/// Writes a FactorGraph to an output stream ostream& operator << (ostream& os, const FactorGraph& fg) { os << fg.nrFactors() << endl; for( size_t I = 0; I < fg.nrFactors(); I++ ) { os << endl; os << fg.factor(I).vars().size() << endl; for( VarSet::const_iterator i = fg.factor(I).vars().begin(); i != fg.factor(I).vars().end(); i++ ) os << i->label() << " "; os << endl; for( VarSet::const_iterator i = fg.factor(I).vars().begin(); i != fg.factor(I).vars().end(); i++ ) os << i->states() << " "; os << endl; size_t nr_nonzeros = 0; for( size_t k = 0; k < fg.factor(I).states(); k++ ) if( fg.factor(I)[k] != 0.0 ) nr_nonzeros++; os << nr_nonzeros << endl; for( size_t k = 0; k < fg.factor(I).states(); k++ ) if( fg.factor(I)[k] != 0.0 ) { char buf[20]; sprintf(buf,"%18.14g", fg.factor(I)[k]); os << k << " " << buf << endl; } } return(os); }
/// Writes a FactorGraph to an output stream std::ostream& operator<< ( std::ostream &os, const FactorGraph &fg ) { os << fg.nrFactors() << endl; for( size_t I = 0; I < fg.nrFactors(); I++ ) { os << endl; os << fg.factor(I).vars().size() << endl; for( VarSet::const_iterator i = fg.factor(I).vars().begin(); i != fg.factor(I).vars().end(); i++ ) os << i->label() << " "; os << endl; for( VarSet::const_iterator i = fg.factor(I).vars().begin(); i != fg.factor(I).vars().end(); i++ ) os << i->states() << " "; os << endl; size_t nr_nonzeros = 0; for( size_t k = 0; k < fg.factor(I).nrStates(); k++ ) if( fg.factor(I)[k] != (Real)0 ) nr_nonzeros++; os << nr_nonzeros << endl; for( size_t k = 0; k < fg.factor(I).nrStates(); k++ ) if( fg.factor(I)[k] != (Real)0 ) os << k << " " << setw(os.precision()+4) << fg.factor(I)[k] << endl; } return(os); }
int main( int argc, char *argv[] ) { if( argc != 3 ) { cout << "Usage: " << argv[0] << " <in.fg> <tw>" << endl << endl; cout << "Reports some characteristics of the .fg network." << endl; cout << "Also calculates treewidth (which may take some time) unless <tw> == 0." << endl; return 1; } else { // Read factorgraph FactorGraph fg; char *infile = argv[1]; int calc_tw = atoi(argv[2]); fg.ReadFromFile( infile ); cout << "Number of variables: " << fg.nrVars() << endl; cout << "Number of factors: " << fg.nrFactors() << endl; cout << "Connected: " << fg.isConnected() << endl; cout << "Tree: " << fg.isTree() << endl; cout << "Has short loops: " << hasShortLoops(fg.factors()) << endl; cout << "Has negatives: " << hasNegatives(fg.factors()) << endl; cout << "Binary variables? " << fg.isBinary() << endl; cout << "Pairwise interactions? " << fg.isPairwise() << endl; if( calc_tw ) { std::pair<size_t,size_t> tw = treewidth(fg); cout << "Treewidth: " << tw.first << endl; cout << "Largest cluster for JTree has " << tw.second << " states " << endl; } double stsp = 1.0; for( size_t i = 0; i < fg.nrVars(); i++ ) stsp *= fg.var(i).states(); cout << "Total state space: " << stsp << endl; double cavsum_lcbp = 0.0; double cavsum_lcbp2 = 0.0; size_t max_Delta_size = 0; map<size_t,size_t> cavsizes; for( size_t i = 0; i < fg.nrVars(); i++ ) { VarSet di = fg.delta(i); if( cavsizes.count(di.size()) ) cavsizes[di.size()]++; else cavsizes[di.size()] = 1; size_t Ds = fg.Delta(i).nrStates(); if( Ds > max_Delta_size ) max_Delta_size = Ds; cavsum_lcbp += di.nrStates(); for( VarSet::const_iterator j = di.begin(); j != di.end(); j++ ) cavsum_lcbp2 += j->states(); } cout << "Maximum pancake has " << max_Delta_size << " states" << endl; cout << "LCBP with full cavities needs " << cavsum_lcbp << " BP runs" << endl; cout << "LCBP with only pairinteractions needs " << cavsum_lcbp2 << " BP runs" << endl; cout << "Cavity sizes: "; for( map<size_t,size_t>::const_iterator it = cavsizes.begin(); it != cavsizes.end(); it++ ) cout << it->first << "(" << it->second << ") "; cout << endl; cout << "Type: " << (fg.isPairwise() ? "pairwise" : "higher order") << " interactions, " << (fg.isBinary() ? "binary" : "nonbinary") << " variables" << endl; if( fg.isPairwise() ) { bool girth_reached = false; size_t loopdepth; for( loopdepth = 2; loopdepth <= fg.nrVars() && !girth_reached; loopdepth++ ) { size_t nr_loops = countLoops( fg, loopdepth ); cout << "Loops up to " << loopdepth << " variables: " << nr_loops << endl; if( nr_loops > 0 ) girth_reached = true; } if( girth_reached ) cout << "Girth: " << loopdepth-1 << endl; else cout << "Girth: infinity" << endl; } return 0; } }