Exemple #1
0
/* Fortran interface to C "set" routines having real
   arguments; see farkode.h for further details */
void FARK_SETRIN(char key_name[], realtype *rval, int *ier) {
  if (!strncmp(key_name, "INIT_STEP", 9)) 
    *ier = ARKodeSetInitStep(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "MAX_STEP", 8)) 
    *ier = ARKodeSetMaxStep(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "MIN_STEP", 8)) 
    *ier = ARKodeSetMinStep(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "STOP_TIME", 9)) 
    *ier = ARKodeSetStopTime(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "NLCONV_COEF", 11)) 
    *ier = ARKodeSetNonlinConvCoef(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "ADAPT_CFL", 9))
    *ier = ARKodeSetCFLFraction(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "ADAPT_SAFETY", 12)) 
    *ier = ARKodeSetSafetyFactor(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "ADAPT_BIAS", 10))
    *ier = ARKodeSetErrorBias(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "ADAPT_GROWTH", 12)) 
    *ier = ARKodeSetMaxGrowth(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "ADAPT_BOUNDS", 12))
    *ier = ARKodeSetFixedStepBounds(ARK_arkodemem, rval[0], rval[1]);
  else if (!strncmp(key_name, "ADAPT_ETAMX1", 12))
    *ier = ARKodeSetMaxFirstGrowth(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "ADAPT_ETAMXF", 12))
    *ier = ARKodeSetMaxEFailGrowth(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "ADAPT_ETACF", 11))
    *ier = ARKodeSetMaxCFailGrowth(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "NONLIN_CRDOWN", 11))
    *ier = ARKodeSetNonlinCRDown(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "NONLIN_RDIV", 9))
    *ier = ARKodeSetNonlinRDiv(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "LSETUP_DGMAX", 12))
    *ier = ARKodeSetDeltaGammaMax(ARK_arkodemem, *rval);
  else if (!strncmp(key_name, "FIXED_STEP", 10))
    *ier = ARKodeSetFixedStep(ARK_arkodemem, *rval);
  else {
    *ier = -99;
    printf("FARKSETRIN: Unrecognized key: %s\n\n",key_name);
  }
  return;
}
Exemple #2
0
void Arkode::ArkodeCore()
{

  _idid = ARKodeReInit(_arkodeMem, NULL, ARK_fCallback, _tCurrent, _ARK_y);
  _idid = ARKodeSetStopTime(_arkodeMem, _tEnd);
  _idid = ARKodeSetInitStep(_arkodeMem, 1e-12);
  if (_idid < 0)
    throw ModelicaSimulationError(SOLVER,"ARKode::ReInit");

  bool writeEventOutput = (_settings->getGlobalSettings()->getOutputPointType() == OPT_ALL);
  bool writeOutput = !(_settings->getGlobalSettings()->getOutputPointType() == OPT_NONE);

  while (_solverStatus & ISolver::CONTINUE && !_interrupt )
  {
    _ark_rt = ARKode(_arkodeMem, _tEnd, _ARK_y, &_tCurrent, ARK_ONE_STEP);

    _idid = ARKodeGetNumSteps(_arkodeMem, &_locStps);
    //if (_idid != CV_SUCCESS)
    //  throw ModelicaSimulationError(SOLVER,"CVodeGetNumSteps failed. The cvode mem pointer is NULL");

    _idid = ARKodeGetLastStep(_arkodeMem, &_h);
    //if (_idid != CV_SUCCESS)
    //  throw ModelicaSimulationError(SOLVER,"CVodeGetLastStep failed. The cvode mem pointer is NULL");

    //Check if there was at least one output-point within the last solver interval
    //  -> Write output if true
    if (writeOutput)
    {
        writeArkodeOutput(_tCurrent, _h, _locStps);
    }

    //set completed step to system and check if terminate was called
    if(_continuous_system->stepCompleted(_tCurrent))
        _solverStatus = DONE;

    // Perform state selection
    bool state_selection = stateSelection();
    if (state_selection)
      _continuous_system->getContinuousStates(_z);

    _zeroFound = false;

    // Check if step was successful
    /*
    if (check_flag(&_cv_rt, "CVode", 1))
    {
      _solverStatus = ISolver::SOLVERERROR;
      break;
    }*/

    // A root was found

    if ((_ark_rt == ARK_ROOT_RETURN) && !isInterrupted())
    {
      // CVode is setting _tCurrent to the time where the first event occurred
      double _abs = fabs(_tLastEvent - _tCurrent);
      _zeroFound = true;

      if ((_abs < 1e-3) && _event_n == 0)
      {
        _tLastEvent = _tCurrent;
        _event_n++;
      }
      else if ((_abs < 1e-3) && (_event_n >= 1 && _event_n < 500))
      {
        _event_n++;
      }
      else if ((_abs >= 1e-3))
      {
        //restart event counter
        _tLastEvent = _tCurrent;
        _event_n = 0;
      }
      else
        throw ModelicaSimulationError(EVENT_HANDLING,"Number of events exceeded  in time interval " + to_string(_abs) + " at time " + to_string(_tCurrent));

      // CVode has interpolated the states at time 'tCurrent'
      _time_system->setTime(_tCurrent);

      // To get steep steps in the result file, two value points (P1 and P2) must be added
      //
      // Y |   (P2) X...........
      //   |        :
      //   |        :
      //   |........X (P1)
      //   |---------------------------------->
      //   |        ^                         t
      //        _tCurrent

      // Write the values of (P1)
      if (writeEventOutput)
      {
        _continuous_system->evaluateAll(IContinuous::CONTINUOUS);
        writeToFile(0, _tCurrent, _h);
      }

      _idid = ARKodeGetRootInfo(_arkodeMem, _zeroSign);

      for (int i = 0; i < _dimZeroFunc; i++)
        _events[i] = bool(_zeroSign[i]);

      if (_mixed_system->handleSystemEvents(_events))
      {
        // State variables were reinitialized, thus we have to give these values to the cvode-solver
        // Take care about the memory regions, _z is the same like _CV_y
        _continuous_system->getContinuousStates(_z);
      }
    }
    if ((_zeroFound || state_selection)&& !isInterrupted())
    {

      if (writeEventOutput)
      {
        _continuous_system->evaluateAll(IContinuous::CONTINUOUS);
        writeToFile(0, _tCurrent, _h);
      }

      _idid = ARKodeReInit(_arkodeMem, NULL, ARK_fCallback, _tCurrent, _ARK_y);
      if (_idid < 0)
        throw ModelicaSimulationError(SOLVER,"CVode::ReInit()");

      // Der Eventzeitpunkt kann auf der Endzeit liegen (Time-Events). In diesem Fall wird der Solver beendet, da CVode sonst eine interne Warnung
      if (_tCurrent == _tEnd)
        _ark_rt = ARK_TSTOP_RETURN;
    }


    ++_outStps;
    _tLastSuccess = _tCurrent;

    if (_ark_rt == ARK_TSTOP_RETURN)
    {
      _time_system->setTime(_tEnd);
      //Solver has finished calculation - calculate the final values
      _continuous_system->setContinuousStates(NV_DATA_S(_ARK_y));
      _continuous_system->evaluateAll(IContinuous::CONTINUOUS);
      if(writeOutput)
         writeToFile(0, _tEnd, _h);

      _accStps += _locStps;
      _solverStatus = DONE;
    }

    }
}
/* Main Program */
int main() {

  /* general problem parameters */
  realtype T0 = RCONST(0.0);   /* initial time */
  realtype Tf = RCONST(1.0);   /* final time */
  realtype rtol = 1.e-3;       /* relative tolerance */
  realtype atol = 1.e-10;      /* absolute tolerance */
  realtype hscale = 1.0;       /* time step change factor on resizes */
  UserData udata = NULL;
  realtype *data;
  long int N = 21;             /* initial spatial mesh size */
  realtype refine = 3.e-3;     /* adaptivity refinement tolerance */
  realtype k = 0.5;            /* heat conductivity */
  long int i, nni, nni_cur=0, nni_tot=0, nli, nli_tot=0;
  int iout=0;

  /* general problem variables */
  int flag;                    /* reusable error-checking flag */
  N_Vector y  = NULL;          /* empty vector for storing solution */
  N_Vector y2 = NULL;          /* empty vector for storing solution */
  N_Vector yt = NULL;          /* empty vector for swapping */
  void *arkode_mem = NULL;     /* empty ARKode memory structure */
  FILE *XFID, *UFID;
  realtype t, olddt, newdt;
  realtype *xnew = NULL;
  long int Nnew;

  /* allocate and fill initial udata structure */
  udata = (UserData) malloc(sizeof(*udata));
  udata->N = N;
  udata->k = k;
  udata->refine_tol = refine;
  udata->x = malloc(N * sizeof(realtype));
  for (i=0; i<N; i++)  udata->x[i] = 1.0*i/(N-1);

  /* Initial problem output */
  printf("\n1D adaptive Heat PDE test problem:\n");
  printf("  diffusion coefficient:  k = %g\n", udata->k);
  printf("  initial N = %li\n", udata->N);

  /* Initialize data structures */
  y = N_VNew_Serial(N);       /* Create initial serial vector for solution */
  if (check_flag((void *) y, "N_VNew_Serial", 0)) return 1;
  N_VConst(0.0, y);           /* Set initial conditions */

  /* output mesh to disk */
  XFID=fopen("heat_mesh.txt","w");

  /* output initial mesh to disk */
  for (i=0; i<udata->N; i++)  fprintf(XFID," %.16e", udata->x[i]);
  fprintf(XFID,"\n");

  /* Open output stream for results, access data array */
  UFID=fopen("heat1D.txt","w");

  /* output initial condition to disk */
  data = N_VGetArrayPointer(y);
  for (i=0; i<udata->N; i++)  fprintf(UFID," %.16e", data[i]);
  fprintf(UFID,"\n");


  /* Create the solver memory */
  arkode_mem = ARKodeCreate();
  if (check_flag((void *) arkode_mem, "ARKodeCreate", 0)) return 1;

  /* Initialize the integrator memory */
  flag = ARKodeInit(arkode_mem, NULL, f, T0, y);
  if (check_flag(&flag, "ARKodeInit", 1)) return 1;

  /* Set routines */
  flag = ARKodeSetUserData(arkode_mem, (void *) udata);   /* Pass udata to user functions */
  if (check_flag(&flag, "ARKodeSetUserData", 1)) return 1;
  flag = ARKodeSetMaxNumSteps(arkode_mem, 10000);         /* Increase max num steps  */
  if (check_flag(&flag, "ARKodeSetMaxNumSteps", 1)) return 1;
  flag = ARKodeSStolerances(arkode_mem, rtol, atol);      /* Specify tolerances */
  if (check_flag(&flag, "ARKodeSStolerances", 1)) return 1;
  flag = ARKodeSetAdaptivityMethod(arkode_mem, 2, 1, 0, NULL);  /* Set adaptivity method */
  if (check_flag(&flag, "ARKodeSetAdaptivityMethod", 1)) return 1;
  flag = ARKodeSetPredictorMethod(arkode_mem, 0);     /* Set predictor method */
  if (check_flag(&flag, "ARKodeSetPredictorMethod", 1)) return 1;

  /* Linear solver specification */
  flag = ARKPcg(arkode_mem, 0, N);
  if (check_flag(&flag, "ARKPcg", 1)) return 1;
  flag = ARKSpilsSetJacTimesVecFn(arkode_mem, Jac);
  if (check_flag(&flag, "ARKSpilsSetJacTimesVecFn", 1)) return 1;

  /* Main time-stepping loop: calls ARKode to perform the integration, then
     prints results.  Stops when the final time has been reached */
  t = T0;
  olddt = 0.0;
  newdt = 0.0;
  printf("  iout          dt_old                 dt_new               ||u||_rms       N   NNI  NLI\n");
  printf(" ----------------------------------------------------------------------------------------\n");
  printf(" %4i  %19.15e  %19.15e  %19.15e  %li   %2i  %3i\n", 
	 iout, olddt, newdt, sqrt(N_VDotProd(y,y)/udata->N), udata->N, 0, 0);
  while (t < Tf) {

    /* "set" routines */
    flag = ARKodeSetStopTime(arkode_mem, Tf);
    if (check_flag(&flag, "ARKodeSetStopTime", 1)) return 1;
    flag = ARKodeSetInitStep(arkode_mem, newdt);
    if (check_flag(&flag, "ARKodeSetInitStep", 1)) return 1;

    /* call integrator */
    flag = ARKode(arkode_mem, Tf, y, &t, ARK_ONE_STEP);
    if (check_flag(&flag, "ARKode", 1)) return 1;

    /* "get" routines */
    flag = ARKodeGetLastStep(arkode_mem, &olddt);
    if (check_flag(&flag, "ARKodeGetLastStep", 1)) return 1;
    flag = ARKodeGetCurrentStep(arkode_mem, &newdt);
    if (check_flag(&flag, "ARKodeGetCurrentStep", 1)) return 1;
    flag = ARKodeGetNumNonlinSolvIters(arkode_mem, &nni);
    if (check_flag(&flag, "ARKodeGetNumNonlinSolvIters", 1)) return 1;
    flag = ARKSpilsGetNumLinIters(arkode_mem, &nli);
    if (check_flag(&flag, "ARKSpilsGetNumLinIters", 1)) return 1;

    /* print current solution stats */
    iout++;
    printf(" %4i  %19.15e  %19.15e  %19.15e  %li   %2li  %3li\n", 
	   iout, olddt, newdt, sqrt(N_VDotProd(y,y)/udata->N), udata->N, nni-nni_cur, nli);
    nni_cur = nni;
    nni_tot = nni;
    nli_tot += nli;

    /* output results and current mesh to disk */
    data = N_VGetArrayPointer(y);
    for (i=0; i<udata->N; i++)  fprintf(UFID," %.16e", data[i]);
    fprintf(UFID,"\n");
    for (i=0; i<udata->N; i++)  fprintf(XFID," %.16e", udata->x[i]);
    fprintf(XFID,"\n");

    /* adapt the spatial mesh */
    xnew = adapt_mesh(y, &Nnew, udata);
    if (check_flag(xnew, "ark_adapt", 0)) return 1;

    /* create N_Vector of new length */
    y2 = N_VNew_Serial(Nnew);
    if (check_flag((void *) y2, "N_VNew_Serial", 0)) return 1;
    
    /* project solution onto new mesh */
    flag = project(udata->N, udata->x, y, Nnew, xnew, y2);
    if (check_flag(&flag, "project", 1)) return 1;

    /* delete old vector, old mesh */
    N_VDestroy_Serial(y);
    free(udata->x);
    
    /* swap x and xnew so that new mesh is stored in udata structure */
    udata->x = xnew;
    xnew = NULL;
    udata->N = Nnew;   /* store size of new mesh */
    
    /* swap y and y2 so that y holds new solution */
    yt = y;
    y  = y2;
    y2 = yt;

    /* call ARKodeResize to notify integrator of change in mesh */
    flag = ARKodeResize(arkode_mem, y, hscale, t, NULL, NULL);
    if (check_flag(&flag, "ARKodeResize", 1)) return 1;

    /* destroy and re-allocate linear solver memory */
    flag = ARKPcg(arkode_mem, 0, udata->N);
    if (check_flag(&flag, "ARKPcg", 1)) return 1;
    flag = ARKSpilsSetJacTimesVecFn(arkode_mem, Jac);
    if (check_flag(&flag, "ARKSpilsSetJacTimesVecFn", 1)) return 1;

  }
  printf(" ----------------------------------------------------------------------------------------\n");

  /* Free integrator memory */
  ARKodeFree(&arkode_mem);

  /* print some final statistics */
  printf(" Final solver statistics:\n");
  printf("   Total number of time steps = %i\n", iout);
  printf("   Total nonlinear iterations = %li\n", nni_tot);
  printf("   Total linear iterations    = %li\n\n", nli_tot);

  /* Clean up and return with successful completion */
  fclose(UFID);
  fclose(XFID);
  N_VDestroy_Serial(y);        /* Free vectors */
  free(udata->x);              /* Free user data */
  free(udata);   

  return 0;
}