Exemple #1
0
		static GLdouble recurse(const dvector &vec,GLdouble buff[]){
			GLdouble a,b,c;
			c=boost::numeric::ublas::norm_2(vec); //Länge des Vektors
			
			if(vec.size()>2)
			{
				dvector vec2(2);
				vec2[0]=vec[0];vec2[1]=vec[2];
				a=recurse(vec2,buff+1); //Länge des Vektors auf die size()-1-Ebene projeziert (und sein Winkel auf dieser Ebene)
			}
			else a=vec[0];

			b=vec[1];//Höhe
			*buff= a ? ATAN(b/a):90;
			if(a<0)*buff+=180;//2. & 3. Quadranten gibts nur im 2dim Raum, bei höherdim. Räumen wird das auf eine 180°-Rotation auf der darunter-liegenden "Ebene" zur�ckgef�hrt
			else if(b<0)*buff+=360;
			return c;
		}
Exemple #2
0
static void
sunpos(int inYY, int inMM, int inDD, double UTCOFFSET, int inHOUR, int inMIN,
    int inSEC, double eastlongitude, double latitude, double *L, double *DEC)
{
	int Y;
	double ZJ, D, T, M, epsilon, lambda, alpha, HA, UTHM;

	ZJ = ZJtable[inMM];
	if (inMM <= 2 && isleap(inYY))
		ZJ -= 1.0;

	UTHM = inHOUR + inMIN / FMINSPERHOUR + inSEC / FSECSPERHOUR - UTCOFFSET;
	Y = inYY - 1900;						/*  1 */
	D = floor(365.25 * Y) + ZJ + inDD + UTHM / FHOURSPERDAY;	/*  3 */
	T = D / 36525.0;						/*  4 */
	*L = 279.697 + 36000.769 * T;					/*  5 */
	fixup(L);
	M = 358.476 + 35999.050 * T;					/*  6 */
	fixup(&M);
	epsilon = 23.452 - 0.013 * T;					/*  7 */
	fixup(&epsilon);

	lambda = *L + (1.919 - 0.005 * T) * SIN(M) + 0.020 * SIN(2 * M);/*  8 */
	fixup(&lambda);
	alpha = ATAN(TAN(lambda) * COS(epsilon));			/*  9 */

	/* Alpha should be in the same quadrant as lamba */
	{
		int lssign = sin(D2R(lambda)) < 0 ? -1 : 1;
		int lcsign = cos(D2R(lambda)) < 0 ? -1 : 1;
		while (((sin(D2R(alpha)) < 0) ? -1 : 1) != lssign
		    || ((cos(D2R(alpha)) < 0) ? -1 : 1) != lcsign)
			alpha += 90.0;
	}
	fixup(&alpha);

	*DEC = ASIN(SIN(lambda) * SIN(epsilon));			/* 10 */
	fixup(DEC);
	fixup(&eastlongitude);
	HA = *L - alpha + 180 + 15 * UTHM + eastlongitude;		/* 12 */
	fixup(&HA);
	fixup(&latitude);
#ifdef NOTDEF
	printf("%02d/%02d %02d:%02d:%02d l:%g d:%g h:%g\n",
	    inMM, inDD, inHOUR, inMIN, inSEC, latitude, *DEC, HA);
#endif
	return;

	/*
	 * The following calculations are not used, so to save time
	 * they are not calculated.
	 */
#ifdef NOTDEF
	*ALT = ASIN(SIN(latitude) * SIN(*DEC) +
	    COS(latitude) * COS(*DEC) * COS(HA));			/* 13 */
	fixup(ALT);
	*AZ = ATAN(SIN(HA) /
	    (COS(HA) * SIN(latitude) - TAN(*DEC) * COS(latitude)));	/* 14 */

	if (*ALT > 180)
		*ALT -= 360;
	if (*ALT < -180)
		*ALT += 360;
	printf("a:%g a:%g\n", *ALT, *AZ);
#endif

#ifdef NOTDEF
	printf("Y:\t\t\t     %d\t\t     %d\t\t      %d\n", Y, expY, Y - expY);
	comp("ZJ", ZJ, expZJ);
	comp("UTHM", UTHM, expUTHM);
	comp("D", D, expD);
	comp("T", T, expT);
	comp("L", L, fixup(&expL));
	comp("M", M, fixup(&expM));
	comp("epsilon", epsilon, fixup(&expepsilon));
	comp("lambda", lambda, fixup(&explambda));
	comp("alpha", alpha, fixup(&expalpha));
	comp("DEC", DEC, fixup(&expDEC));
	comp("eastlongitude", eastlongitude, fixup(&expeastlongitude));
	comp("latitude", latitude, fixup(&explatitude));
	comp("HA", HA, fixup(&expHA));
	comp("ALT", ALT, fixup(&expALT));
	comp("AZ", AZ, fixup(&expAZ));
#endif
}
Exemple #3
0
single XATAN( single *arg ) {
//===========================

    return( ATAN( *arg ) );
}
Exemple #4
0
/* Sun rise-set calculation algorithm.
 * Algorithm description:   http://williams.best.vwh.net/sunrise_sunset_algorithm.htm
 *
 *	Almanac for Computers, 1990
 *	published by Nautical Almanac Office
 *	United States Naval Observatory
 *	Washington, DC 20392
 *
 * Parameters:
 *  yd					- day of the year (1..365)
 *  latitude, longitude	- Sample: 32.27, 34.85 for Netania israel
 *  riseset				- ESUNRISE or ESUNSET
 *
 * Returns: UTC hour of the event (a real number).
*/
double sunriseset( int yd, double latitude, double longitude, ERiseSet riseset )
{
	// 96 degrees    - Calculate Civil twilight time. Used as indication if
	//   it is (usually) bright enough for outdoor activities without additional lighting.
	// 90 degrees 5' - Calculate true Sunrise/Sunset time. Used to check if
	//   the Sun itself is visible above the horizont in ideal conditions.
	const double zenith = 96;

	double sinDec, cosDec, cosH;
	double H, T, UT;

	// Rise / Set
	int op = (riseset==ESUNRISE ? 1:-1);

	// Convert the longitude to hour value and calculate an approximate time
	double lngHour = longitude / 15;

	// if rising time is desired:
	double t = yd + ((12 - (6*op) - lngHour) / 24);

	// Calculate the Sun's mean anomaly
	double M = (0.9856 * t) - 3.289;

	// Calculate the Sun's true longitude
	double L = M + (1.916 * SIN(M)) + (0.020 * SIN(2 * M)) + 282.634;

	// Calculate the Sun's right ascension
	double RA = ATAN(0.91764 * TAN(L));

	// Right ascension value needs to be in the same quadrant as L
	double Lquadrant  = (floor( L/90)) * 90;
	double RAquadrant = (floor(RA/90)) * 90;

	RA = RA + (Lquadrant - RAquadrant);

	// Right ascension value needs to be converted into hours
	RA = RA / 15;

	// Calculate the Sun's declination
	sinDec = 0.39782 * SIN(L);
	cosDec = COS(ASIN(sinDec));

	// Calculate the Sun's local hour angle
	cosH = (COS(zenith) - (sinDec * SIN(latitude))) / (cosDec * COS(latitude));
	if( cosH < -1 || cosH > 1 )
		// The sun never rises or sets on this location (on the specified date)
		return -1;

	// Finish calculating H and convert into hours
	H = 180 + (180 - ACOS(cosH))*op;
	H = H / 15;

	// Calculate local mean time of rising/setting
	T = H + RA - (0.06571 * t) - 6.622;

	// Adjust back to UTC
	UT = T - lngHour;

	// UT potentially needs to be adjusted into the range [0,24) by adding/subtracting 24
	if (UT < 0)   UT += 24;
	if (UT >= 24) UT -= 24;

	return UT;
}
Exemple #5
0
void KERNEL_NAME(VMLLONG n, VML_FLOAT * a, VML_FLOAT * b, VML_FLOAT * y, VML_FLOAT * z, VML_FLOAT * other_params) {
    VMLLONG i=0;
    for(i=0; i<n; i++) {
        y[i]=ATAN(a[i]);
    }
}
Exemple #6
0
double ASIN(double x)
{
	return 2 * ATAN( x / (1 + std::sqrt(1.0 - x*x)));
}