bool XsdSchemaChecker::particleEqualsRecursively(const XsdParticle::Ptr &particle, const XsdParticle::Ptr &otherParticle) const
{
    // @see http://www.w3.org/TR/xmlschema11-1/#cos-particle-extend
    //TODO: find out what 'properties' of a particle should be checked here...

    if (particle->minimumOccurs() != otherParticle->minimumOccurs())
        return false;

    if (particle->maximumOccursUnbounded() != otherParticle->maximumOccursUnbounded())
        return false;

    if (particle->maximumOccurs() != otherParticle->maximumOccurs())
        return false;

    const XsdTerm::Ptr term = particle->term();
    const XsdTerm::Ptr otherTerm = otherParticle->term();

    if (term->isElement() && !(otherTerm->isElement()))
        return false;

    if (term->isModelGroup() && !(otherTerm->isModelGroup()))
        return false;

    if (term->isWildcard() && !(otherTerm->isWildcard()))
        return false;

    if (term->isElement()) {
        const XsdElement::Ptr element = term;
        const XsdElement::Ptr otherElement = otherTerm;

        if (element->name(m_namePool) != otherElement->name(m_namePool))
            return false;

        if (element->type()->name(m_namePool) != otherElement->type()->name(m_namePool))
            return false;
    }

    if (term->isModelGroup()) {
        const XsdModelGroup::Ptr group = term;
        const XsdModelGroup::Ptr otherGroup = otherTerm;

        if (group->particles().count() != otherGroup->particles().count())
            return false;

        for (int i = 0; i < group->particles().count(); ++i) {
            if (!particleEqualsRecursively(group->particles().at(i), otherGroup->particles().at(i)))
                return false;
        }
    }

    if (term->isWildcard()) {
    }

    return true;
}
static void internalParticleLookupMap(const XsdParticle::Ptr &particle, QHash<XsdTerm::Ptr, XsdParticle::Ptr> &hash)
{
    hash.insert(particle->term(), particle);

    if (particle->term()->isModelGroup()) {
        const XsdModelGroup::Ptr group(particle->term());
        const XsdParticle::List particles = group->particles();
        for (int i = 0; i < particles.count(); ++i)
            internalParticleLookupMap(particles.at(i), hash);
    }
}
Example #3
0
/**
 * Internal helper method that checks if the given @p particle contains an element with the
 * same name and type twice.
 */
static bool hasDuplicatedElementsInternal(const XsdParticle::Ptr &particle, const NamePool::Ptr &namePool, ElementHash &hash, XsdElement::Ptr &conflictingElement)
{
    const XsdTerm::Ptr term = particle->term();
    if (term->isElement()) {
        const XsdElement::Ptr mainElement(term);
        XsdElement::WeakList substGroups = mainElement->substitutionGroups();
        if (substGroups.isEmpty())
            substGroups << mainElement.data();

        for (int i = 0; i < substGroups.count(); ++i) {
            const XsdElement::Ptr element(substGroups.at(i));
            if (hash.contains(element->name(namePool))) {
                if (element->type()->name(namePool) != hash.value(element->name(namePool))->type()->name(namePool)) {
                    conflictingElement = element;
                    return true;
                }
            } else {
                hash.insert(element->name(namePool), element);
            }
        }
    } else if (term->isModelGroup()) {
        const XsdModelGroup::Ptr group(term);
        const XsdParticle::List particles = group->particles();
        for (int i = 0; i < particles.count(); ++i) {
            if (hasDuplicatedElementsInternal(particles.at(i), namePool, hash, conflictingElement))
                return true;
        }
    }

    return false;
}
void XsdSchemaDebugger::dumpParticle(const XsdParticle::Ptr &particle, int level)
{
    QString prefix; prefix.fill(QLatin1Char(' '), level);

    qDebug("%s min=%s max=%s", qPrintable(prefix), qPrintable(QString::number(particle->minimumOccurs())),
                               qPrintable(particle->maximumOccursUnbounded() ? QLatin1String("unbounded") : QString::number(particle->maximumOccurs())));

    if (particle->term()->isElement()) {
        qDebug("%selement (%s)", qPrintable(prefix), qPrintable(XsdElement::Ptr(particle->term())->displayName(m_namePool)));
    } else if (particle->term()->isModelGroup()) {
        const XsdModelGroup::Ptr group(particle->term());
        if (group->compositor() == XsdModelGroup::SequenceCompositor) {
            qDebug("%ssequence", qPrintable(prefix));
        } else if (group->compositor() == XsdModelGroup::AllCompositor) {
            qDebug("%sall", qPrintable(prefix));
        } else if (group->compositor() == XsdModelGroup::ChoiceCompositor) {
            qDebug("%schoice", qPrintable(prefix));
        }

        for (int i = 0; i < group->particles().count(); ++i)
            dumpParticle(group->particles().at(i), level + 5);
    } else if (particle->term()->isWildcard()) {
        XsdWildcard::Ptr wildcard(particle->term());
        qDebug("%swildcard (process=%d)", qPrintable(prefix), wildcard->processContents());
    }
}
/*
 * Create the FSA according to Algorithm Tp(S) from http://www.ltg.ed.ac.uk/~ht/XML_Europe_2003.html
 */
XsdStateMachine<XsdTerm::Ptr>::StateId XsdStateMachineBuilder::buildParticle(const XsdParticle::Ptr &particle, XsdStateMachine<XsdTerm::Ptr>::StateId endState)
{
    XsdStateMachine<XsdTerm::Ptr>::StateId currentStartState = endState;
    XsdStateMachine<XsdTerm::Ptr>::StateId currentEndState = endState;

    // 2
    if (particle->maximumOccursUnbounded()) {
        const XsdStateMachine<XsdTerm::Ptr>::StateId t = m_stateMachine->addState(XsdStateMachine<XsdTerm::Ptr>::InternalState);
        const XsdStateMachine<XsdTerm::Ptr>::StateId n = buildTerm(particle->term(), t);

        m_stateMachine->addEpsilonTransition(t, n);
        m_stateMachine->addEpsilonTransition(n, endState);

        currentEndState = t;
        currentStartState = t;
    } else { // 3
        int count = (particle->maximumOccurs() - particle->minimumOccurs());
        if (count > 100)
            count = 100;

        for (int i = 0; i < count; ++i) {
            currentStartState = buildTerm(particle->term(), currentEndState);
            m_stateMachine->addEpsilonTransition(currentStartState, endState);
            currentEndState = currentStartState;
        }
    }

    int minOccurs = particle->minimumOccurs();
    if (minOccurs > 100)
        minOccurs = 100;

    for (int i = 0; i < minOccurs; ++i) {
        currentStartState = buildTerm(particle->term(), currentEndState);
        currentEndState = currentStartState;
    }

    return currentStartState;
}
Example #6
0
bool XsdParticleChecker::isUPAConformXsdAll(const XsdParticle::Ptr &particle, const NamePool::Ptr &namePool)
{
    /**
     * see http://www.w3.org/TR/xmlschema-1/#non-ambig
     */
    const XsdModelGroup::Ptr group(particle->term());
    const XsdParticle::List particles = group->particles();
    const int count = particles.count();
    for (int left = 0; left < count; ++left) {
        for (int right = left+1; right < count; ++right) {
            if (termMatches(particles.at(left)->term(), particles.at(right)->term(), namePool))
                return false;
        }
    }
    return true;
}
QSet<XsdElement::Ptr> collectAllElements(const XsdParticle::Ptr &particle)
{
    QSet<XsdElement::Ptr> elements;

    const XsdTerm::Ptr term(particle->term());
    if (term->isElement()) {
        elements.insert(XsdElement::Ptr(term));
    } else if (term->isModelGroup()) {
        const XsdModelGroup::Ptr group(term);

        for (int i = 0; i < group->particles().count(); ++i)
            elements.unite(collectAllElements(group->particles().at(i)));
    }

    return elements;
}
bool XsdSchemaChecker::isValidParticleExtension(const XsdParticle::Ptr &extension, const XsdParticle::Ptr &base) const
{
    // @see http://www.w3.org/TR/xmlschema11-1/#cos-particle-extend

    // 1
    if (extension == base)
        return true;

    // 2
    if (extension->minimumOccurs() == 1 && extension->maximumOccurs() == 1 && extension->maximumOccursUnbounded() == false) {
        if (extension->term()->isModelGroup()) {
            const XsdModelGroup::Ptr modelGroup = extension->term();
            if (modelGroup->compositor() == XsdModelGroup::SequenceCompositor) {
                if (particleEqualsRecursively(modelGroup->particles().first(), base))
                    return true;
            }
        }
    }

    // 3
    if (extension->minimumOccurs() == base->minimumOccurs()) { // 3.1
        if (extension->term()->isModelGroup() && base->term()->isModelGroup()) {
            const XsdModelGroup::Ptr extensionGroup(extension->term());
            const XsdModelGroup::Ptr baseGroup(base->term());

            if (extensionGroup->compositor() == XsdModelGroup::AllCompositor && baseGroup->compositor() == XsdModelGroup::AllCompositor) {
                const XsdParticle::List extensionParticles = extensionGroup->particles();
                const XsdParticle::List baseParticles = baseGroup->particles();
                for (int i = 0; i < baseParticles.count() && i < extensionParticles.count(); ++i) {
                    if (baseParticles.at(i) != extensionParticles.at(i))
                        return false;
                }
            }
        }
    }

    return false;
}
Example #9
0
bool XsdParticleChecker::isUPAConform(const XsdParticle::Ptr &particle, const NamePool::Ptr &namePool)
{

    /**
     * In case we encounter an <xsd:all> element, don't construct a state machine, but use the approach
     * described at http://www.w3.org/TR/xmlschema-1/#non-ambig
     * Reason: For n elements inside the <xsd:all>, represented in the NDA, the state machine
     * constructs n! states in the DFA, which does not scale.
     */
    if (particle->term()->isModelGroup()) {
        const XsdModelGroup::Ptr group(particle->term());
        if (group->compositor() == XsdModelGroup::AllCompositor)
            return isUPAConformXsdAll(particle, namePool);
    }

    /**
     * The algorithm is implemented like described in http://www.ltg.ed.ac.uk/~ht/XML_Europe_2003.html#S2.2
     */

    // create a state machine for the given particle
    XsdStateMachine<XsdTerm::Ptr> stateMachine(namePool);

    XsdStateMachineBuilder builder(&stateMachine, namePool);
    const XsdStateMachine<XsdTerm::Ptr>::StateId endState = builder.reset();
    const XsdStateMachine<XsdTerm::Ptr>::StateId startState = builder.buildParticle(particle, endState);
    builder.addStartState(startState);

/*
    static int counter = 0;
    {
        QFile file(QString("/tmp/file_upa%1.dot").arg(counter));
        file.open(QIODevice::WriteOnly);
        stateMachine.outputGraph(&file, "Base");
        file.close();
    }
    ::system(QString("dot -Tpng /tmp/file_upa%1.dot -o/tmp/file_upa%1.png").arg(counter).toLatin1().data());
*/
    const XsdStateMachine<XsdTerm::Ptr> dfa = stateMachine.toDFA();
/*
    {
        QFile file(QString("/tmp/file_upa%1dfa.dot").arg(counter));
        file.open(QIODevice::WriteOnly);
        dfa.outputGraph(&file, "Base");
        file.close();
    }
    ::system(QString("dot -Tpng /tmp/file_upa%1dfa.dot -o/tmp/file_upa%1dfa.png").arg(counter).toLatin1().data());
*/
    const QHash<XsdStateMachine<XsdTerm::Ptr>::StateId, XsdStateMachine<XsdTerm::Ptr>::StateType> states = dfa.states();
    const QHash<XsdStateMachine<XsdTerm::Ptr>::StateId, QHash<XsdTerm::Ptr, QVector<XsdStateMachine<XsdTerm::Ptr>::StateId> > > transitions = dfa.transitions();

    // the basic idea of that algorithm is to iterate over all states of that machine and check that no two edges
    // that match on the same term leave a state, so for a given term it should always be obvious which edge to take
    QHashIterator<XsdStateMachine<XsdTerm::Ptr>::StateId, XsdStateMachine<XsdTerm::Ptr>::StateType> stateIt(states);
    while (stateIt.hasNext()) { // iterate over all states
        stateIt.next();

        // fetch all transitions the current state allows
        const QHash<XsdTerm::Ptr, QVector<XsdStateMachine<XsdTerm::Ptr>::StateId> > currentTransitions = transitions.value(stateIt.key());
        QHashIterator<XsdTerm::Ptr, QVector<XsdStateMachine<XsdTerm::Ptr>::StateId> > transitionIt(currentTransitions);
        while (transitionIt.hasNext()) { // iterate over all transitions
            transitionIt.next();

            if (transitionIt.value().size() > 1) {
                // we have one state with two edges leaving it, that means
                // the XsdTerm::Ptr exists twice, that is an error
                return false;
            }

            QHashIterator<XsdTerm::Ptr, QVector<XsdStateMachine<XsdTerm::Ptr>::StateId> > innerTransitionIt(currentTransitions);
            while (innerTransitionIt.hasNext()) { // iterate over all transitions again, as we have to compare all transitions with all
                innerTransitionIt.next();

                if (transitionIt.key() == innerTransitionIt.key()) // do no compare with ourself
                    continue;

                // use the helper method termMatches to check if both term matches
                if (termMatches(transitionIt.key(), innerTransitionIt.key(), namePool))
                    return false;
            }
        }
    }

    return true;
}
bool XsdSchemaChecker::elementSequenceAccepted(const XsdModelGroup::Ptr &sequence, const XsdParticle::Ptr &particle) const
{
    // @see http://www.w3.org/TR/xmlschema11-1/#cvc-accept

    if (particle->term()->isWildcard()) { // 1
        const XsdWildcard::Ptr wildcard(particle->term());

        // 1.1
        if ((unsigned int)sequence->particles().count() < particle->minimumOccurs())
            return false;

        // 1.2
        if (!particle->maximumOccursUnbounded()) {
            if ((unsigned int)sequence->particles().count() > particle->maximumOccurs())
                return false;
        }

        // 1.3
        const XsdParticle::List particles(sequence->particles());
        for (int i = 0; i < particles.count(); ++i) {
            if (particles.at(i)->term()->isElement()) {
                if (!XsdSchemaHelper::wildcardAllowsExpandedName(XsdElement::Ptr(particles.at(i)->term())->name(m_namePool), wildcard, m_namePool))
                    return false;
            }
        }
    } else if (particle->term()->isElement()) { // 2
        const XsdElement::Ptr element(particle->term());

        // 2.1
        if ((unsigned int)sequence->particles().count() < particle->minimumOccurs())
            return false;

        // 2.2
        if (!particle->maximumOccursUnbounded()) {
            if ((unsigned int)sequence->particles().count() > particle->maximumOccurs())
                return false;
        }

        // 2.3
        const XsdParticle::List particles(sequence->particles());
        for (int i = 0; i < particles.count(); ++i) {
            bool isValid = false;
            if (particles.at(i)->term()->isElement()) {
                const XsdElement::Ptr seqElement(particles.at(i)->term());

                // 2.3.1
                if (element->name(m_namePool) == seqElement->name(m_namePool))
                    isValid = true;

                // 2.3.2
                if (element->scope() && element->scope()->variety() == XsdElement::Scope::Global) {
                    if (!(element->disallowedSubstitutions() & NamedSchemaComponent::SubstitutionConstraint)) {
                        //TODO: continue
                    }
                }
            }
        }
    }

    return true;
}