Exemple #1
0
void InitADC( ADC_t *ADC_Pointer )
{
    // Initialize sweep for channel 0, 1, 2 and 3
    ADC_SweepChannels_Config( ADC_Pointer, ADC_SWEEP_0123_gc );

    // Setup event to start synchronized sweep
    ADC_Events_Config( ADC_Pointer, ADC_EVSEL_0123_gc, ADC_EVACT_SYNCHSWEEP_gc );

    // Initialize the four channels to convert in single ended mode
    ADC_Ch_InputMode_and_Gain_Config( &ADC_Pointer->CH0, ADC_CH_INPUTMODE_SINGLEENDED_gc, ADC_CH_GAIN_1X_gc );
    ADC_Ch_InputMode_and_Gain_Config( &ADC_Pointer->CH1, ADC_CH_INPUTMODE_SINGLEENDED_gc, ADC_CH_GAIN_1X_gc );
    ADC_Ch_InputMode_and_Gain_Config( &ADC_Pointer->CH2, ADC_CH_INPUTMODE_SINGLEENDED_gc, ADC_CH_GAIN_1X_gc );
    ADC_Ch_InputMode_and_Gain_Config( &ADC_Pointer->CH3, ADC_CH_INPUTMODE_SINGLEENDED_gc, ADC_CH_GAIN_1X_gc );

    // Route the channels to different pins
    // Note that in Single Ended Mode, there is no negative input
    ADC_Ch_InputMux_Config( &ADC_Pointer->CH0, ADC_CH_MUXPOS_PIN1_gc, 0 );
    ADC_Ch_InputMux_Config( &ADC_Pointer->CH1, ADC_CH_MUXPOS_PIN2_gc, 0 );
    ADC_Ch_InputMux_Config( &ADC_Pointer->CH2, ADC_CH_MUXPOS_PIN3_gc, 0 );
    ADC_Ch_InputMux_Config( &ADC_Pointer->CH3, ADC_CH_MUXPOS_PIN4_gc, 0 );
           
    // Sample rate is CPUFREQ / 32. @ 2 MHz this equals 62,5ksps
	ADC_Prescaler_Config( ADC_Pointer, ADC_PRESCALER_DIV32_gc);
   
    // Set up ADCx  to have unsigned conversion mode and 8 bit resolution
  	ADC_ConvMode_and_Resolution_Config( ADC_Pointer, false, ADC_RESOLUTION_8BIT_gc );
    
    // Set reference voltage on ADCx to be VCC/1.6 V
	ADC_Reference_Config( ADC_Pointer, ADC_REFSEL_VCC_gc );
   
    // Enable the ADC
	ADC_Enable( ADC_Pointer );
     
    // Wait until common mode voltage is stable. Default clk is 2MHz and
    // therefore within the maximum frequency to use this function. 
    ADC_Wait_8MHz( ADC_Pointer );
}
int main(void)
{
	// Add code to sweep CH0 and CH1 in free running mode
	// Use the function call in the adc_driver.h
	ADC_SweepChannels_Config( &ADCB, ADC_SWEEP_01_gc);


	//Enable internal temperature sensor, to be used by CH1
	ADC_TempReference_Enable(&ADCB);

	// Setup CH1 to have single ended input as in task1 and task2
	ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH0,
	                                 ADC_CH_INPUTMODE_SINGLEENDED_gc,
	                                 ADC_CH_GAIN_1X_gc);

	// Set input to CH0 in ADC B to be PIN 1
	ADC_Ch_InputMux_Config(&ADCB.CH0,
	                       ADC_CH_MUXPOS_PIN1_gc,
	                       0);

	// Setup CH1 to read internal signal
	ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH1,
	                                 ADC_CH_INPUTMODE_INTERNAL_gc,
	                                 ADC_CH_GAIN_1X_gc);

	// CH1 is set up to measure the internal temperature sensor
	ADC_Ch_InputMux_Config(&ADCB.CH1,
	                       ADC_CH_MUXINT_TEMP_gc,
	                       0);

	// Set up ADC B to have unsigned conversion mode and 12 bit resolution
	ADC_ConvMode_and_Resolution_Config(&ADCB, false, ADC_RESOLUTION_12BIT_gc);

	// Set reference voltage on ADC B to be VCC/1.6 V
	ADC_Reference_Config(&ADCB, ADC_REFSEL_VCC_gc);

	// Sample rate is CPUFREQ/16.
	ADC_Prescaler_Config(&ADCB, ADC_PRESCALER_DIV16_gc);

	// Enable ADC B
	ADC_Enable(&ADCB);

	// Wait until common mode voltage is stable. Default clk is 2MHz and
	// therefore within the maximum frequency to use this function.
	ADC_Wait_8MHz(&ADCB);

	// Enable ADC B free running mode
	ADC_FreeRunning_Enable(&ADCB);

	// Set the LEDPORT as output
	LEDPORT.DIR = 0xFF;

	while(1) {
		// When CH1IF is set, both conversions are done since CH0 is started first
		// Wait for CH1IF to be set
		do {
		} while ((ADCB.INTFLAGS & ADC_CH1IF_bm) != ADC_CH1IF_bm);

		// Clear CH1 Interrupt Flag
		ADCB.INTFLAGS |= ADC_CH1IF_bm;

		// Read the CH0 result register, 12 bit unsigned (0-4095)
		ADC_result_CH0 = ADCB.CH0RES;
		// Read the CH1 result register
		ADC_result_CH1 = ADCB.CH1RES;

		// Shift CH0 result to get the 4 MSB of the input signal on the 4 LSB of the LEDs
		ADC_result_CH0 >>= 8;
		// Shift CH1 result to get the 4 MSB of the temperature on the 4 MSB of the LEDs
		// Also downscale it to 4 bit. Try touching the Xmega to warm it up.
		ADC_result_CH1 = ((ADC_result_CH1 - 1) / 16);
		ADC_result_CH1 <<= 4;

		// Output on the LEDs, the 4 MSB is the internal temperature reading,
		// and the 4 LSB is the single ended input reading,
		LEDPORT.OUT = ~( (ADC_result_CH1 & 0x00F0) | (ADC_result_CH0 & 0x000F));
	}
}
Exemple #3
0
//-----------------------------------------------------------------------------
// functions
//-----------------------------------------------------------------------------
void adc_init(void) {
/*
	Note: port_init() must be run before this function, so that the inputs are
	set correctly.
	
	We are using both ADCs. So everything will be set up for ADCA && ADCB.
*/

// Load the production calibration data into each ADC.
// This data was taken by Atmel and is stored in the micro.
// This function takes care of the whole process for you.
	ADC_CalibrationValues_Load(&ADCA);
	ADC_CalibrationValues_Load(&ADCB);
	
// Set the mode of operation for each ADC
// Signed operation mode is required for the differential configuration.
	ADC_ConvMode_and_Resolution_Config(&ADCA,signed_y,ADC_RESOLUTION_12BIT_gc);
	ADC_ConvMode_and_Resolution_Config(&ADCB,signed_y,ADC_RESOLUTION_12BIT_gc);
	
// Set ADC clocks
// 32MHz / 128 = 250KHz
// I currently have no explanation for this choice
// Atmel documentation states that you need to stay within the recommended
// ADC frequencies, but I cannot find the specific numbers.
	ADC_Prescaler_Config(&ADCA, ADC_PRESCALER_DIV128_gc);
	ADC_Prescaler_Config(&ADCB, ADC_PRESCALER_DIV128_gc);
	
// Select reference to be external reference on PIN0 for A and B
	ADC_Reference_Config(&ADCA, ADC_REFSEL_AREFA_gc);
	ADC_Reference_Config(&ADCB, ADC_REFSEL_AREFB_gc);

// Setup all channels to have differential input and 1X gain
	ADC_Ch_InputMode_and_Gain_Config(&ADCA.CH0,ADC_CH_INPUTMODE_DIFF_gc,
	                                  ADC_CH_GAIN_1X_gc); // V1
	ADC_Ch_InputMode_and_Gain_Config(&ADCA.CH1,ADC_CH_INPUTMODE_DIFF_gc,
	                                  ADC_CH_GAIN_1X_gc); // V2
	ADC_Ch_InputMode_and_Gain_Config(&ADCA.CH2,ADC_CH_INPUTMODE_DIFF_gc,
	                                  ADC_CH_GAIN_1X_gc); // reference
									  
	ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH0,ADC_CH_INPUTMODE_DIFF_gc,
	                                  ADC_CH_GAIN_1X_gc); // I1
	ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH1,ADC_CH_INPUTMODE_DIFF_gc,
	                                  ADC_CH_GAIN_1X_gc); // I2
	ADC_Ch_InputMode_and_Gain_Config(&ADCB.CH2,ADC_CH_INPUTMODE_DIFF_gc,
	                                  ADC_CH_GAIN_1X_gc); // reference								  									 								  

// Select the input pins for each ADC.
/*
	See AnodV2.1.sch eagle file:
	V1 - A1
	V2 - A2
	I1 - B1
	I2 - B2
	Ref - A0,A3,B0,B3
*/
	ADC_Ch_InputMux_Config(&ADCA.CH0, ADC_CH_MUXPOS_PIN1_gc, \
									  ADC_CH_MUXNEG_PIN3_gc); // V1
	ADC_Ch_InputMux_Config(&ADCA.CH1, ADC_CH_MUXPOS_PIN2_gc, \
									  ADC_CH_MUXNEG_PIN3_gc); // V2
	ADC_Ch_InputMux_Config(&ADCA.CH2, ADC_CH_MUXPOS_PIN3_gc, \
									  ADC_CH_MUXNEG_PIN3_gc); // Offset calib
			
	ADC_Ch_InputMux_Config(&ADCB.CH0, ADC_CH_MUXPOS_PIN1_gc, \
									  ADC_CH_MUXNEG_PIN3_gc); // V1
	ADC_Ch_InputMux_Config(&ADCB.CH1, ADC_CH_MUXPOS_PIN2_gc, 
									  ADC_CH_MUXNEG_PIN3_gc); // V2
	ADC_Ch_InputMux_Config(&ADCB.CH2, ADC_CH_MUXPOS_PIN3_gc,
									  ADC_CH_MUXNEG_PIN3_gc); // Offset calib

// Configure the ADCA.CH2 interrupt.
// This will trip once a reading on channel 2 has been completely resolved.
// I am assuming the chan 0 and 1 of both ADCs will have their results completed
// when chan 2 is done. This is based from the Xmega A manual (sect 25)									  
	ADC_Ch_Interrupts_Config(&ADCA.CH1, ADC_CH_INTMODE_COMPLETE_gc, \
									    ADC_CH_INTLVL_LO_gc);

//Enable ADCs
	ADC_Enable(&ADCA);
	ADC_Enable(&ADCB);								

// Wait until common mode voltage is stable so tha bypass transients are not passed.
// What is the difference between the 32 and 8 MHz versions, 
// and which one do I want?
	ADC_Wait_32MHz(&ADCA);
	ADC_Wait_32MHz(&ADCB);									  

// The TCD0 timer will periodically trigger an event that will  create an event
// on channel 0. (Xmega A manual sect 6)
	eflags.setEventSource = EVSYS_SetEventSource(0, EVSYS_CHMUX_TCD0_OVF_gc);
	TC0_ConfigClockSource(&TCD0, TC_CLKSEL_DIV8_gc);
	TCD0.PER = 200; // 1/f = 1/(32MHz/DIVx/PER) --- 200---50us---20KHz

// This is moved to the adc_test() fun. May want to enable it here later.
	// enable timer overflow int and set priority to low.
	//TCD0.INTCTRLA = TC_OVFINTLVL_LO_gc; 

// An event on eventChan 0 will trigger a sweep of chan 0,1 in ADCA && ADCB.
// I do not know what would happen if an event happened on eventChan 1,2,3.
	ADC_Events_Config(&ADCA, ADC_EVSEL_0123_gc, ADC_EVACT_SWEEP_gc);	
	ADC_Events_Config(&ADCB, ADC_EVSEL_0123_gc, ADC_EVACT_SWEEP_gc);
	ADC_SweepChannels_Config(&ADCA, ADC_SWEEP_01_gc);
	ADC_SweepChannels_Config(&ADCB, ADC_SWEEP_01_gc);
	
	
// Calibration routine for the ADCs
// Find offset with two pins shorted together.
// Steve also found the offset for the current with 0 current flowing into them,
// but did not do an equivalent for voltage. I will leave this out for now.
	offset_A = ADC_Offset_Get_Signed(&ADCA, &(ADCA.CH2), true);
	offset_B = ADC_Offset_Get_Signed(&ADCB, &(ADCB.CH2), true);
}