typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type
    prod_impl(const SparseMatrixType & sp_mat,
              const viennacl::matrix_base<ScalarType> & d_mat,
                    viennacl::matrix_base<ScalarType> & result)
    {
      assert( (sp_mat.size1() == result.size1()) && bool("Size check failed for compressed matrix - dense matrix product: size1(sp_mat) != size1(result)"));
      assert( (sp_mat.size2() == d_mat.size1()) && bool("Size check failed for compressed matrix - dense matrix product: size2(sp_mat) != size1(d_mat)"));

      switch (viennacl::traits::handle(sp_mat).get_active_handle_id())
      {
        case viennacl::MAIN_MEMORY:
          viennacl::linalg::host_based::prod_impl(sp_mat, d_mat, result);
          break;
#ifdef VIENNACL_WITH_OPENCL
        case viennacl::OPENCL_MEMORY:
          viennacl::linalg::opencl::prod_impl(sp_mat, d_mat, result);
          break;
#endif
#ifdef VIENNACL_WITH_CUDA
        case viennacl::CUDA_MEMORY:
          viennacl::linalg::cuda::prod_impl(sp_mat, d_mat, result);
          break;
#endif
        case viennacl::MEMORY_NOT_INITIALIZED:
          throw memory_exception("not initialised!");
        default:
          throw memory_exception("not implemented");
      }
    }
Example #2
0
typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type
assign_to_dense(SparseMatrixType const & A,
                viennacl::matrix_base<NumericT> & B)
{
  assert( (A.size1() == B.size1()) && bool("Size check failed for assignment to dense matrix: size1(A) != size1(B)"));
  assert( (A.size2() == B.size1()) && bool("Size check failed for assignment to dense matrix: size2(A) != size2(B)"));

  switch (viennacl::traits::handle(A).get_active_handle_id())
  {
    case viennacl::MAIN_MEMORY:
      viennacl::linalg::host_based::amg::assign_to_dense(A, B);
      break;
#ifdef VIENNACL_WITH_OPENCL
    case viennacl::OPENCL_MEMORY:
      viennacl::linalg::opencl::amg::assign_to_dense(A, B);
      break;
#endif
#ifdef VIENNACL_WITH_CUDA
    case viennacl::CUDA_MEMORY:
      viennacl::linalg::cuda::amg::assign_to_dense(A, B);
      break;
#endif
    case viennacl::MEMORY_NOT_INITIALIZED:
      throw memory_exception("not initialised!");
    default:
      throw memory_exception("not implemented");
  }
}
Example #3
0
    void nmf(viennacl::matrix_base<ScalarType> const & V, viennacl::matrix_base<ScalarType> & W,
        viennacl::matrix_base<ScalarType> & H, viennacl::linalg::nmf_config const & conf)
    {
      assert(V.size1() == W.size1() && V.size2() == H.size2() && bool("Dimensions of W and H don't allow for V = W * H"));
      assert(W.size2() == H.size1() && bool("Dimensions of W and H don't match, prod(W, H) impossible"));

      switch (viennacl::traits::handle(V).get_active_handle_id())
      {
        case viennacl::MAIN_MEMORY:
          viennacl::linalg::host_based::nmf(V, W, H, conf);
          break;
#ifdef VIENNACL_WITH_OPENCL
          case viennacl::OPENCL_MEMORY:
          viennacl::linalg::opencl::nmf(V,W,H,conf);
          break;
#endif

#ifdef VIENNACL_WITH_CUDA
          case viennacl::CUDA_MEMORY:
          viennacl::linalg::cuda::nmf(V,W,H,conf);
          break;
#endif

        case viennacl::MEMORY_NOT_INITIALIZED:
          throw memory_exception("not initialised!");
        default:
          throw memory_exception("not implemented");

      }

    }
void nmf(viennacl::matrix_base<NumericT> const & V,
         viennacl::matrix_base<NumericT>       & W,
         viennacl::matrix_base<NumericT>       & H,
         viennacl::linalg::nmf_config const & conf)
{
  viennacl::hsa::context & ctx = const_cast<viennacl::hsa::context &>(viennacl::traits::hsa_context(V));

  const std::string NMF_MUL_DIV_KERNEL = "el_wise_mul_div";

  viennacl::linalg::opencl::kernels::nmf<NumericT, viennacl::hsa::context>::init(ctx);

  vcl_size_t k = W.size2();
  conf.iters_ = 0;

  if (viennacl::linalg::norm_frobenius(W) <= 0)
    W = viennacl::scalar_matrix<NumericT>(W.size1(), W.size2(), NumericT(1), ctx);

  if (viennacl::linalg::norm_frobenius(H) <= 0)
    H = viennacl::scalar_matrix<NumericT>(H.size1(), H.size2(), NumericT(1), ctx);

  viennacl::matrix_base<NumericT> wn(V.size1(), k, W.row_major(), ctx);
  viennacl::matrix_base<NumericT> wd(V.size1(), k, W.row_major(), ctx);
  viennacl::matrix_base<NumericT> wtmp(V.size1(), V.size2(), W.row_major(), ctx);

  viennacl::matrix_base<NumericT> hn(k, V.size2(), H.row_major(), ctx);
  viennacl::matrix_base<NumericT> hd(k, V.size2(), H.row_major(), ctx);
  viennacl::matrix_base<NumericT> htmp(k, k, H.row_major(), ctx);

  viennacl::matrix_base<NumericT> appr(V.size1(), V.size2(), V.row_major(), ctx);

  NumericT last_diff = 0;
  NumericT diff_init = 0;
  bool stagnation_flag = false;

  for (vcl_size_t i = 0; i < conf.max_iterations(); i++)
  {
    conf.iters_ = i + 1;
    {
      hn = viennacl::linalg::prod(trans(W), V);
      htmp = viennacl::linalg::prod(trans(W), W);
      hd = viennacl::linalg::prod(htmp, H);

      viennacl::hsa::kernel & mul_div_kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::nmf<NumericT>::program_name(), NMF_MUL_DIV_KERNEL);
      viennacl::hsa::enqueue(mul_div_kernel(H, hn, hd, cl_uint(H.internal_size1() * H.internal_size2())));
    }
    {
      wn = viennacl::linalg::prod(V, trans(H));
      wtmp = viennacl::linalg::prod(W, H);
      wd = viennacl::linalg::prod(wtmp, trans(H));

      viennacl::hsa::kernel & mul_div_kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::nmf<NumericT>::program_name(), NMF_MUL_DIV_KERNEL);

      viennacl::hsa::enqueue(mul_div_kernel(W, wn, wd, cl_uint(W.internal_size1() * W.internal_size2())));
    }

    if (i % conf.check_after_steps() == 0)  //check for convergence
    {
      appr = viennacl::linalg::prod(W, H);

      appr -= V;
      NumericT diff_val = viennacl::linalg::norm_frobenius(appr);

      if (i == 0)
        diff_init = diff_val;

      if (conf.print_relative_error())
        std::cout << diff_val / diff_init << std::endl;

      // Approximation check
      if (diff_val / diff_init < conf.tolerance())
        break;

      // Stagnation check
      if (std::fabs(diff_val - last_diff) / (diff_val * NumericT(conf.check_after_steps())) < conf.stagnation_tolerance()) //avoid situations where convergence stagnates
      {
        if (stagnation_flag)    // iteration stagnates (two iterates with no notable progress)
          break;
        else
          // record stagnation in this iteration
          stagnation_flag = true;
      } else
        // good progress in this iteration, so unset stagnation flag
        stagnation_flag = false;

      // prepare for next iterate:
      last_diff = diff_val;
    }
  }
}
 static vcl_size_t size2(viennacl::matrix_base<T> const & lhs,
                         ScalarType const & /*rhs*/) { return lhs.size2(); }
 static vcl_size_t size1(viennacl::matrix_base<ScalarType> const & lhs,
                         viennacl::matrix_expression<T2,
                         T2,
                         op_trans> const & /*rhs*/) { return lhs.size1(); }
 static vcl_size_t size2(viennacl::matrix_expression<T1,
                         T1,
                         op_trans> const & /*lhs*/,
                         viennacl::matrix_base<ScalarType> const & rhs) { return rhs.size2(); }
 static std::size_t size1(viennacl::matrix_base<T, F> const & lhs,
                          ScalarType const & /*rhs*/) { return lhs.size1(); }
 static vcl_size_t size2(ScalarType const & /*lhs*/, viennacl::matrix_base<ScalarType> const & rhs) { return rhs.size2(); }