int main(int argc, char** argv) { //get wcFile and device name string wcFile = "/home/sdsuvei/robwork/RobWorkStudio/scenes/COBLab/KitchenScene.wc.xml"; string robotName = "UR"; string gripperName = "SDH"; std::string connectorName = "URConnector"; cout << "Trying to use workcell: " << wcFile << " and device " << robotName << endl; //load work cell WorkCell::Ptr wc = WorkCellFactory::load(wcFile); Device::Ptr UR = wc->findDevice(robotName); Device::Ptr gripper = wc->findDevice(gripperName); Device::Ptr connector = wc->findDevice(connectorName); if (UR == NULL) { cerr << "Device: " << robotName << " not found!" << endl; return 0; } //default state of the RobWork Workcell State state = wc->getDefaultState(); //load the collision detector CollisionDetector cd(wc,ProximityStrategyFactory::makeDefaultCollisionStrategy()); //ROS initialization ros::init(argc, argv, "listener"); ros::NodeHandle nh; ros::Rate loop_rate(5); sub = nh.subscribe ("/joint_states", 1, jointCallback); while(ros::ok()) { if(itHappened) { //RobWork robot model initialization //starting configuration of the UR5 arm // Q pos(6,0.0785, -1.7667, 2.037, -2.1101, -2.1724, -1.8505); // Q pos(6,-0.3946, -1.8944, 1.9378, -1.3807, -1.1023, -2.4439); Q pos(6, joint_pos[0], joint_pos[1], joint_pos[2], joint_pos[3], joint_pos[4], joint_pos[5]); cout<<"Initial arm configuration:\n"<<pos<<"\n"; //set the initial position of the UR5 arm UR->setQ(pos,state); //starting configuration of the SDH gripper Q grip(7,-1.047,0.000,0.000,-0.765,-0.282,-0.846,0); //set the initial position of the gripper gripper->setQ(grip,state); //half-away configuration of the URconnector Q conn(1,-1.597); //set the half-away configuration of the URconnector connector->setQ(conn,state); //RobWork Workcell frame definitions // Frame* bottle = wc->findFrame("BottleTray"); //bootle frame MovableFrame* bottle = (MovableFrame*)wc->findFrame("BottleTray"); Frame* marker=wc->findFrame("SDH.Marker"); //marker frame Frame* camera=wc->findFrame("Camera3D"); //camera frame Frame* pregrasp=wc->findFrame("Pregrasp"); // pregrasping frame if(cd.inCollision(state)) { cout<<"Before change: In collision!\n"; } //update the bottle frame with the value from the tracker Transform3D<> camTobj_rw=rw_camTobj(UR,state,bottle,camera); //change the object frame in the RobWork scene bottle->setTransform(camTobj_rw,state); if(cd.inCollision(state)) { cout<<"After change: In collision!\n"; } //store the kinematic values, from the RobWork workcell Transform3D<> kinematic_camTobj=Kinematics::frameTframe(camera,bottle,state); Transform3D<> kinematic_camTmrk=Kinematics::frameTframe(camera,marker,state); //compute the intermediate transforms // 1)URbase -> MARKER transform Transform3D<> urTmrk = UR->baseTframe(marker,state); // 2)CAMERA -> OBJECT transform Transform3D<> camTobj=find_camTobj(UR,state,bottle,camera,kinematic_camTobj); // 3)CAMERA -> MARKER transform Transform3D<> camTmrk=find_camTmrk(UR,state,marker,camera,kinematic_camTmrk); // 4)MARKER -> OBJECT transform Transform3D<> mrkTobj=inverse(camTmrk)*camTobj; // 5)OBJECT -> PREGRASP transform // Transform3D<> objTpg=Kinematics::frameTframe(bottle,pregrasp,state); // 6)URbase -> PreGrasping frame Transform3D<> objTpg=Kinematics::frameTframe(bottle,pregrasp,state); Transform3D<> urTcam=find_urTcam(UR,state,camera); Transform3D<> urTpg=urTcam*camTobj_rw*objTpg; //take initial rotation of object as pregrasping rotation // Transform3D<> urTpg=urTcam*camTobj_rw; // 7)URbase -> OBJECT transform Transform3D<> urTobj((urTmrk*mrkTobj*objTpg).P(),urTpg.R()); // Transform3D<> urTobj((urTmrk*mrkTobj).P(),urTpg.R()); //determine initial distance between the gripper-marker and the object Vector3D<> dist=(urTobj.P()-urTmrk.P()); cout<<"Initial distance is: "<<dist.norm2()<<endl; cout<<endl; //set the admissible threshold - distance between gripper-marker and object double tresh=0.01; //store the current value kinematic_camTmrk=camTmrk; kinematic_camTobj=camTobj; //start servoing method while (!cd.inCollision(state)){ //compute current distance between gripper-marker and object Vector3D<> cur_dist=(urTobj.P()-urTmrk.P()); cout<<"Current distance: "<<cur_dist.norm2()<<"\n"; //stop program if threshold limit is exceeded if(cur_dist.norm2()<tresh) { cout<<"Threshold limit exceeded!"<<endl; ros::shutdown(); break; } //compute the new urTmrk transform by performing interpolation between urTmrk & urTobj Transform3D<> urTmrk_new=computeinterpolation(urTmrk,urTobj,deltatess); //compute the new UR5 configuration which moves the gripper-marker closer to the object T1=clock(); Q new_pos=computenewQ(pos,urTmrk,urTmrk_new,UR,state,marker,bottle); //new configuration //Bring robot in new configuration UR->setQ(new_pos,state); //set device cout<<"new_pos:"<<new_pos; cout<<endl; //store the new urTmrk transform urTmrk=urTmrk_new; //store the new UR5 arm configuration pos=new_pos; //recompute the intermediate transforms // 1)CAMERA -> OBJECT transform Transform3D<> camTobj=find_camTobj(UR,state,bottle,camera,kinematic_camTobj); // 2)CAMERA -> MARKER transform Transform3D<> camTmrk=find_camTmrk(UR,state,marker,camera,kinematic_camTmrk); // 3)MARKER -> OBJECT transform Transform3D<> mrkTobj=inverse(camTmrk)*camTobj; // 4)URbase -> OBJECT transform // Transform3D<> urTobj((urTmrk*mrkTobj*objTpg).P(),urTpg.R()); //use the pregrasping rotation Transform3D<> urTobj((urTmrk*mrkTobj).P(),urTpg.R()); //store kinematic values for camTobj & camTmrk kinematic_camTobj=camTobj; kinematic_camTmrk=camTmrk; //execute robot movement //open file to write the script std::ofstream myfile; cout << "Generating script ... "; myfile.open ("/home/sdsuvei/workspace/PythonScripts/armQ.py"); if (myfile.is_open()){ myfile << "#!/usr/bin/python \n \n" << "import roslib \n" << "roslib.load_manifest('cob_script_server') \n" << "import rospy \n \n" << "from simple_script_server import * \n" << "sss = simple_script_server() \n \n" << "if __name__ == \"__main__\": \n" << " rospy.init_node(\"asd\") \n" << " sss.move(\"arm\", [["<<pos[0]<<","<<pos[1]<<","<<pos[2]<<","<<pos[3]<<","<<pos[4]<<","<<pos[5]<<"]]) \n"; myfile.close(); cout << "Done!" << endl; } else{ cout << "myfile not open!" << endl; } int val1; cout<<"\n Press key to allow movement: "; cin>>val1; cout<<"\n"; cout << "Executing movement..." << endl; system("python /home/sdsuvei/workspace/PythonScripts/armQ.py"); cout << "Movement done!" << endl; int val; cout<<"\n Press any key to continue "; cin>>val; cout<<"\n"; } itHappened=false; } ros::spinOnce(); loop_rate.sleep(); } cout<<"After While"; cout<<endl; if(flag) { cout<<"\nOrientation impossible! Try a different grasping approach!\n"<< endl; } else { cout<<"\nDone!\n\n"; } return 0; }
tuple<double, double, double> pathPlannerFunc(double extend){ const string wcFile = "/home/student/ROVI/Mand2/Kr16WallWorkCell/Scene.wc.xml"; const string deviceName = "KukaKr16"; const string bottle = "Bottle"; Q from(6,-3.142,-0.827,-3.002,-3.143,0.099,-1.573); Q to(6,1.571,0.006,0.030,0.153,0.762,4.490); WorkCell::Ptr wc = WorkCellLoader::Factory::load(wcFile); Device::Ptr device = wc->findDevice(deviceName); rw::kinematics::Frame *deviceB = wc->findFrame(bottle); if (device == NULL) { cerr << "Device: " << deviceName << " not found!" << endl; exit(-1); } if (deviceB == NULL) { cerr << "Device: " << bottle << " not found!" << endl; exit(-1); } rw::kinematics::State state = wc->getDefaultState(); device->setQ(from, state); Kinematics::gripFrame(deviceB,device->getEnd(),state); CollisionDetector detector(wc, ProximityStrategyFactory::makeDefaultCollisionStrategy()); PlannerConstraint constraint = PlannerConstraint::make(&detector,device,state); QSampler::Ptr sampler = QSampler::makeConstrained(QSampler::makeUniform(device),constraint.getQConstraintPtr()); QMetric::Ptr metric = MetricFactory::makeEuclidean<Q>(); QToQPlanner::Ptr planner = RRTPlanner::makeQToQPlanner(constraint, sampler, metric, extend, RRTPlanner::RRTConnect); if (!checkCollisions(device, state, detector, from)) exit(-1); if (!checkCollisions(device, state, detector, to)) exit(-1); PathAnalyzer::CartesianAnalysis distance_traveled; double path_length = 0; PathAnalyzer path_analyse(device,state); QPath path; Timer t; t.resetAndResume(); planner->query(from,to,path,MAXTIME); t.pause(); distance_traveled = path_analyse.analyzeCartesian(path,deviceB); path_length += distance_traveled.length; cout << extend<< "\tPath of length " << path.size() << " found in " << t.getTime() << " seconds." << endl; if (t.getTime() >= MAXTIME) { cout << "Notice: max time of " << MAXTIME << " seconds reached." << endl; } for (QPath::iterator it = path.begin(); it < path.end(); it++) { cout << "set" << *it << endl;//"setQ" << bins.substr(3,bins.length()) << endl; } auto tmp = make_tuple(extend, path_length,t.getTime()); return tmp; }