IECore::DataPtr getParameter( AtNode *node, const char *name ) { const AtParamEntry *parameter = AiNodeEntryLookUpParameter( AiNodeGetNodeEntry( node ), name ); if( parameter ) { return getParameter( node, parameter ); } else { const AtUserParamEntry *userParameter = AiNodeLookUpUserParameter( node, name ); if( userParameter ) { return getParameter( node, userParameter ); } } return NULL; }
void ApplyUserAttributes(std::string name, AtNode* node,std::vector<std::string> tags,ProcArgs & args) { bool foundInPath = false; for(std::vector<std::string>::iterator it=args.userAttributes.begin(); it!=args.userAttributes.end(); ++it) { Json::Value userAttributes; if(it->find("/") != std::string::npos) // Based on path { if(name.find(*it) != std::string::npos) { userAttributes = args.userAttributesRoot[*it]; foundInPath = true; } } else if(matchPattern(name,*it)) // based on wildcard expression { userAttributes = args.userAttributesRoot[*it]; foundInPath = true; } else if(foundInPath == false) { if (std::find(tags.begin(), tags.end(), *it) != tags.end()) { userAttributes = args.userAttributesRoot[*it]; } } if(userAttributes.size() > 0) { for( Json::ValueIterator itr = userAttributes.begin() ; itr != userAttributes.end() ; itr++ ) { std::string attribute = itr.key().asString(); if( AiNodeLookUpUserParameter(node,attribute.c_str())) continue; const AtNodeEntry* nodeEntry = AiNodeGetNodeEntry(node); Json::Value val = args.userAttributesRoot[*it][attribute]; if( val.isString() ) { AddUserGeomParams(node,attribute.c_str(),AI_TYPE_STRING); AiNodeSetStr(node, attribute.c_str(), val.asCString()); } else if( val.isBool() ) { AddUserGeomParams(node,attribute.c_str(),AI_TYPE_BOOLEAN); AiNodeSetBool(node, attribute.c_str(), val.asBool()); } else if( val.isInt() ) { AddUserGeomParams(node,attribute.c_str(),AI_TYPE_INT); AiNodeSetInt(node, attribute.c_str(), val.asInt()); } else if( val.isUInt() ) { AddUserGeomParams(node,attribute.c_str(),AI_TYPE_UINT); AiNodeSetUInt(node, attribute.c_str(), val.asUInt()); } else if(val.isDouble()) { AddUserGeomParams(node,attribute.c_str(),AI_TYPE_FLOAT); AiNodeSetFlt(node, attribute.c_str(), val.asDouble()); } else if(val.isArray()) { // in the future we will convert to an arnold array type for now lets just // write out a json string AddUserGeomParams(node,attribute.c_str(),AI_TYPE_STRING); Json::FastWriter writer; AiNodeSetStr(node, attribute.c_str(), writer.write(val).c_str()); // AddUserGeomParams(node,attribute.c_str(),AI_TYPE_ARRAY ); // // get the type of the first entry, this will be our key as to // // what type of data is in this array // Json::Value firstValue = val[0]; // if (firstValue.isString()) // { // AtArray* arrayValues = AiArrayAllocate( val.size() , 1, AI_TYPE_STRING); // for( uint idx = 0 ; idx != val.size() ; idx++ ) // { // AiMsgInfo("[ABC] adding string %s to user array attribute '%s'",val[idx].asCString(),attribute.c_str()); // AiArraySetStr(arrayValues,idx,val[idx].asCString()); // } // AiNodeSetArray(node, attribute.c_str(), arrayValues); // } } // TODO color, matrix, vector } } } }
AtNode * ProcessPointsBase( IPoints & prim, ProcArgs & args, SampleTimeSet & sampleTimes, std::vector<AtPoint> & vidxs, std::vector<float> & radius, MatrixSampleMap * xformSamples ) { if ( !prim.valid() ) { return NULL; } Alembic::AbcGeom::IPointsSchema &ps = prim.getSchema(); TimeSamplingPtr ts = ps.getTimeSampling(); sampleTimes.insert( ts->getFloorIndex(args.frame / args.fps, ps.getNumSamples()).second ); std::string name = args.nameprefix + prim.getFullName(); AtNode * instanceNode = NULL; std::string cacheId; SampleTimeSet singleSampleTimes; singleSampleTimes.insert( ts->getFloorIndex(args.frame / args.fps, ps.getNumSamples()).second ); ICompoundProperty arbGeomParams = ps.getArbGeomParams(); ISampleSelector frameSelector( *singleSampleTimes.begin() ); std::vector<std::string> tags; //get tags if ( arbGeomParams != NULL && arbGeomParams.valid() ) { if (arbGeomParams.getPropertyHeader("mtoa_constant_tags") != NULL) { const PropertyHeader * tagsHeader = arbGeomParams.getPropertyHeader("mtoa_constant_tags"); if (IStringGeomParam::matches( *tagsHeader )) { IStringGeomParam param( arbGeomParams, "mtoa_constant_tags" ); if ( param.valid() ) { IStringGeomParam::prop_type::sample_ptr_type valueSample = param.getExpandedValue( frameSelector ).getVals(); if ( param.getScope() == kConstantScope || param.getScope() == kUnknownScope) { Json::Value jtags; Json::Reader reader; if(reader.parse(valueSample->get()[0], jtags)) for( Json::ValueIterator itr = jtags.begin() ; itr != jtags.end() ; itr++ ) { tags.push_back(jtags[itr.key().asUInt()].asString()); } } } } } } if ( args.makeInstance ) { std::ostringstream buffer; AbcA::ArraySampleKey sampleKey; for ( SampleTimeSet::iterator I = sampleTimes.begin(); I != sampleTimes.end(); ++I ) { ISampleSelector sampleSelector( *I ); ps.getPositionsProperty().getKey(sampleKey, sampleSelector); buffer << GetRelativeSampleTime( args, (*I) ) << ":"; sampleKey.digest.print(buffer); buffer << ":"; } cacheId = buffer.str(); instanceNode = AiNode( "ginstance" ); AiNodeSetStr( instanceNode, "name", name.c_str() ); args.createdNodes.push_back(instanceNode); if ( args.proceduralNode ) { AiNodeSetByte( instanceNode, "visibility", AiNodeGetByte( args.proceduralNode, "visibility" ) ); } else { AiNodeSetByte( instanceNode, "visibility", AI_RAY_ALL ); } ApplyTransformation( instanceNode, xformSamples, args ); NodeCache::iterator I = g_meshCache.find(cacheId); // parameters overrides if(args.linkOverride) ApplyOverrides(name, instanceNode, tags, args); // shader assignation if (nodeHasParameter( instanceNode, "shader" ) ) { if(args.linkShader) { ApplyShaders(name, instanceNode, tags, args); } else { AtArray* shaders = AiNodeGetArray(args.proceduralNode, "shader"); if (shaders->nelements != 0) AiNodeSetArray(instanceNode, "shader", AiArrayCopy(shaders)); } } if ( I != g_meshCache.end() ) { AiNodeSetPtr(instanceNode, "node", (*I).second ); return NULL; } } bool isFirstSample = true; float radiusPoint = 0.1f; if (AiNodeLookUpUserParameter(args.proceduralNode, "radiusPoint") !=NULL ) radiusPoint = AiNodeGetFlt(args.proceduralNode, "radiusPoint"); bool useVelocities = false; if ((sampleTimes.size() == 1) && (args.shutterOpen != args.shutterClose)) { // no sample, and motion blur needed, let's try to get velocities. if(ps.getVelocitiesProperty().valid()) useVelocities = true; } for ( SampleTimeSet::iterator I = sampleTimes.begin(); I != sampleTimes.end(); ++I, isFirstSample = false) { ISampleSelector sampleSelector( *I ); Alembic::AbcGeom::IPointsSchema::Sample sample = ps.getValue( sampleSelector ); Alembic::Abc::P3fArraySamplePtr v3ptr = sample.getPositions(); size_t pSize = sample.getPositions()->size(); if(useVelocities && isFirstSample) { float scaleVelocity = 1.0f; if (AiNodeLookUpUserParameter(args.proceduralNode, "scaleVelocity") !=NULL ) scaleVelocity = AiNodeGetFlt(args.proceduralNode, "scaleVelocity"); vidxs.resize(pSize*2); Alembic::Abc::V3fArraySamplePtr velptr = sample.getVelocities(); float timeoffset = ((args.frame / args.fps) - ts->getFloorIndex((*I), ps.getNumSamples()).second) * args.fps; for ( size_t pId = 0; pId < pSize; ++pId ) { Alembic::Abc::V3f posAtOpen = ((*v3ptr)[pId] + (*velptr)[pId] * scaleVelocity *-timeoffset); AtPoint pos1; pos1.x = posAtOpen.x; pos1.y = posAtOpen.y; pos1.z = posAtOpen.z; vidxs[pId]= pos1; Alembic::Abc::V3f posAtEnd = ((*v3ptr)[pId] + (*velptr)[pId]* scaleVelocity *(1.0f-timeoffset)); AtPoint pos2; pos2.x = posAtEnd.x; pos2.y = posAtEnd.y; pos2.z = posAtEnd.z; vidxs[pId+pSize]= pos2; radius.push_back(radiusPoint); } } else // not motion blur or correctly sampled particles { for ( size_t pId = 0; pId < pSize; ++pId ) { AtPoint pos; pos.x = (*v3ptr)[pId].x; pos.y = (*v3ptr)[pId].y; pos.z = (*v3ptr)[pId].z; vidxs.push_back(pos); radius.push_back(radiusPoint); } } } AtNode* pointsNode = AiNode( "points" ); if (!pointsNode) { AiMsgError("Failed to make points node for %s", prim.getFullName().c_str()); return NULL; } args.createdNodes.push_back(pointsNode); if ( instanceNode != NULL) { AiNodeSetStr( pointsNode, "name", (name + ":src").c_str() ); } else { AiNodeSetStr( pointsNode, "name", name.c_str() ); } if(!useVelocities) { AiNodeSetArray(pointsNode, "points", AiArrayConvert( vidxs.size() / sampleTimes.size(), sampleTimes.size(), AI_TYPE_POINT, (void*)(&(vidxs[0])) )); AiNodeSetArray(pointsNode, "radius", AiArrayConvert( vidxs.size() / sampleTimes.size(), sampleTimes.size(), AI_TYPE_FLOAT, (void*)(&(radius[0])) )); if ( sampleTimes.size() > 1 ) { std::vector<float> relativeSampleTimes; relativeSampleTimes.reserve( sampleTimes.size() ); for (SampleTimeSet::const_iterator I = sampleTimes.begin(); I != sampleTimes.end(); ++I ) { chrono_t sampleTime = GetRelativeSampleTime( args, (*I) ); relativeSampleTimes.push_back(sampleTime); } AiNodeSetArray( pointsNode, "deform_time_samples", AiArrayConvert(relativeSampleTimes.size(), 1, AI_TYPE_FLOAT, &relativeSampleTimes[0])); } } else { AiNodeSetArray(pointsNode, "points", AiArrayConvert( vidxs.size() / 2, 2, AI_TYPE_POINT, (void*)(&(vidxs[0])) )); AiNodeSetArray(pointsNode, "radius", AiArrayConvert( vidxs.size() /2 / sampleTimes.size(), sampleTimes.size(), AI_TYPE_FLOAT, (void*)(&(radius[0])) )); AiNodeSetArray( pointsNode, "deform_time_samples", AiArray(2, 1, AI_TYPE_FLOAT, 0.f, 1.f)); } AddArbitraryGeomParams( arbGeomParams, frameSelector, pointsNode ); if ( instanceNode == NULL ) { if ( xformSamples ) { ApplyTransformation( pointsNode, xformSamples, args ); } return pointsNode; } else { AiNodeSetByte( pointsNode, "visibility", 0 ); AiNodeSetInt( pointsNode, "mode", 1 ); AiNodeSetPtr(instanceNode, "node", pointsNode ); g_meshCache[cacheId] = pointsNode; return pointsNode; } }
void CScriptedShapeTranslator::RunScripts(AtNode *atNode, unsigned int step, bool update) { std::map<std::string, CScriptedTranslator>::iterator translatorIt; MFnDependencyNode fnNode(GetMayaObject()); translatorIt = gTranslators.find(fnNode.typeName().asChar()); if (translatorIt == gTranslators.end()) { AiMsgError("[mtoa.scriptedTranslators] No command to export node \"%s\" of type %s.", fnNode.name().asChar(), fnNode.typeName().asChar()); return; } MString exportCmd = translatorIt->second.exportCmd; MString cleanupCmd = translatorIt->second.cleanupCmd; MFnDagNode node(m_dagPath.node()); bool isMasterDag = false; bool transformBlur = IsMotionBlurEnabled(MTOA_MBLUR_OBJECT) && IsLocalMotionBlurEnabled(); bool deformBlur = IsMotionBlurEnabled(MTOA_MBLUR_DEFORM) && IsLocalMotionBlurEnabled(); char buffer[64]; MString command = exportCmd; command += "("; sprintf(buffer, "%f", GetExportFrame()); command += buffer; command += ", "; sprintf(buffer, "%d", step); command += buffer; command += ", "; // current sample frame sprintf(buffer, "%f", GetSampleFrame(m_session, step)); command += buffer; command += ", "; // List of arnold attributes the custom shape export command has overriden MStringArray attrs; if (!m_masterNode) { command += "(\"" + m_dagPath.partialPathName() + "\", \""; command += AiNodeGetName(atNode); command += "\"), None)"; isMasterDag = true; } else { command += "(\"" + m_dagPath.partialPathName() + "\", \""; command += AiNodeGetName(atNode); command += "\"), (\"" + GetMasterInstance().partialPathName() + "\", \""; command += AiNodeGetName(m_masterNode); command += "\"))"; } MStatus status = MGlobal::executePythonCommand(command, attrs); if (!status) { AiMsgError("[mtoa.scriptedTranslators] Failed to export node \"%s\".", node.name().asChar()); return; } // Build set of attributes already processed std::set<std::string> attrsSet; for (unsigned int i=0; i<attrs.length(); ++i) { attrsSet.insert(attrs[i].asChar()); } std::set<std::string>::iterator attrsEnd = attrsSet.end(); // Should be getting displacement shader from master instance only // as arnold do not support displacement shader overrides for ginstance MFnDependencyNode masterShadingEngine; MFnDependencyNode shadingEngine; float dispPadding = -AI_BIG; float dispHeight = 1.0f; float dispZeroValue = 0.0f; bool dispAutobump = false; bool outputDispPadding = false; bool outputDispHeight = false; bool outputDispZeroValue = false; bool outputDispAutobump = false; const AtNodeEntry *anodeEntry = AiNodeGetNodeEntry(atNode); GetShapeInstanceShader(m_dagPath, shadingEngine); if (!IsMasterInstance()) { GetShapeInstanceShader(GetMasterInstance(), masterShadingEngine); } else { masterShadingEngine.setObject(shadingEngine.object()); } AtMatrix matrix; MMatrix mmatrix = m_dagPath.inclusiveMatrix(); ConvertMatrix(matrix, mmatrix); // Set transformation matrix if (attrsSet.find("matrix") == attrsEnd) { if (HasParameter(anodeEntry, "matrix")) { if (transformBlur) { if (step == 0) { AtArray* matrices = AiArrayAllocate(1, GetNumMotionSteps(), AI_TYPE_MATRIX); AiArraySetMtx(matrices, step, matrix); AiNodeSetArray(atNode, "matrix", matrices); } else { AtArray* matrices = AiNodeGetArray(atNode, "matrix"); AiArraySetMtx(matrices, step, matrix); } } else { AiNodeSetMatrix(atNode, "matrix", matrix); } } } // Set bounding box if (attrsSet.find("min") == attrsEnd && attrsSet.find("max") == attrsEnd) { // Now check if min and max parameters are valid parameter names on arnold node if (HasParameter(anodeEntry, "min") != 0 && HasParameter(anodeEntry, "max") != 0) { if (step == 0) { MBoundingBox bbox = node.boundingBox(); MPoint bmin = bbox.min(); MPoint bmax = bbox.max(); AiNodeSetPnt(atNode, "min", static_cast<float>(bmin.x), static_cast<float>(bmin.y), static_cast<float>(bmin.z)); AiNodeSetPnt(atNode, "max", static_cast<float>(bmax.x), static_cast<float>(bmax.y), static_cast<float>(bmax.z)); } else { if (transformBlur || deformBlur) { AtPoint cmin = AiNodeGetPnt(atNode, "min"); AtPoint cmax = AiNodeGetPnt(atNode, "max"); MBoundingBox bbox = node.boundingBox(); MPoint bmin = bbox.min(); MPoint bmax = bbox.max(); if (bmin.x < cmin.x) cmin.x = static_cast<float>(bmin.x); if (bmin.y < cmin.y) cmin.y = static_cast<float>(bmin.y); if (bmin.z < cmin.z) cmin.z = static_cast<float>(bmin.z); if (bmax.x > cmax.x) cmax.x = static_cast<float>(bmax.x); if (bmax.y > cmax.y) cmax.y = static_cast<float>(bmax.y); if (bmax.z > cmax.z) cmax.z = static_cast<float>(bmax.z); AiNodeSetPnt(atNode, "min", cmin.x, cmin.y, cmin.z); AiNodeSetPnt(atNode, "max", cmax.x, cmax.y, cmax.z); } } } } if (step == 0) { // Set common attributes MPlug plug; if (AiNodeIs(atNode, "procedural")) { // Note: it is up to the procedural to properly forward (or not) those parameters to the node // it creates if (attrsSet.find("subdiv_type") == attrsEnd) { plug = FindMayaPlug("subdiv_type"); if (plug.isNull()) { plug = FindMayaPlug("aiSubdivType"); } if (!plug.isNull() && HasParameter(anodeEntry, "subdiv_type", atNode, "constant INT")) { AiNodeSetInt(atNode, "subdiv_type", plug.asInt()); } } if (attrsSet.find("subdiv_iterations") == attrsEnd) { plug = FindMayaPlug("subdiv_iterations"); if (plug.isNull()) { plug = FindMayaPlug("aiSubdivIterations"); } if (!plug.isNull() && HasParameter(anodeEntry, "subdiv_iterations", atNode, "constant BYTE")) { AiNodeSetByte(atNode, "subdiv_iterations", plug.asInt()); } } if (attrsSet.find("subdiv_adaptive_metric") == attrsEnd) { plug = FindMayaPlug("subdiv_adaptive_metric"); if (plug.isNull()) { plug = FindMayaPlug("aiSubdivAdaptiveMetric"); } if (!plug.isNull() && HasParameter(anodeEntry, "subdiv_adaptive_metric", atNode, "constant INT")) { AiNodeSetInt(atNode, "subdiv_adaptive_metric", plug.asInt()); } } if (attrsSet.find("subdiv_pixel_error") == attrsEnd) { plug = FindMayaPlug("subdiv_pixel_error"); if (plug.isNull()) { plug = FindMayaPlug("aiSubdivPixelError"); } if (!plug.isNull() && HasParameter(anodeEntry, "subdiv_pixel_error", atNode, "constant FLOAT")) { AiNodeSetFlt(atNode, "subdiv_pixel_error", plug.asFloat()); } } if (attrsSet.find("subdiv_dicing_camera") == attrsEnd) { plug = FindMayaPlug("subdiv_dicing_camera"); if (plug.isNull()) { plug = FindMayaPlug("aiSubdivDicingCamera"); } if (!plug.isNull() && HasParameter(anodeEntry, "subdiv_dicing_camera", atNode, "constant NODE")) { AtNode *cameraNode = NULL; MPlugArray plugs; plug.connectedTo(plugs, true, false); if (plugs.length() == 1) { MFnDagNode camDag(plugs[0].node()); MDagPath camPath; if (camDag.getPath(camPath) == MS::kSuccess) { cameraNode = ExportDagPath(camPath); } } AiNodeSetPtr(atNode, "subdiv_dicing_camera", cameraNode); } } if (attrsSet.find("subdiv_uv_smoothing") == attrsEnd) { plug = FindMayaPlug("subdiv_uv_smoothing"); if (plug.isNull()) { plug = FindMayaPlug("aiSubdivUvSmoothing"); } if (!plug.isNull() && HasParameter(anodeEntry, "subdiv_uv_smoothing", atNode, "constant INT")) { AiNodeSetInt(atNode, "subdiv_uv_smoothing", plug.asInt()); } } if (attrsSet.find("subdiv_smooth_derivs") == attrsEnd) { plug = FindMayaPlug("aiSubdivSmoothDerivs"); if (!plug.isNull() && HasParameter(anodeEntry, "subdiv_smooth_derivs", atNode, "constant BOOL")) { AiNodeSetBool(atNode, "subdiv_smooth_derivs", plug.asBool()); } } if (attrsSet.find("smoothing") == attrsEnd) { // Use maya shape built-in attribute plug = FindMayaPlug("smoothShading"); if (!plug.isNull() && HasParameter(anodeEntry, "smoothing", atNode, "constant BOOL")) { AiNodeSetBool(atNode, "smoothing", plug.asBool()); } } if (attrsSet.find("disp_height") == attrsEnd) { plug = FindMayaPlug("aiDispHeight"); if (!plug.isNull()) { outputDispHeight = true; dispHeight = plug.asFloat(); } } if (attrsSet.find("disp_zero_value") == attrsEnd) { plug = FindMayaPlug("aiDispZeroValue"); if (!plug.isNull()) { outputDispZeroValue = true; dispZeroValue = plug.asFloat(); } } if (attrsSet.find("disp_autobump") == attrsEnd) { plug = FindMayaPlug("aiDispAutobump"); if (!plug.isNull()) { outputDispAutobump = true; dispAutobump = plug.asBool(); } } if (attrsSet.find("disp_padding") == attrsEnd) { plug = FindMayaPlug("aiDispPadding"); if (!plug.isNull()) { outputDispPadding = true; dispPadding = MAX(dispPadding, plug.asFloat()); } } // Set diplacement shader if (attrsSet.find("disp_map") == attrsEnd) { if (masterShadingEngine.object() != MObject::kNullObj) { MPlugArray shaderConns; MPlug shaderPlug = masterShadingEngine.findPlug("displacementShader"); shaderPlug.connectedTo(shaderConns, true, false); if (shaderConns.length() > 0) { MFnDependencyNode dispNode(shaderConns[0].node()); plug = dispNode.findPlug("aiDisplacementPadding"); if (!plug.isNull()) { outputDispPadding = true; dispPadding = MAX(dispPadding, plug.asFloat()); } plug = dispNode.findPlug("aiDisplacementAutoBump"); if (!plug.isNull()) { outputDispAutobump = true; dispAutobump = dispAutobump || plug.asBool(); } if (HasParameter(anodeEntry, "disp_map", atNode, "constant ARRAY NODE")) { AtNode *dispImage = ExportNode(shaderConns[0]); AiNodeSetArray(atNode, "disp_map", AiArrayConvert(1, 1, AI_TYPE_NODE, &dispImage)); } } } } if (outputDispHeight && HasParameter(anodeEntry, "disp_height", atNode, "constant FLOAT")) { AiNodeSetFlt(atNode, "disp_height", dispHeight); } if (outputDispZeroValue && HasParameter(anodeEntry, "disp_zero_value", atNode, "constant FLOAT")) { AiNodeSetFlt(atNode, "disp_zero_value", dispZeroValue); } if (outputDispPadding && HasParameter(anodeEntry, "disp_padding", atNode, "constant FLOAT")) { AiNodeSetFlt(atNode, "disp_padding", dispPadding); } if (outputDispAutobump && HasParameter(anodeEntry, "disp_autobump", atNode, "constant BOOL")) { AiNodeSetBool(atNode, "disp_autobump", dispAutobump); } // Old point based SSS parameter if (attrsSet.find("sss_sample_distribution") == attrsEnd) { plug = FindMayaPlug("sss_sample_distribution"); if (plug.isNull()) { plug = FindMayaPlug("aiSssSampleDistribution"); } if (!plug.isNull() && HasParameter(anodeEntry, "sss_sample_distribution", atNode, "constant INT")) { AiNodeSetInt(atNode, "sss_sample_distribution", plug.asInt()); } } // Old point based SSS parameter if (attrsSet.find("sss_sample_spacing") == attrsEnd) { plug = FindMayaPlug("sss_sample_spacing"); if (plug.isNull()) { plug = FindMayaPlug("aiSssSampleSpacing"); } if (!plug.isNull() && HasParameter(anodeEntry, "sss_sample_spacing", atNode, "constant FLOAT")) { AiNodeSetFlt(atNode, "sss_sample_spacing", plug.asFloat()); } } if (attrsSet.find("min_pixel_width") == attrsEnd) { plug = FindMayaPlug("aiMinPixelWidth"); if (!plug.isNull() && HasParameter(anodeEntry, "min_pixel_width", atNode, "constant FLOAT")) { AiNodeSetFlt(atNode, "min_pixel_width", plug.asFloat()); } } if (attrsSet.find("mode") == attrsEnd) { plug = FindMayaPlug("aiMode"); if (!plug.isNull() && HasParameter(anodeEntry, "mode", atNode, "constant INT")) { AiNodeSetInt(atNode, "mode", plug.asShort()); } } if (attrsSet.find("basis") == attrsEnd) { plug = FindMayaPlug("aiBasis"); if (!plug.isNull() && HasParameter(anodeEntry, "basis", atNode, "constant INT")) { AiNodeSetInt(atNode, "basis", plug.asShort()); } } } if (AiNodeIs(atNode, "ginstance")) { if (attrsSet.find("node") == attrsEnd) { AiNodeSetPtr(atNode, "node", m_masterNode); } if (attrsSet.find("inherit_xform") == attrsEnd) { AiNodeSetBool(atNode, "inherit_xform", false); } } else { // box or procedural if (attrsSet.find("step_size") == attrsEnd) { plug = FindMayaPlug("step_size"); if (plug.isNull()) { plug = FindMayaPlug("aiStepSize"); } if (!plug.isNull() && HasParameter(anodeEntry, "step_size", atNode, "constant FLOAT")) { AiNodeSetFlt(atNode, "step_size", plug.asFloat()); } } } if (attrsSet.find("sidedness") == attrsEnd) { // Use maya shape built-in attribute plug = FindMayaPlug("doubleSided"); if (!plug.isNull() && HasParameter(anodeEntry, "sidedness", atNode, "constant BYTE")) { AiNodeSetByte(atNode, "sidedness", plug.asBool() ? AI_RAY_ALL : 0); // Only set invert_normals if doubleSided attribute could be found if (!plug.asBool() && attrsSet.find("invert_normals") == attrsEnd) { // Use maya shape built-in attribute plug = FindMayaPlug("opposite"); if (!plug.isNull() && HasParameter(anodeEntry, "invert_normals", atNode, "constant BOOL")) { AiNodeSetBool(atNode, "invert_normals", plug.asBool()); } } } } if (attrsSet.find("receive_shadows") == attrsEnd) { // Use maya shape built-in attribute plug = FindMayaPlug("receiveShadows"); if (!plug.isNull() && HasParameter(anodeEntry, "receive_shadows", atNode, "constant BOOL")) { AiNodeSetBool(atNode, "receive_shadows", plug.asBool()); } } if (attrsSet.find("self_shadows") == attrsEnd) { plug = FindMayaPlug("self_shadows"); if (plug.isNull()) { plug = FindMayaPlug("aiSelfShadows"); } if (!plug.isNull() && HasParameter(anodeEntry, "self_shadows", atNode, "constant BOOL")) { AiNodeSetBool(atNode, "self_shadows", plug.asBool()); } } if (attrsSet.find("opaque") == attrsEnd) { plug = FindMayaPlug("opaque"); if (plug.isNull()) { plug = FindMayaPlug("aiOpaque"); } if (!plug.isNull() && HasParameter(anodeEntry, "opaque", atNode, "constant BOOL")) { AiNodeSetBool(atNode, "opaque", plug.asBool()); } } if (attrsSet.find("visibility") == attrsEnd) { if (HasParameter(anodeEntry, "visibility", atNode, "constant BYTE")) { int visibility = AI_RAY_ALL; // Use maya shape built-in attribute plug = FindMayaPlug("castsShadows"); if (!plug.isNull() && !plug.asBool()) { visibility &= ~AI_RAY_SHADOW; } // Use maya shape built-in attribute plug = FindMayaPlug("primaryVisibility"); if (!plug.isNull() && !plug.asBool()) { visibility &= ~AI_RAY_CAMERA; } // Use maya shape built-in attribute plug = FindMayaPlug("visibleInReflections"); if (!plug.isNull() && !plug.asBool()) { visibility &= ~AI_RAY_REFLECTED; } // Use maya shape built-in attribute plug = FindMayaPlug("visibleInRefractions"); if (!plug.isNull() && !plug.asBool()) { visibility &= ~AI_RAY_REFRACTED; } plug = FindMayaPlug("diffuse_visibility"); if (plug.isNull()) { plug = FindMayaPlug("aiVisibleInDiffuse"); } if (!plug.isNull() && !plug.asBool()) { visibility &= ~AI_RAY_DIFFUSE; } plug = FindMayaPlug("glossy_visibility"); if (plug.isNull()) { plug = FindMayaPlug("aiVisibleInGlossy"); } if (!plug.isNull() && !plug.asBool()) { visibility &= ~AI_RAY_GLOSSY; } AiNodeSetByte(atNode, "visibility", visibility & 0xFF); } } if (attrsSet.find("sss_setname") == attrsEnd) { plug = FindMayaPlug("aiSssSetname"); if (!plug.isNull() && plug.asString().length() > 0) { if (HasParameter(anodeEntry, "sss_setname", atNode, "constant STRING")) { AiNodeSetStr(atNode, "sss_setname", plug.asString().asChar()); } } } // Set surface shader if (HasParameter(anodeEntry, "shader", atNode, "constant NODE")) { if (attrsSet.find("shader") == attrsEnd) { if (shadingEngine.object() != MObject::kNullObj) { AtNode *shader = ExportNode(shadingEngine.findPlug("message")); if (shader != NULL) { const AtNodeEntry *entry = AiNodeGetNodeEntry(shader); if (AiNodeEntryGetType(entry) != AI_NODE_SHADER) { MGlobal::displayWarning("[mtoaScriptedTranslators] Node generated from \"" + shadingEngine.name() + "\" of type " + shadingEngine.typeName() + " for shader is not a shader but a " + MString(AiNodeEntryGetTypeName(entry))); } else { AiNodeSetPtr(atNode, "shader", shader); if (AiNodeLookUpUserParameter(atNode, "mtoa_shading_groups") == 0) { AiNodeDeclare(atNode, "mtoa_shading_groups", "constant ARRAY NODE"); AiNodeSetArray(atNode, "mtoa_shading_groups", AiArrayConvert(1, 1, AI_TYPE_NODE, &shader)); } } } } } } } ExportLightLinking(atNode); MPlug plug = FindMayaPlug("aiTraceSets"); if (!plug.isNull()) { ExportTraceSets(atNode, plug); } // Call cleanup command on last export step if (!IsMotionBlurEnabled() || !IsLocalMotionBlurEnabled() || int(step) >= (int(GetNumMotionSteps()) - 1)) { if (HasParameter(anodeEntry, "disp_padding", atNode)) { float padding = AiNodeGetFlt(atNode, "disp_padding"); AtPoint cmin = AiNodeGetPnt(atNode, "min"); AtPoint cmax = AiNodeGetPnt(atNode, "max"); cmin.x -= padding; cmin.y -= padding; cmin.z -= padding; cmax.x += padding; cmax.y += padding; cmax.z += padding; AiNodeSetPnt(atNode, "min", cmin.x, cmin.y, cmin.z); AiNodeSetPnt(atNode, "max", cmax.x, cmax.y, cmax.z); } if (cleanupCmd != "") { command = cleanupCmd += "((\"" + m_dagPath.partialPathName() + "\", \""; command += AiNodeGetName(atNode); command += "\"), "; if (!m_masterNode) { command += "None)"; } else { command += "(\"" + GetMasterInstance().partialPathName() + "\", \""; command += AiNodeGetName(m_masterNode); command += "\"))"; } status = MGlobal::executePythonCommand(command); if (!status) { AiMsgError("[mtoa.scriptedTranslators] Failed to cleanup node \"%s\".", node.name().asChar()); } } } }