Exemple #1
0
/**
 * Creates the kernel input device.
 */
static int __init vboxguestLinuxCreateInputDevice(void)
{
    int rc;

    rc = VbglGRAlloc((VMMDevRequestHeader **)&g_pMouseStatusReq,
                     sizeof(*g_pMouseStatusReq),
                     VMMDevReq_GetMouseStatus);
    if (RT_FAILURE(rc))
        return -ENOMEM;
    g_pInputDevice = input_allocate_device();
    if (!g_pInputDevice)
    {
        VbglGRFree(&g_pMouseStatusReq->header);
        return -ENOMEM;
    }
    g_pInputDevice->id.bustype = BUS_PCI;
    g_pInputDevice->id.vendor  = VMMDEV_VENDORID;
    g_pInputDevice->id.product = VMMDEV_DEVICEID;
    g_pInputDevice->id.version = VBOX_SHORT_VERSION;
    g_pInputDevice->open       = vboxguestOpenInputDevice;
    g_pInputDevice->close      = vboxguestCloseInputDevice;
# if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 22)
    g_pInputDevice->cdev.dev   = &g_pPciDev->dev;
# else
    g_pInputDevice->dev.parent = &g_pPciDev->dev;
# endif
    {
        int rc = input_register_device(g_pInputDevice);
        if (rc)
        {
            VbglGRFree(&g_pMouseStatusReq->header);
            input_free_device(g_pInputDevice);
            return rc;
        }
    }
    /* Do what one of our competitors apparently does as that works. */
    ASMBitSet(g_pInputDevice->evbit, EV_ABS);
    ASMBitSet(g_pInputDevice->evbit, EV_KEY);
# ifdef EV_SYN
    ASMBitSet(g_pInputDevice->evbit, EV_SYN);
# endif
    input_set_abs_params(g_pInputDevice, ABS_X, VMMDEV_MOUSE_RANGE_MIN,
                         VMMDEV_MOUSE_RANGE_MAX, 0, 0);
    input_set_abs_params(g_pInputDevice, ABS_Y, VMMDEV_MOUSE_RANGE_MIN,
                         VMMDEV_MOUSE_RANGE_MAX, 0, 0);
    ASMBitSet(g_pInputDevice->keybit, BTN_MOUSE);
    /** @todo this string should be in a header file somewhere. */
    g_pInputDevice->name = "VirtualBox mouse integration";
    return 0;
}
static void test2(RTTEST hTest)
{
    struct TestMap2 *p2 = (struct TestMap2 *)RTTestGuardedAllocTail(hTest, sizeof(TestMap2));
    p2->idNil  = NIL_TEST2_ID;
    p2->idLast = TEST2_ID_LAST;

    /* Some simple tests first. */
    RT_ZERO(p2->bmChunkId);
    RTTEST_CHECK(hTest, ASMBitFirstSet(&p2->bmChunkId[0], TEST2_ID_LAST + 1) == -1);
    for (uint32_t iBit = 0; iBit <= TEST2_ID_LAST; iBit++)
        RTTEST_CHECK(hTest, !ASMBitTest(&p2->bmChunkId[0], iBit));

    memset(&p2->bmChunkId[0], 0xff, sizeof(p2->bmChunkId));
    RTTEST_CHECK(hTest, ASMBitFirstClear(&p2->bmChunkId[0], TEST2_ID_LAST + 1) == -1);
    for (uint32_t iBit = 0; iBit <= TEST2_ID_LAST; iBit++)
        RTTEST_CHECK(hTest, ASMBitTest(&p2->bmChunkId[0], iBit));

    /* The real test. */
    p2->idChunkPrev = 0;
    RT_ZERO(p2->bmChunkId);
    ASMBitSet(p2->bmChunkId, NIL_TEST2_ID);
    uint32_t cLeft = TEST2_ID_LAST;
    while (cLeft-- > 0)
        test2AllocId(p2);

    RTTEST_CHECK(hTest, ASMBitFirstClear(&p2->bmChunkId[0], TEST2_ID_LAST + 1) == -1);
}
Exemple #3
0
RTDECL(bool) ASMBitTestAndSet(volatile void *pvBitmap, int32_t iBit)
{
    if (ASMBitTest(pvBitmap, iBit))
        return true;
    ASMBitSet(pvBitmap, iBit);
    return false;
}
Exemple #4
0
BS3_DECL(void) Bs3SlabInit(PBS3SLABCTL pSlabCtl, size_t cbSlabCtl, uint32_t uFlatSlabPtr, uint32_t cbSlab, uint16_t cbChunk)
{
    uint16_t cBits;
    BS3_ASSERT(RT_IS_POWER_OF_TWO(cbChunk));
    BS3_ASSERT(cbSlab >= cbChunk * 4);
    BS3_ASSERT(!(uFlatSlabPtr & (cbChunk - 1)));

    BS3_XPTR_SET_FLAT(BS3SLABCTL, pSlabCtl->pNext, 0);
    BS3_XPTR_SET_FLAT(BS3SLABCTL, pSlabCtl->pHead, 0);
    BS3_XPTR_SET_FLAT(BS3SLABCTL, pSlabCtl->pbStart, uFlatSlabPtr);
    pSlabCtl->cbChunk           = cbChunk;
    pSlabCtl->cChunkShift       = ASMBitFirstSetU16(cbChunk) - 1;
    pSlabCtl->cChunks           = cbSlab >> pSlabCtl->cChunkShift;
    pSlabCtl->cFreeChunks       = pSlabCtl->cChunks;
    cBits                       = RT_ALIGN_T(pSlabCtl->cChunks, 32, uint16_t);
    BS3_ASSERT(cbSlabCtl >= RT_OFFSETOF(BS3SLABCTL, bmAllocated[cBits >> 3]));
    Bs3MemZero(&pSlabCtl->bmAllocated, cBits >> 3);

    /* Mark excess bitmap padding bits as allocated. */
    if (cBits != pSlabCtl->cChunks)
    {
        uint16_t iBit;
        for (iBit = pSlabCtl->cChunks; iBit < cBits; iBit++)
            ASMBitSet(pSlabCtl->bmAllocated, iBit);
    }
}
Exemple #5
0
/**
 * Tries to allocate a chunk of pages from a heap block.
 *
 * @retval  VINF_SUCCESS on success.
 * @retval  VERR_NO_MEMORY if the allocation failed.
 * @param   pBlock          The block to allocate from.
 * @param   cPages          The size of the allocation.
 * @param   fZero           Whether it should be zeroed or not.
 * @param   ppv             Where to return the allocation address on success.
 */
DECLINLINE(int) rtHeapPageAllocFromBlock(PRTHEAPPAGEBLOCK pBlock, size_t cPages, bool fZero, void **ppv)
{
    if (pBlock->cFreePages >= cPages)
    {
        int iPage = ASMBitFirstClear(&pBlock->bmAlloc[0], RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT);
        Assert(iPage >= 0);

        /* special case: single page. */
        if (cPages == 1)
        {
            ASMBitSet(&pBlock->bmAlloc[0], iPage);
            return rtHeapPageAllocFromBlockSuccess(pBlock, iPage, cPages, fZero, ppv);
        }

        while (   iPage >= 0
                  && (unsigned)iPage <= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT - cPages)
        {
            if (rtHeapPageIsPageRangeFree(pBlock, iPage + 1, cPages - 1))
            {
                ASMBitSetRange(&pBlock->bmAlloc[0], iPage, iPage + cPages);
                return rtHeapPageAllocFromBlockSuccess(pBlock, iPage, cPages, fZero, ppv);
            }

            /* next */
            iPage = ASMBitNextSet(&pBlock->bmAlloc[0], RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT, iPage);
            if (iPage < 0 || iPage >= RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT - 1)
                break;
            iPage = ASMBitNextClear(&pBlock->bmAlloc[0], RTMEMPAGEPOSIX_BLOCK_PAGE_COUNT, iPage);
        }
    }

    return VERR_NO_MEMORY;
}
Exemple #6
0
static PCR_DISPLAY crServerDisplayGet(uint32_t idScreen)
{
    if (idScreen >= CR_MAX_GUEST_MONITORS)
    {
        crWarning("invalid idScreen %d", idScreen);
        return NULL;
    }

    if (ASMBitTest(cr_server.DisplaysInitMap, idScreen))
        return &cr_server.aDispplays[idScreen];

    /* the display (screen id == 0) can be initialized while doing crServerCheckInitDisplayBlitter,
     * so re-check the bit map */
     if (ASMBitTest(cr_server.DisplaysInitMap, idScreen))
         return &cr_server.aDispplays[idScreen];

     int rc = CrDpInit(&cr_server.aDispplays[idScreen]);
     if (RT_SUCCESS(rc))
     {
         CrDpResize(&cr_server.aDispplays[idScreen],
                 cr_server.screen[idScreen].w, cr_server.screen[idScreen].h,
                 cr_server.screen[idScreen].w, cr_server.screen[idScreen].h);
         ASMBitSet(cr_server.DisplaysInitMap, idScreen);
         return &cr_server.aDispplays[idScreen];
     }
     else
     {
         crWarning("CrDpInit failed for screen %d", idScreen);
     }

    return NULL;
}
Exemple #7
0
/**
 * Grows the cache.
 *
 * @returns IPRT status code.
 * @param   pThis               The memory cache instance.
 */
static int rtMemCacheGrow(RTMEMCACHEINT *pThis)
{
    /*
     * Enter the critical section here to avoid allocation races leading to
     * wasted memory (++) and make it easier to link in the new page.
     */
    RTCritSectEnter(&pThis->CritSect);
    int rc = VINF_SUCCESS;
    if (pThis->cFree < 0)
    {
        /*
         * Allocate and initialize the new page.
         *
         * We put the constructor bitmap at the lower end right after cFree.
         * We then push the object array to the end of the page and place the
         * allocation bitmap below it.  The hope is to increase the chance that
         * the allocation bitmap is in a different cache line than cFree since
         * this increases performance markably when lots of threads are beating
         * on the cache.
         */
        PRTMEMCACHEPAGE pPage = (PRTMEMCACHEPAGE)RTMemPageAlloc(PAGE_SIZE);
        if (pPage)
        {
            uint32_t const cObjects = RT_MIN(pThis->cPerPage, pThis->cMax - pThis->cTotal);

            ASMMemZeroPage(pPage);
            pPage->pCache       = pThis;
            pPage->pNext        = NULL;
            pPage->cFree        = cObjects;
            pPage->cObjects     = cObjects;
            uint8_t *pb = (uint8_t *)(pPage + 1);
            pb = RT_ALIGN_PT(pb, 8, uint8_t *);
            pPage->pbmCtor      = pb;
            pb = (uint8_t *)pPage + PAGE_SIZE - pThis->cbObject * cObjects;
            pPage->pbObjects    = pb;   Assert(RT_ALIGN_P(pb, pThis->cbAlignment) == pb);
            pb -= pThis->cBits / 8;
            pb = (uint8_t *)((uintptr_t)pb & ~(uintptr_t)7);
            pPage->pbmAlloc     = pb;
            Assert((uintptr_t)pPage->pbmCtor + pThis->cBits / 8 <= (uintptr_t)pPage->pbmAlloc);

            /* Mark the bitmap padding and any unused objects as allocated. */
            for (uint32_t iBit = cObjects; iBit < pThis->cBits; iBit++)
                ASMBitSet(pPage->pbmAlloc, iBit);

            /* Make it the hint. */
            ASMAtomicWritePtr(&pThis->pPageHint, pPage);

            /* Link the page in at the end of the list. */
            ASMAtomicWritePtr(pThis->ppPageNext, pPage);
            pThis->ppPageNext = &pPage->pNext;

            /* Add it to the page counts. */
            ASMAtomicAddS32(&pThis->cFree, cObjects);
            ASMAtomicAddU32(&pThis->cTotal, cObjects);
        }
        else
Exemple #8
0
/**
 * Mark a page as scanned/not scanned
 *
 * @note: we always mark it as scanned, even if we haven't completely done so
 *
 * @returns VBox status code.
 * @param   pVM         Pointer to the VM.
 * @param   pPage       GC page address (not necessarily aligned)
 * @param   fScanned    Mark as scanned or not scanned
 *
 */
VMM_INT_DECL(int) CSAMMarkPage(PVM pVM, RTRCUINTPTR pPage, bool fScanned)
{
    int pgdir, bit;
    uintptr_t page;

#ifdef LOG_ENABLED
    if (fScanned && !CSAMIsPageScanned(pVM, (RTRCPTR)pPage))
       Log(("CSAMMarkPage %RRv\n", pPage));
#endif

    if (!CSAMIsEnabled(pVM))
        return VINF_SUCCESS;
    Assert(!HMIsEnabled(pVM));

    page  = (uintptr_t)pPage;
    pgdir = page >> X86_PAGE_4M_SHIFT;
    bit   = (page & X86_PAGE_4M_OFFSET_MASK) >> X86_PAGE_4K_SHIFT;

    Assert(pgdir < CSAM_PGDIRBMP_CHUNKS);
    Assert(bit < PAGE_SIZE);

    if(!CTXSUFF(pVM->csam.s.pPDBitmap)[pgdir])
    {
        STAM_COUNTER_INC(&pVM->csam.s.StatBitmapAlloc);
        int rc = MMHyperAlloc(pVM, CSAM_PAGE_BITMAP_SIZE, 0, MM_TAG_CSAM, (void **)&pVM->csam.s.CTXSUFF(pPDBitmap)[pgdir]);
        if (RT_FAILURE(rc))
        {
            Log(("MMHyperAlloc failed with %Rrc\n", rc));
            return rc;
        }
#ifdef IN_RC
        pVM->csam.s.pPDHCBitmapGC[pgdir] = MMHyperRCToR3(pVM, (RCPTRTYPE(void*))pVM->csam.s.pPDBitmapGC[pgdir]);
        if (!pVM->csam.s.pPDHCBitmapGC[pgdir])
        {
            Log(("MMHyperHC2GC failed for %RRv\n", pVM->csam.s.pPDBitmapGC[pgdir]));
            return rc;
        }
#else
        pVM->csam.s.pPDGCBitmapHC[pgdir] = MMHyperR3ToRC(pVM, pVM->csam.s.pPDBitmapHC[pgdir]);
        if (!pVM->csam.s.pPDGCBitmapHC[pgdir])
        {
            Log(("MMHyperHC2GC failed for %RHv\n", pVM->csam.s.pPDBitmapHC[pgdir]));
            return rc;
        }
#endif
    }
    if(fScanned)
        ASMBitSet((void *)pVM->csam.s.CTXSUFF(pPDBitmap)[pgdir], bit);
    else
        ASMBitClear((void *)pVM->csam.s.CTXSUFF(pPDBitmap)[pgdir], bit);

    return VINF_SUCCESS;
}
Exemple #9
0
/**
 * Avoids some gotos in rtHeapPageAllocFromBlock.
 *
 * @returns VINF_SUCCESS.
 * @param   pBlock          The block.
 * @param   iPage           The page to start allocating at.
 * @param   cPages          The number of pages.
 * @param   fZero           Whether to clear them.
 * @param   ppv             Where to return the allocation address.
 */
DECLINLINE(int) rtHeapPageAllocFromBlockSuccess(PRTHEAPPAGEBLOCK pBlock, uint32_t iPage,  size_t cPages, bool fZero, void **ppv)
{
    PRTHEAPPAGE pHeap = pBlock->pHeap;

    ASMBitSet(&pBlock->bmFirst[0], iPage);
    pBlock->cFreePages -= cPages;
    pHeap->cFreePages  -= cPages;
    if (!pHeap->pHint2 || pHeap->pHint2->cFreePages < pBlock->cFreePages)
        pHeap->pHint2 = pBlock;
    pHeap->cAllocCalls++;

    void *pv = (uint8_t *)pBlock->Core.Key + (iPage << PAGE_SHIFT);
    *ppv = pv;
    if (fZero)
        RT_BZERO(pv, cPages << PAGE_SHIFT);

    return VINF_SUCCESS;
}
int main()
{
    /*
     * Init the runtime and stuff.
     */
    RTTEST hTest;
    int rc = RTTestInitAndCreate("tstRTBitOperations", &hTest);
    if (rc)
        return rc;
    RTTestBanner(hTest);

    int i;
    int j;
    int k;

    /*
     * Tests
     */
    struct TestMap
    {
        uint32_t au32[4];
    };
#if 0
    struct TestMap sTest;
    struct TestMap *p = &sTest;
#else
    struct TestMap *p = (struct TestMap *)RTTestGuardedAllocTail(hTest, sizeof(*p));
#endif
#define DUMP()          RTTestPrintf(hTest, RTTESTLVL_INFO, "au32={%08x,%08x,%08x,%08x}", p->au32[0], p->au32[1], p->au32[2], p->au32[3])
#define CHECK(expr)     do { if (!(expr)) { RTTestFailed(hTest, "line %d: %s", __LINE__, #expr); DUMP(); } CHECK_GUARD(s); } while (0)
#define CHECK_BIT(expr,  b1)            do { if (!(expr)) { RTTestFailed(hTest, "line %d, b1=%d: %s", __LINE__, b1, #expr); } CHECK_GUARD(s); } while (0)
#define CHECK_BIT2(expr, b1, b2)        do { if (!(expr)) { RTTestFailed(hTest, "line %d, b1=%d b2=%d: %s", __LINE__, b1, b2, #expr); } CHECK_GUARD(s); } while (0)
#define CHECK_BIT3(expr, b1, b2, b3)    do { if (!(expr)) { RTTestFailed(hTest, "line %d, b1=%d b2=%d b3=%d: %s", __LINE__, b1, b2, b3, #expr); } CHECK_GUARD(s); } while (0)

#define GUARD_MAP(p)    do {  } while (0)
#define CHECK_GUARD(p)  do {  } while (0)
#define MAP_CLEAR(p)    do { RT_ZERO(*(p)); GUARD_MAP(p); } while (0)
#define MAP_SET(p)      do { memset(p, 0xff, sizeof(*(p))); GUARD_MAP(p); } while (0)

    /* self check. */
    MAP_CLEAR(p);
    CHECK_GUARD(p);

    /* bit set */
    MAP_CLEAR(p);
    ASMBitSet(&p->au32[0], 0);
    ASMBitSet(&p->au32[0], 31);
    ASMBitSet(&p->au32[0], 65);
    CHECK(p->au32[0] == 0x80000001U);
    CHECK(p->au32[2] == 0x00000002U);
    CHECK(ASMBitTestAndSet(&p->au32[0], 0)   && p->au32[0] == 0x80000001U);
    CHECK(!ASMBitTestAndSet(&p->au32[0], 16) && p->au32[0] == 0x80010001U);
    CHECK(ASMBitTestAndSet(&p->au32[0], 16)  && p->au32[0] == 0x80010001U);
    CHECK(!ASMBitTestAndSet(&p->au32[0], 80) && p->au32[2] == 0x00010002U);

    MAP_CLEAR(p);
    ASMAtomicBitSet(&p->au32[0], 0);
    ASMAtomicBitSet(&p->au32[0], 30);
    ASMAtomicBitSet(&p->au32[0], 64);
    CHECK(p->au32[0] == 0x40000001U);
    CHECK(p->au32[2] == 0x00000001U);
    CHECK(ASMAtomicBitTestAndSet(&p->au32[0], 0)   && p->au32[0] == 0x40000001U);
    CHECK(!ASMAtomicBitTestAndSet(&p->au32[0], 16) && p->au32[0] == 0x40010001U);
    CHECK(ASMAtomicBitTestAndSet(&p->au32[0], 16)  && p->au32[0] == 0x40010001U);
    CHECK(!ASMAtomicBitTestAndSet(&p->au32[0], 80) && p->au32[2] == 0x00010001U);

    /* bit clear */
    MAP_SET(p);
    ASMBitClear(&p->au32[0], 0);
    ASMBitClear(&p->au32[0], 31);
    ASMBitClear(&p->au32[0], 65);
    CHECK(p->au32[0] == ~0x80000001U);
    CHECK(p->au32[2] == ~0x00000002U);
    CHECK(!ASMBitTestAndClear(&p->au32[0], 0)   && p->au32[0] == ~0x80000001U);
    CHECK(ASMBitTestAndClear(&p->au32[0], 16)   && p->au32[0] == ~0x80010001U);
    CHECK(!ASMBitTestAndClear(&p->au32[0], 16)  && p->au32[0] == ~0x80010001U);
    CHECK(ASMBitTestAndClear(&p->au32[0], 80)   && p->au32[2] == ~0x00010002U);

    MAP_SET(p);
    ASMAtomicBitClear(&p->au32[0], 0);
    ASMAtomicBitClear(&p->au32[0], 30);
    ASMAtomicBitClear(&p->au32[0], 64);
    CHECK(p->au32[0] == ~0x40000001U);
    CHECK(p->au32[2] == ~0x00000001U);
    CHECK(!ASMAtomicBitTestAndClear(&p->au32[0], 0)   && p->au32[0] == ~0x40000001U);
    CHECK(ASMAtomicBitTestAndClear(&p->au32[0], 16)   && p->au32[0] == ~0x40010001U);
    CHECK(!ASMAtomicBitTestAndClear(&p->au32[0], 16)  && p->au32[0] == ~0x40010001U);
    CHECK(ASMAtomicBitTestAndClear(&p->au32[0], 80)   && p->au32[2] == ~0x00010001U);

    /* toggle */
    MAP_SET(p);
    ASMBitToggle(&p->au32[0], 0);
    ASMBitToggle(&p->au32[0], 31);
    ASMBitToggle(&p->au32[0], 65);
    ASMBitToggle(&p->au32[0], 47);
    ASMBitToggle(&p->au32[0], 47);
    CHECK(p->au32[0] == ~0x80000001U);
    CHECK(p->au32[2] == ~0x00000002U);
    CHECK(!ASMBitTestAndToggle(&p->au32[0], 0)   && p->au32[0] == ~0x80000000U);
    CHECK(ASMBitTestAndToggle(&p->au32[0], 0)    && p->au32[0] == ~0x80000001U);
    CHECK(ASMBitTestAndToggle(&p->au32[0], 16)   && p->au32[0] == ~0x80010001U);
    CHECK(!ASMBitTestAndToggle(&p->au32[0], 16)  && p->au32[0] == ~0x80000001U);
    CHECK(ASMBitTestAndToggle(&p->au32[0], 80)   && p->au32[2] == ~0x00010002U);

    MAP_SET(p);
    ASMAtomicBitToggle(&p->au32[0], 0);
    ASMAtomicBitToggle(&p->au32[0], 30);
    ASMAtomicBitToggle(&p->au32[0], 64);
    ASMAtomicBitToggle(&p->au32[0], 47);
    ASMAtomicBitToggle(&p->au32[0], 47);
    CHECK(p->au32[0] == ~0x40000001U);
    CHECK(p->au32[2] == ~0x00000001U);
    CHECK(!ASMAtomicBitTestAndToggle(&p->au32[0], 0)   && p->au32[0] == ~0x40000000U);
    CHECK(ASMAtomicBitTestAndToggle(&p->au32[0], 0)    && p->au32[0] == ~0x40000001U);
    CHECK(ASMAtomicBitTestAndToggle(&p->au32[0], 16)   && p->au32[0] == ~0x40010001U);
    CHECK(!ASMAtomicBitTestAndToggle(&p->au32[0], 16)  && p->au32[0] == ~0x40000001U);
    CHECK(ASMAtomicBitTestAndToggle(&p->au32[0], 80)   && p->au32[2] == ~0x00010001U);

    /* test bit. */
    for (i = 0; i < 128; i++)
    {
        MAP_SET(p);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        ASMBitToggle(&p->au32[0], i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(!ASMBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(ASMBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);

        MAP_SET(p);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        ASMAtomicBitToggle(&p->au32[0], i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(!ASMAtomicBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(ASMBitTest(&p->au32[0], i), i);
        CHECK_BIT(ASMAtomicBitTestAndToggle(&p->au32[0], i), i);
        CHECK_BIT(!ASMBitTest(&p->au32[0], i), i);
    }

    /* bit searching */
    MAP_SET(p);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == -1);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);

    ASMBitClear(&p->au32[0], 1);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 1);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);

    MAP_SET(p);
    ASMBitClear(&p->au32[0], 95);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 95);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);

    MAP_SET(p);
    ASMBitClear(&p->au32[0], 127);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 127);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 0);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 0) == 1);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 1) == 2);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 2) == 3);


    MAP_SET(p);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 0) == -1);
    ASMBitClear(&p->au32[0], 32);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 32) == -1);
    ASMBitClear(&p->au32[0], 88);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  57) ==  88);

    MAP_SET(p);
    ASMBitClear(&p->au32[0], 31);
    ASMBitClear(&p->au32[0], 57);
    ASMBitClear(&p->au32[0], 88);
    ASMBitClear(&p->au32[0], 101);
    ASMBitClear(&p->au32[0], 126);
    ASMBitClear(&p->au32[0], 127);
    CHECK(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == 31);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  31) ==  57);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  57) ==  88);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8,  88) == 101);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 101) == 126);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 126) == 127);
    CHECK(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, 127) == -1);

    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 29) == 30);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 30) == 32);

    MAP_CLEAR(p);
    for (i = 1; i < 128; i++)
        CHECK_BIT(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, i - 1) == i, i);
    for (i = 0; i < 128; i++)
    {
        MAP_SET(p);
        ASMBitClear(&p->au32[0], i);
        CHECK_BIT(ASMBitFirstClear(&p->au32[0], sizeof(p->au32) * 8) == i, i);
        for (j = 0; j < i; j++)
            CHECK_BIT(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, j) == i, i);
        for (j = i; j < 128; j++)
            CHECK_BIT(ASMBitNextClear(&p->au32[0], sizeof(p->au32) * 8, j) == -1, i);
    }

    /* clear range. */
    MAP_SET(p);
    ASMBitClearRange(&p->au32, 0, 128);
    CHECK(!p->au32[0] && !p->au32[1] && !p->au32[2] && !p->au32[3]);
    for (i = 0; i < 128; i++)
    {
        for (j = i + 1; j <= 128; j++)
        {
            MAP_SET(p);
            ASMBitClearRange(&p->au32, i, j);
            for (k = 0; k < i; k++)
                CHECK_BIT3(ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = i; k < j; k++)
                CHECK_BIT3(!ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = j; k < 128; k++)
                CHECK_BIT3(ASMBitTest(&p->au32[0], k), i, j, k);
        }
    }

    /* set range. */
    MAP_CLEAR(p);
    ASMBitSetRange(&p->au32[0], 0, 5);
    ASMBitSetRange(&p->au32[0], 6, 44);
    ASMBitSetRange(&p->au32[0], 64, 65);
    CHECK(p->au32[0] == UINT32_C(0xFFFFFFDF));
    CHECK(p->au32[1] == UINT32_C(0x00000FFF));
    CHECK(p->au32[2] == UINT32_C(0x00000001));

    MAP_CLEAR(p);
    ASMBitSetRange(&p->au32[0], 0, 1);
    ASMBitSetRange(&p->au32[0], 62, 63);
    ASMBitSetRange(&p->au32[0], 63, 64);
    ASMBitSetRange(&p->au32[0], 127, 128);
    CHECK(p->au32[0] == UINT32_C(0x00000001) && p->au32[1] == UINT32_C(0xC0000000));
    CHECK(p->au32[2] == UINT32_C(0x00000000) && p->au32[3] == UINT32_C(0x80000000));

    MAP_CLEAR(p);
    ASMBitSetRange(&p->au32, 0, 128);
    CHECK(!~p->au32[0] && !~p->au32[1] && !~p->au32[2] && !~p->au32[3]);
    for (i = 0; i < 128; i++)
    {
        for (j = i + 1; j <= 128; j++)
        {
            MAP_CLEAR(p);
            ASMBitSetRange(&p->au32, i, j);
            for (k = 0; k < i; k++)
                CHECK_BIT3(!ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = i; k < j; k++)
                CHECK_BIT3(ASMBitTest(&p->au32[0], k), i, j, k);
            for (k = j; k < 128; k++)
                CHECK_BIT3(!ASMBitTest(&p->au32[0], k), i, j, k);
        }
    }

    /* searching for set bits. */
    MAP_CLEAR(p);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == -1);

    ASMBitSet(&p->au32[0], 65);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 65);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 65) == -1);
    for (i = 0; i < 65; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == 65);
    for (i = 65; i < 128; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == -1);

    ASMBitSet(&p->au32[0], 17);
    CHECK(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == 17);
    CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, 17) == 65);
    for (i = 0; i < 16; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == 17);
    for (i = 17; i < 65; i++)
        CHECK(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i) == 65);

    MAP_SET(p);
    for (i = 1; i < 128; i++)
        CHECK_BIT(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, i - 1) == i, i);
    for (i = 0; i < 128; i++)
    {
        MAP_CLEAR(p);
        ASMBitSet(&p->au32[0], i);
        CHECK_BIT(ASMBitFirstSet(&p->au32[0], sizeof(p->au32) * 8) == i, i);
        for (j = 0; j < i; j++)
            CHECK_BIT(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, j) == i, i);
        for (j = i; j < 128; j++)
            CHECK_BIT(ASMBitNextSet(&p->au32[0], sizeof(p->au32) * 8, j) == -1, i);
    }


    CHECK(ASMBitLastSetU32(0) == 0);
    CHECK(ASMBitLastSetU32(1) == 1);
    CHECK(ASMBitLastSetU32(0x80000000) == 32);
    CHECK(ASMBitLastSetU32(0xffffffff) == 32);
    CHECK(ASMBitLastSetU32(RT_BIT(23) | RT_BIT(11)) == 24);
    for (i = 0; i < 32; i++)
        CHECK(ASMBitLastSetU32(1 << i) == (unsigned)i + 1);

    CHECK(ASMBitFirstSetU32(0) == 0);
    CHECK(ASMBitFirstSetU32(1) == 1);
    CHECK(ASMBitFirstSetU32(0x80000000) == 32);
    CHECK(ASMBitFirstSetU32(0xffffffff) == 1);
    CHECK(ASMBitFirstSetU32(RT_BIT(23) | RT_BIT(11)) == 12);
    for (i = 0; i < 32; i++)
        CHECK(ASMBitFirstSetU32(1 << i) == (unsigned)i + 1);

    /*
     * Special tests.
     */
    test2(hTest);

    /*
     * Summary
     */
    return RTTestSummaryAndDestroy(hTest);
}
Exemple #11
0
/**
 * Allocates a page from the page pool.
 *
 * @returns Pointer to allocated page(s).
 * @returns NULL on failure.
 * @param   pPool   Pointer to the page pool.
 * @thread  The Emulation Thread.
 */
DECLINLINE(void *) mmR3PagePoolAlloc(PMMPAGEPOOL pPool)
{
    VM_ASSERT_EMT(pPool->pVM);
    STAM_COUNTER_INC(&pPool->cAllocCalls);

    /*
     * Walk free list.
     */
    if (pPool->pHeadFree)
    {
        PMMPAGESUBPOOL  pSub = pPool->pHeadFree;
        /* decrement free count and unlink if no more free entries. */
        if (!--pSub->cPagesFree)
            pPool->pHeadFree = pSub->pNextFree;
#ifdef VBOX_WITH_STATISTICS
        pPool->cFreePages--;
#endif

        /* find free spot in bitmap. */
#ifdef USE_INLINE_ASM_BIT_OPS
        const int iPage = ASMBitFirstClear(pSub->auBitmap, pSub->cPages);
        if (iPage >= 0)
        {
            Assert(!ASMBitTest(pSub->auBitmap, iPage));
            ASMBitSet(pSub->auBitmap, iPage);
            return (uint8_t *)pSub->pvPages + PAGE_SIZE * iPage;
        }
#else
        unsigned   *pu = &pSub->auBitmap[0];
        unsigned   *puEnd = &pSub->auBitmap[pSub->cPages / (sizeof(pSub->auBitmap) * 8)];
        while (pu < puEnd)
        {
            unsigned u;
            if ((u = *pu) != ~0U)
            {
                unsigned iBit = 0;
                unsigned uMask = 1;
                while (iBit < sizeof(pSub->auBitmap[0]) * 8)
                {
                    if (!(u & uMask))
                    {
                        *pu |= uMask;
                        return (uint8_t *)pSub->pvPages
                            + PAGE_SIZE * (iBit + ((uint8_t *)pu - (uint8_t *)&pSub->auBitmap[0]) * 8);
                    }
                    iBit++;
                    uMask <<= 1;
                }
                STAM_COUNTER_INC(&pPool->cErrors);
                AssertMsgFailed(("how odd, expected to find a free bit in %#x, but didn't\n", u));
            }
            /* next */
            pu++;
        }
#endif
        STAM_COUNTER_INC(&pPool->cErrors);
#ifdef VBOX_WITH_STATISTICS
        pPool->cFreePages++;
#endif
        AssertMsgFailed(("how strange, expected to find a free bit in %p, but didn't (%d pages supposed to be free!)\n", pSub, pSub->cPagesFree + 1));
    }

    /*
     * Allocate new subpool.
     */
    unsigned        cPages = !pPool->fLow ? 128 : 32;
    PMMPAGESUBPOOL  pSub;
    int rc = MMHyperAlloc(pPool->pVM,
                          RT_OFFSETOF(MMPAGESUBPOOL, auBitmap[cPages / (sizeof(pSub->auBitmap[0]) * 8)])
                          + (sizeof(SUPPAGE) + sizeof(MMPPLOOKUPHCPHYS)) * cPages
                          + sizeof(MMPPLOOKUPHCPTR),
                          0,
                          MM_TAG_MM_PAGE,
                          (void **)&pSub);
    if (RT_FAILURE(rc))
        return NULL;

    PSUPPAGE paPhysPages = (PSUPPAGE)&pSub->auBitmap[cPages / (sizeof(pSub->auBitmap[0]) * 8)];
    Assert((uintptr_t)paPhysPages >= (uintptr_t)&pSub->auBitmap[1]);
    if (!pPool->fLow)
    {
        rc = SUPR3PageAllocEx(cPages,
                              0 /* fFlags */,
                              &pSub->pvPages,
                              NULL,
                              paPhysPages);
        if (RT_FAILURE(rc))
            rc = VMSetError(pPool->pVM, rc, RT_SRC_POS,
                            N_("Failed to lock host %zd bytes of memory (out of memory)"), (size_t)cPages << PAGE_SHIFT);
    }
    else
        rc = SUPR3LowAlloc(cPages, &pSub->pvPages, NULL, paPhysPages);
    if (RT_SUCCESS(rc))
    {
        /*
         * Setup the sub structure and allocate the requested page.
         */
        pSub->cPages    = cPages;
        pSub->cPagesFree= cPages - 1;
        pSub->paPhysPages = paPhysPages;
        memset(pSub->auBitmap, 0, cPages / 8);
        /* allocate first page. */
        pSub->auBitmap[0] |= 1;
        /* link into free chain. */
        pSub->pNextFree = pPool->pHeadFree;
        pPool->pHeadFree= pSub;
        /* link into main chain. */
        pSub->pNext     = pPool->pHead;
        pPool->pHead    = pSub;
        /* update pool statistics. */
        pPool->cSubPools++;
        pPool->cPages  += cPages;
#ifdef VBOX_WITH_STATISTICS
        pPool->cFreePages += cPages - 1;
#endif

        /*
         * Initialize the physical pages with backpointer to subpool.
         */
        unsigned i = cPages;
        while (i-- > 0)
        {
            AssertMsg(paPhysPages[i].Phys && !(paPhysPages[i].Phys & PAGE_OFFSET_MASK),
                      ("i=%d Phys=%d\n", i, paPhysPages[i].Phys));
            paPhysPages[i].uReserved = (RTHCUINTPTR)pSub;
        }

        /*
         * Initialize the physical lookup record with backpointers to the physical pages.
         */
        PMMPPLOOKUPHCPHYS paLookupPhys = (PMMPPLOOKUPHCPHYS)&paPhysPages[cPages];
        i = cPages;
        while (i-- > 0)
        {
            paLookupPhys[i].pPhysPage = &paPhysPages[i];
            paLookupPhys[i].Core.Key = paPhysPages[i].Phys;
            RTAvlHCPhysInsert(&pPool->pLookupPhys, &paLookupPhys[i].Core);
        }

        /*
         * And the one record for virtual memory lookup.
         */
        PMMPPLOOKUPHCPTR   pLookupVirt = (PMMPPLOOKUPHCPTR)&paLookupPhys[cPages];
        pLookupVirt->pSubPool = pSub;
        pLookupVirt->Core.Key = pSub->pvPages;
        RTAvlPVInsert(&pPool->pLookupVirt, &pLookupVirt->Core);

        /* return allocated page (first). */
        return pSub->pvPages;
    }

    MMHyperFree(pPool->pVM, pSub);
    STAM_COUNTER_INC(&pPool->cErrors);
    if (pPool->fLow)
        VMSetError(pPool->pVM, rc, RT_SRC_POS,
                   N_("Failed to expand page pool for memory below 4GB. Current size: %d pages"),
                   pPool->cPages);
    AssertMsgFailed(("Failed to expand pool%s. rc=%Rrc poolsize=%d\n",
                     pPool->fLow ? " (<4GB)" : "", rc, pPool->cPages));
    return NULL;
}
/**
 * Worker for the --list and --extract commands.
 *
 * @returns The appropriate exit code.
 * @param   pOpts               The Unzip options.
 * @param   pfnCallback         The command specific callback.
 */
static RTEXITCODE rtZipUnzipDoWithMembers(PRTZIPUNZIPCMDOPS pOpts, PFNDOWITHMEMBER pfnCallback,
                                          uint32_t *pcFiles, PRTFOFF pcBytes)
{
    /*
     * Allocate a bitmap to go with the file list.  This will be used to
     * indicate which files we've processed and which not.
     */
    uint32_t *pbmFound = NULL;
    if (pOpts->cFiles)
    {
        pbmFound = (uint32_t *)RTMemAllocZ(((pOpts->cFiles + 31) / 32) * sizeof(uint32_t));
        if (!pbmFound)
            return RTMsgErrorExit(RTEXITCODE_FAILURE, "Failed to allocate the found-file-bitmap");
    }

    uint32_t cFiles = 0;
    RTFOFF cBytesSum = 0;

    /*
     * Open the input archive.
     */
    RTVFSFSSTREAM hVfsFssIn;
    RTEXITCODE rcExit = rtZipUnzipCmdOpenInputArchive(pOpts, &hVfsFssIn);
    if (rcExit == RTEXITCODE_SUCCESS)
    {
        /*
         * Process the stream.
         */
        for (;;)
        {
            /*
             * Retrieve the next object.
             */
            char       *pszName;
            RTVFSOBJ    hVfsObj;
            int rc = RTVfsFsStrmNext(hVfsFssIn, &pszName, NULL, &hVfsObj);
            if (RT_FAILURE(rc))
            {
                if (rc != VERR_EOF)
                    rcExit = RTMsgErrorExit(RTEXITCODE_FAILURE, "RTVfsFsStrmNext returned %Rrc", rc);
                break;
            }

            /*
             * Should we process this object?
             */
            uint32_t iFile = UINT32_MAX;
            if (   !pOpts->cFiles
                || rtZipUnzipCmdIsNameInArray(pszName, pOpts->papszFiles, &iFile))
            {
                if (pbmFound)
                    ASMBitSet(pbmFound, iFile);

                RTFOFF cBytes = 0;
                rcExit = pfnCallback(pOpts, hVfsObj, pszName, rcExit, &cBytes);

                cBytesSum += cBytes;
                cFiles++;
            }

            /*
             * Release the current object and string.
             */
            RTVfsObjRelease(hVfsObj);
            RTStrFree(pszName);
        }

        /*
         * Complain about any files we didn't find.
         */
        for (uint32_t iFile = 0; iFile <pOpts->cFiles; iFile++)
            if (!ASMBitTest(pbmFound, iFile))
            {
                RTMsgError("%s: Was not found in the archive", pOpts->papszFiles[iFile]);
                rcExit = RTEXITCODE_FAILURE;
            }

        RTVfsFsStrmRelease(hVfsFssIn);
    }

    RTMemFree(pbmFound);

    *pcFiles = cFiles;
    *pcBytes = cBytesSum;

    return RTEXITCODE_SUCCESS;
}
Exemple #13
0
RTDECL(void) ASMAtomicBitSet(volatile void *pvBitmap, int32_t iBit)
{
    ASMBitSet(pvBitmap, iBit);
}