLPBFGS", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" );

  if (Use["MLPBNN"])
    factory->BookMethod( TMVA::Types::kMLP, "MLPBNN", "H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" ); // BFGS training with bayesian regulators

  // CF(Clermont-Ferrand)ANN
  if (Use["CFMlpANN"])
    factory->BookMethod( TMVA::Types::kCFMlpANN, "CFMlpANN", "!H:!V:NCycles=2000:HiddenLayers=N+1,N"  ); // n_cycles:#nodes:#nodes:...  

  // Tmlp(Root)ANN
  if (Use["TMlpANN"])
    factory->BookMethod( TMVA::Types::kTMlpANN, "TMlpANN", "!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3"  ); // n_cycles:#nodes:#nodes:...

  // Support Vector Machine
  if (Use["SVM"])
    factory->BookMethod( TMVA::Types::kSVM, "SVM", "Gamma=0.25:Tol=0.001:VarTransform=Norm" );

  // Boosted Decision Trees
  if (Use["BDTG"]) // Gradient Boost
    factory->BookMethod( TMVA::Types::kBDT, "BDTG",
			 "!H:!V:NTrees=1000:MinNodeSize=1.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedGrad:GradBaggingFraction=0.5:nCuts=20:MaxDepth=2" );

  if (Use["BDT"])  // Adaptive Boost
    factory->BookMethod( TMVA::Types::kBDT, "BDT",
			 "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20" );

  if (Use["BDTB"]) // Bagging
    factory->BookMethod( TMVA::Types::kBDT, "BDTB",
			 "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20" );

  if (Use["BDTD"]) // Decorrelation + Adaptive Boost
    factory->BookMethod( TMVA::Types::kBDT, "BDTD",
			 "!H:!V:NTrees=400:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=25:PruneMethod=CostComplexity:PruneStrength=25.0:VarTransform=Decorrelate");
  //"!H:!V:NTrees=400:MinNodeSize=5%:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate" );

  if (Use["BDTF"])  // Allow Using Fisher discriminant in node splitting for (strong) linearly correlated variables
    factory->BookMethod( TMVA::Types::kBDT, "BDTMitFisher",
			 "!H:!V:NTrees=50:MinNodeSize=2.5%:UseFisherCuts:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20" );

  // RuleFit -- TMVA implementation of Friedman's method
  if (Use["RuleFit"])
    factory->BookMethod( TMVA::Types::kRuleFit, "RuleFit",
			 "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );

  // For an example of the category classifier usage, see: TMVAClassificationCategory




  // --------------------------------------------------------------------------------------------------

  // ---- Now you can optimize the setting (configuration) of the MVAs using the set of training events

  // factory->OptimizeAllMethods("SigEffAt001","Scan");
  // factory->OptimizeAllMethods("ROCIntegral","FitGA");

  // --------------------------------------------------------------------------------------------------

  // ---- Now you can tell the factory to train, test, and evaluate the MVAs

  // Train MVAs using the set of training events
  factory->TrainAllMethods();

  // ---- Evaluate all MVAs using the set of test events
  factory->TestAllMethods();

  // ----- Evaluate and compare performance of all configured MVAs
  factory->EvaluateAllMethods();

  // --------------------------------------------------------------

  // Save the output
  outputFile->Close();

  std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
  std::cout << "==> TMVAClassification is done!" << std::endl;
  std::cout << " ==> Weights are stored in " << TMVA::gConfig().GetIONames().fWeightFileDir << std::endl;
  delete factory;



  // Launch the GUI for the root macros
  //   if (!gROOT->IsBatch()) TMVAGui( outfileName );
}
void TMVAClassificationCategory()
{
   //---------------------------------------------------------------
   // Example for usage of different event categories with classifiers 

   std::cout << std::endl << "==> Start TMVAClassificationCategory" << std::endl;

   bool batchMode = false;

   // Create a new root output file.
   TString outfileName( "TMVA.root" );
   TFile* outputFile = TFile::Open( outfileName, "RECREATE" );

   // Create the factory object (see TMVAClassification.C for more information)

  std::string factoryOptions( "!V:!Silent:Transformations=I;D;P;G,D" );
  if (batchMode) factoryOptions += ":!Color:!DrawProgressBar";

   TMVA::Factory *factory = new TMVA::Factory( "TMVAClassificationCategory", outputFile, factoryOptions );

   // Define the input variables used for the MVA training
   factory->AddVariable( "var1", 'F' );
   factory->AddVariable( "var2", 'F' );
   factory->AddVariable( "var3", 'F' );
   factory->AddVariable( "var4", 'F' );

   // You can add so-called "Spectator variables", which are not used in the MVA training,
   // but will appear in the final "TestTree" produced by TMVA. This TestTree will contain the
   // input variables, the response values of all trained MVAs, and the spectator variables
   factory->AddSpectator( "eta" );

   // Load the signal and background event samples from ROOT trees
   TFile *input(0);
   TString fname( "" );
   if (UseOffsetMethod) fname = "data/toy_sigbkg_categ_offset.root";
   else                 fname = "data/toy_sigbkg_categ_varoff.root";
   if (!gSystem->AccessPathName( fname )) {
      // first we try to find tmva_example.root in the local directory
      std::cout << "--- TMVAClassificationCategory: Accessing " << fname << std::endl;
      input = TFile::Open( fname );
   }

   if (!input) {
      std::cout << "ERROR: could not open data file: " << fname << std::endl;
      exit(1);
   }

   TTree *signal     = (TTree*)input->Get("TreeS");
   TTree *background = (TTree*)input->Get("TreeB");

   /// Global event weights per tree (see below for setting event-wise weights)
   Double_t signalWeight     = 1.0;
   Double_t backgroundWeight = 1.0;

   /// You can add an arbitrary number of signal or background trees
   factory->AddSignalTree    ( signal,     signalWeight     );
   factory->AddBackgroundTree( background, backgroundWeight );

   // Apply additional cuts on the signal and background samples (can be different)
   TCut mycuts = ""; // for example: TCut mycuts = "abs(var1)<0.5 && abs(var2-0.5)<1";
   TCut mycutb = ""; // for example: TCut mycutb = "abs(var1)<0.5";

   // Tell the factory how to use the training and testing events
   factory->PrepareTrainingAndTestTree( mycuts, mycutb,
                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );

   // ---- Book MVA methods

   // Fisher discriminant
   factory->BookMethod( TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher" );

   // Likelihood
   factory->BookMethod( TMVA::Types::kLikelihood, "Likelihood",
                        "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" ); 

   // --- Categorised classifier
   TMVA::MethodCategory* mcat = 0;

   // The variable sets
   TString theCat1Vars = "var1:var2:var3:var4";
   TString theCat2Vars = (UseOffsetMethod ? "var1:var2:var3:var4" : "var1:var2:var3");

   // Fisher with categories
   TMVA::MethodBase* fiCat = factory->BookMethod( TMVA::Types::kCategory, "FisherCat","" );
   mcat = dynamic_cast<TMVA::MethodCategory*>(fiCat);
   mcat->AddMethod( "abs(eta)<=1.3", theCat1Vars, TMVA::Types::kFisher, "Category_Fisher_1","!H:!V:Fisher" );
   mcat->AddMethod( "abs(eta)>1.3",  theCat2Vars, TMVA::Types::kFisher, "Category_Fisher_2","!H:!V:Fisher" );

   // Likelihood with categories
   TMVA::MethodBase* liCat = factory->BookMethod( TMVA::Types::kCategory, "LikelihoodCat","" );
   mcat = dynamic_cast<TMVA::MethodCategory*>(liCat);
   mcat->AddMethod( "abs(eta)<=1.3",theCat1Vars, TMVA::Types::kLikelihood,
                    "Category_Likelihood_1","!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
   mcat->AddMethod( "abs(eta)>1.3", theCat2Vars, TMVA::Types::kLikelihood,
                    "Category_Likelihood_2","!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );

   // ---- Now you can tell the factory to train, test, and evaluate the MVAs

   // Train MVAs using the set of training events
   factory->TrainAllMethods();

   // ---- Evaluate all MVAs using the set of test events
   factory->TestAllMethods();

   // ----- Evaluate and compare performance of all configured MVAs
   factory->EvaluateAllMethods();

   // --------------------------------------------------------------

   // Save the output
   outputFile->Close();

   std::cout << "==> Wrote root file: " << outputFile->GetName() << std::endl;
   std::cout << "==> TMVAClassificationCategory is done!" << std::endl;

   // Clean up
   delete factory;

   // Launch the GUI for the root macros
   if (!gROOT->IsBatch()) TMVAGui( outfileName );
}