/**Function************************************************************* Synopsis [Finds the left bound on the next candidate to be paired.] Description [The nodes in the array are in the decreasing order of levels. The last node in the array has the smallest level. By default it would be paired with the next node on the left. However, it may be possible to pair it with some other node on the left, in such a way that the new node is shared. This procedure finds the index of the left-most node, which can be paired with the last node.] SideEffects [] SeeAlso [] ***********************************************************************/ int Dar_BalanceFindLeft( Vec_Ptr_t * vSuper ) { Aig_Obj_t * pObjRight, * pObjLeft; int Current; // if two or less nodes, pair with the first if ( Vec_PtrSize(vSuper) < 3 ) return 0; // set the pointer to the one before the last Current = Vec_PtrSize(vSuper) - 2; pObjRight = (Aig_Obj_t *)Vec_PtrEntry( vSuper, Current ); // go through the nodes to the left of this one for ( Current--; Current >= 0; Current-- ) { // get the next node on the left pObjLeft = (Aig_Obj_t *)Vec_PtrEntry( vSuper, Current ); // if the level of this node is different, quit the loop if ( Aig_ObjLevel(Aig_Regular(pObjLeft)) != Aig_ObjLevel(Aig_Regular(pObjRight)) ) break; } Current++; // get the node, for which the equality holds pObjLeft = (Aig_Obj_t *)Vec_PtrEntry( vSuper, Current ); assert( Aig_ObjLevel(Aig_Regular(pObjLeft)) == Aig_ObjLevel(Aig_Regular(pObjRight)) ); return Current; }
/**Function************************************************************* Synopsis [Adds strashed nodes for one node.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Aig_ManSpeedupNode( Nwk_Man_t * pNtk, Aig_Man_t * pAig, Nwk_Obj_t * pNode, Vec_Ptr_t * vLeaves, Vec_Ptr_t * vTimes ) { Vec_Ptr_t * vNodes; Nwk_Obj_t * pObj, * pObj2; Aig_Obj_t * ppCofs[32], * pAnd, * pTemp; int nCofs, i, k, nSkip; // quit of regulars are the same Vec_PtrForEachEntry( Nwk_Obj_t *, vLeaves, pObj, i ) Vec_PtrForEachEntry( Nwk_Obj_t *, vLeaves, pObj2, k ) if ( i != k && Aig_Regular((Aig_Obj_t *)pObj->pCopy) == Aig_Regular((Aig_Obj_t *)pObj2->pCopy) ) { // printf( "Identical after structural hashing!!!\n" ); return; } // collect the AIG nodes vNodes = Vec_PtrAlloc( 100 ); Aig_ManIncrementTravId( pAig ); Aig_ObjSetTravIdCurrent( pAig, Aig_ManConst1(pAig) ); Vec_PtrForEachEntry( Nwk_Obj_t *, vLeaves, pObj, i ) { pAnd = (Aig_Obj_t *)pObj->pCopy; Aig_ObjSetTravIdCurrent( pAig, Aig_Regular(pAnd) ); }
/**Function************************************************************* Synopsis [Inserts the AIG node corresponding to the BDD node into the hash table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static void Cudd2_SetArg( Aig_Obj_t * pNode, void * pResult ) { assert( s_pCuddMan != NULL ); if ( st_is_member( s_pCuddMan->pTable, (char *)Aig_Regular(pResult) ) ) return; pNode = Aig_NotCond( pNode, Aig_IsComplement(pResult) ); st_insert( s_pCuddMan->pTable, (char *)Aig_Regular(pResult), (char *)pNode ); }
/**Function************************************************************* Synopsis [Returns 1 if the cone of the node overlaps with the vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Obj_t * Aig_ManDeriveNewCone( Aig_Man_t * p, Vec_Ptr_t * vImplics, Aig_Obj_t * pNode ) { Aig_Obj_t * pTemp; int i; assert( !Aig_IsComplement(pNode) ); assert( !Aig_ObjIsConst1(pNode) ); Aig_ManIncrementTravId( p ); Vec_PtrForEachEntry( Aig_Obj_t *, vImplics, pTemp, i ) { Aig_ObjSetTravIdCurrent( p, Aig_Regular(pTemp) ); Aig_Regular(pTemp)->pData = Aig_NotCond( Aig_ManConst1(p), Aig_IsComplement(pTemp) ); }
Kit_GraphForEachNode( pGraph, pNode, i ) { // get the children of this node pNode0 = Kit_GraphNode( pGraph, pNode->eEdge0.Node ); pNode1 = Kit_GraphNode( pGraph, pNode->eEdge1.Node ); // get the AIG nodes corresponding to the children pAnd0 = pNode0->pFunc; pAnd1 = pNode1->pFunc; if ( pAnd0 && pAnd1 ) { // if they are both present, find the resulting node pAnd0 = Aig_NotCond( pAnd0, pNode->eEdge0.fCompl ); pAnd1 = Aig_NotCond( pAnd1, pNode->eEdge1.fCompl ); pAnd = Aig_TableLookupTwo( pAig, pAnd0, pAnd1 ); // return -1 if the node is the same as the original root if ( Aig_Regular(pAnd) == pRoot ) return -1; } else pAnd = NULL; // count the number of added nodes if ( pAnd == NULL || Aig_ObjIsTravIdCurrent(pAig, Aig_Regular(pAnd)) ) { if ( ++Counter > NodeMax ) return -1; } // count the number of new levels LevelNew = 1 + AIG_MAX( pNode0->Level, pNode1->Level ); if ( pAnd ) { if ( Aig_Regular(pAnd) == Aig_ManConst1(pAig) ) LevelNew = 0; else if ( Aig_Regular(pAnd) == Aig_Regular(pAnd0) ) LevelNew = (int)Aig_Regular(pAnd0)->Level; else if ( Aig_Regular(pAnd) == Aig_Regular(pAnd1) ) LevelNew = (int)Aig_Regular(pAnd1)->Level; LevelOld = (int)Aig_Regular(pAnd)->Level; // assert( LevelNew == LevelOld ); } if ( LevelNew > LevelMax ) return -1; pNode->pFunc = pAnd; pNode->Level = LevelNew; /* printf( "Checking " ); Ref_ObjPrint( pAnd0 ); printf( " and " ); Ref_ObjPrint( pAnd1 ); printf( " Result " ); Ref_ObjPrint( pNode->pFunc ); printf( "\n" ); */ }
/**Function************************************************************* Synopsis [Procedure used for sorting the nodes in decreasing order of levels.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Aig_NodeCompareLevelsDecrease( Aig_Obj_t ** pp1, Aig_Obj_t ** pp2 ) { int Diff = Aig_ObjLevel(Aig_Regular(*pp1)) - Aig_ObjLevel(Aig_Regular(*pp2)); if ( Diff > 0 ) return -1; if ( Diff < 0 ) return 1; Diff = Aig_ObjId(Aig_Regular(*pp1)) - Aig_ObjId(Aig_Regular(*pp2)); if ( Diff > 0 ) return -1; if ( Diff < 0 ) return 1; return 0; }
/**Function************************************************************* Synopsis [Checks if node with the given attributes is in the hash table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Aig_Obj_t * Aig_TableLookupTwo( Aig_Man_t * p, Aig_Obj_t * pFanin0, Aig_Obj_t * pFanin1 ) { Aig_Obj_t * pGhost; // consider simple cases if ( pFanin0 == pFanin1 ) return pFanin0; if ( pFanin0 == Aig_Not(pFanin1) ) return Aig_ManConst0(p); if ( Aig_Regular(pFanin0) == Aig_ManConst1(p) ) return pFanin0 == Aig_ManConst1(p) ? pFanin1 : Aig_ManConst0(p); if ( Aig_Regular(pFanin1) == Aig_ManConst1(p) ) return pFanin1 == Aig_ManConst1(p) ? pFanin0 : Aig_ManConst0(p); pGhost = Aig_ObjCreateGhost( p, pFanin0, pFanin1, AIG_OBJ_AND ); return Aig_TableLookup( p, pGhost ); }
/**Function************************************************************* Synopsis [Counts the number of new nodes added when using this graph.] Description [AIG nodes for the fanins should be assigned to pNode->pFunc of the leaves of the graph before calling this procedure. Returns -1 if the number of nodes and levels exceeded the given limit or the number of levels exceeded the maximum allowed level.] SideEffects [] SeeAlso [] ***********************************************************************/ int Dar_RefactTryGraph( Aig_Man_t * pAig, Aig_Obj_t * pRoot, Vec_Ptr_t * vCut, Kit_Graph_t * pGraph, int NodeMax, int LevelMax ) { Kit_Node_t * pNode, * pNode0, * pNode1; Aig_Obj_t * pAnd, * pAnd0, * pAnd1; int i, Counter, LevelNew, LevelOld; // check for constant function or a literal if ( Kit_GraphIsConst(pGraph) || Kit_GraphIsVar(pGraph) ) return 0; // set the levels of the leaves Kit_GraphForEachLeaf( pGraph, pNode, i ) { pNode->pFunc = Vec_PtrEntry(vCut, i); pNode->Level = Aig_Regular(pNode->pFunc)->Level; assert( Aig_Regular(pNode->pFunc)->Level < (1<<14)-1 ); }
// procedure to detect an EXOR gate static inline int Aig_ObjIsExorType( Aig_Obj_t * p0, Aig_Obj_t * p1, Aig_Obj_t ** ppFan0, Aig_Obj_t ** ppFan1 ) { if ( !Aig_IsComplement(p0) || !Aig_IsComplement(p1) ) return 0; p0 = Aig_Regular(p0); p1 = Aig_Regular(p1); if ( !Aig_ObjIsAnd(p0) || !Aig_ObjIsAnd(p1) ) return 0; if ( Aig_ObjFanin0(p0) != Aig_ObjFanin0(p1) || Aig_ObjFanin1(p0) != Aig_ObjFanin1(p1) ) return 0; if ( Aig_ObjFaninC0(p0) == Aig_ObjFaninC0(p1) || Aig_ObjFaninC1(p0) == Aig_ObjFaninC1(p1) ) return 0; *ppFan0 = Aig_ObjChild0(p0); *ppFan1 = Aig_ObjChild1(p0); return 1; }
/**Function************************************************************* Synopsis [Counts the number of one's in the patten the object.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_SmlNodeCountOnesReal( Ssw_Sml_t * p, Aig_Obj_t * pObj ) { unsigned * pSims; int i, Counter = 0; pSims = Ssw_ObjSim(p, Aig_Regular(pObj)->Id); if ( Aig_Regular(pObj)->fPhase ^ Aig_IsComplement(pObj) ) { for ( i = 0; i < p->nWordsTotal; i++ ) Counter += Aig_WordCountOnes( ~pSims[i] ); } else { for ( i = 0; i < p->nWordsTotal; i++ ) Counter += Aig_WordCountOnes( pSims[i] ); } return Counter; }
/**Function************************************************************* Synopsis [Replaces one object by another.] Description [The new object (pObjNew) should be used instead of the old object (pObjOld). If the new object is complemented or used, the buffer is added and the new object remains in the manager; otherwise, the new object is deleted.] SideEffects [] SeeAlso [] ***********************************************************************/ void Aig_ObjReplace( Aig_Man_t * p, Aig_Obj_t * pObjOld, Aig_Obj_t * pObjNew, int fNodesOnly, int fUpdateLevel ) { Aig_Obj_t * pObjNewR = Aig_Regular(pObjNew); // the object to be replaced cannot be complemented assert( !Aig_IsComplement(pObjOld) ); // the object to be replaced cannot be a terminal assert( !Aig_ObjIsPi(pObjOld) && !Aig_ObjIsPo(pObjOld) ); // the object to be used cannot be a buffer or a PO assert( !Aig_ObjIsBuf(pObjNewR) && !Aig_ObjIsPo(pObjNewR) ); // the object cannot be the same assert( pObjOld != pObjNewR ); // make sure object is not pointing to itself assert( pObjOld != Aig_ObjFanin0(pObjNewR) ); assert( pObjOld != Aig_ObjFanin1(pObjNewR) ); // recursively delete the old node - but leave the object there pObjNewR->nRefs++; Aig_ObjDelete_rec( p, pObjOld, 0 ); pObjNewR->nRefs--; // if the new object is complemented or already used, create a buffer p->nObjs[pObjOld->Type]--; if ( Aig_IsComplement(pObjNew) || Aig_ObjRefs(pObjNew) > 0 || (fNodesOnly && !Aig_ObjIsNode(pObjNew)) ) { pObjOld->Type = AIG_OBJ_BUF; Aig_ObjConnect( p, pObjOld, pObjNew, NULL ); p->nBufReplaces++; } else { Aig_Obj_t * pFanin0 = pObjNew->pFanin0; Aig_Obj_t * pFanin1 = pObjNew->pFanin1; int LevelOld = pObjOld->Level; pObjOld->Type = pObjNew->Type; Aig_ObjDisconnect( p, pObjNew ); Aig_ObjConnect( p, pObjOld, pFanin0, pFanin1 ); // delete the new object Aig_ObjDelete( p, pObjNew ); // update levels if ( p->pFanData ) { pObjOld->Level = LevelOld; Aig_ManUpdateLevel( p, pObjOld ); } if ( fUpdateLevel ) { Aig_ObjClearReverseLevel( p, pObjOld ); Aig_ManUpdateReverseLevel( p, pObjOld ); } } p->nObjs[pObjOld->Type]++; // store buffers if fanout is allocated if ( p->pFanData && Aig_ObjIsBuf(pObjOld) ) { Vec_PtrPush( p->vBufs, pObjOld ); p->nBufMax = AIG_MAX( p->nBufMax, Vec_PtrSize(p->vBufs) ); Aig_ManPropagateBuffers( p, fNodesOnly, fUpdateLevel ); } }
/**Function************************************************************* Synopsis [Fetches AIG node corresponding to the BDD node from the hash table.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ static Aig_Obj_t * Cudd2_GetArg( void * pArg ) { Aig_Obj_t * pNode; assert( s_pCuddMan != NULL ); if ( !st_lookup( s_pCuddMan->pTable, (char *)Aig_Regular(pArg), (char **)&pNode ) ) { printf( "Cudd2_GetArg(): An argument BDD is not in the hash table.\n" ); return NULL; } return Aig_NotCond( pNode, Aig_IsComplement(pArg) ); }
/**Function************************************************************* Synopsis [Counts the number of one's in the patten the object.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_SmlNodeCountOnesRealVec( Ssw_Sml_t * p, Vec_Ptr_t * vObjs ) { Aig_Obj_t * pObj; unsigned * pSims, uWord; int i, k, Counter = 0; if ( Vec_PtrSize(vObjs) == 0 ) return 0; for ( i = 0; i < p->nWordsTotal; i++ ) { uWord = 0; Vec_PtrForEachEntry( Aig_Obj_t *, vObjs, pObj, k ) { pSims = Ssw_ObjSim(p, Aig_Regular(pObj)->Id); if ( Aig_Regular(pObj)->fPhase ^ Aig_IsComplement(pObj) ) uWord |= ~pSims[i]; else uWord |= pSims[i]; } Counter += Aig_WordCountOnes( uWord ); }
/**Function************************************************************* Synopsis [Returns 1 if the cone of the node overlaps with the vector.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Aig_ManFindConeOverlap( Aig_Man_t * p, Vec_Ptr_t * vImplics, Aig_Obj_t * pNode ) { Aig_Obj_t * pTemp; int i; assert( !Aig_IsComplement(pNode) ); assert( !Aig_ObjIsConst1(pNode) ); Aig_ManIncrementTravId( p ); Vec_PtrForEachEntry( Aig_Obj_t *, vImplics, pTemp, i ) Aig_ObjSetTravIdCurrent( p, Aig_Regular(pTemp) ); Aig_ManIncrementTravId( p ); return Aig_ManFindConeOverlap_rec( p, pNode ); }
/**Function************************************************************* Synopsis [Inserts a new node in the order by levels.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Dar_BalancePushUniqueOrderByLevel( Vec_Ptr_t * vStore, Aig_Obj_t * pObj, int fExor ) { Aig_Obj_t * pObj1, * pObj2; int i; if ( Vec_PtrPushUnique(vStore, pObj) ) { if ( fExor ) Vec_PtrRemove(vStore, pObj); return; } // find the p of the node for ( i = vStore->nSize-1; i > 0; i-- ) { pObj1 = (Aig_Obj_t *)vStore->pArray[i ]; pObj2 = (Aig_Obj_t *)vStore->pArray[i-1]; if ( Aig_ObjLevel(Aig_Regular(pObj1)) <= Aig_ObjLevel(Aig_Regular(pObj2)) ) break; vStore->pArray[i ] = pObj2; vStore->pArray[i-1] = pObj1; } }
/**Function************************************************************* Synopsis [Counts the number of 1s in the implication.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_SmlCountXorImplication( Ssw_Sml_t * p, Aig_Obj_t * pObjLi, Aig_Obj_t * pObjLo, Aig_Obj_t * pCand ) { unsigned * pSimLi, * pSimLo, * pSimCand; int k, Counter = 0; assert( pObjLo->fPhase == 0 ); // pObjLi->fPhase may be 1, but the LI simulation data is not complemented! pSimCand = Ssw_ObjSim( p, Aig_Regular(pCand)->Id ); pSimLi = Ssw_ObjSim( p, pObjLi->Id ); pSimLo = Ssw_ObjSim( p, pObjLo->Id ); if ( Aig_Regular(pCand)->fPhase ^ Aig_IsComplement(pCand) ) { for ( k = p->nWordsPref; k < p->nWordsTotal; k++ ) Counter += Aig_WordCountOnes(~pSimCand[k] & ~(pSimLi[k] ^ pSimLo[k])); } else { for ( k = p->nWordsPref; k < p->nWordsTotal; k++ ) Counter += Aig_WordCountOnes(pSimCand[k] & ~(pSimLi[k] ^ pSimLo[k])); } return Counter; }
/**Function************************************************************* Synopsis [Returns affective support size.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Aig_BaseSize( Aig_Man_t * p, Aig_Obj_t * pObj, int nLutSize ) { int nBaseSize; pObj = Aig_Regular(pObj); if ( Aig_ObjIsConst1(pObj) ) return 0; if ( Aig_ObjLevel(pObj) >= nLutSize ) return 1; nBaseSize = Aig_SupportSize( p, pObj ); if ( nBaseSize >= nLutSize ) return 1; return nBaseSize; }
/**Function************************************************************* Synopsis [Create mapping of node IDs of pNtk into equiv classes of pMiter.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Int_t * Abc_NtkDressMapClasses( Aig_Man_t * pMiter, Abc_Ntk_t * pNtk ) { Vec_Int_t * vId2Lit; Abc_Obj_t * pObj, * pAnd; Aig_Obj_t * pObjMan, * pObjMiter, * pObjRepr; int i; vId2Lit = Vec_IntAlloc( 0 ); Vec_IntFill( vId2Lit, Abc_NtkObjNumMax(pNtk), -1 ); Abc_NtkForEachNode( pNtk, pObj, i ) { // get the pointer to the miter node corresponding to pObj if ( (pAnd = Abc_ObjRegular(pObj->pCopy)) && Abc_ObjType(pAnd) != ABC_OBJ_NONE && // strashed node is present and legal (pObjMan = Aig_Regular((Aig_Obj_t *)pAnd->pCopy)) && Aig_ObjType(pObjMan) != AIG_OBJ_NONE && // AIG node is present and legal (pObjMiter = Aig_Regular((Aig_Obj_t *)pObjMan->pData)) && Aig_ObjType(pObjMiter) != AIG_OBJ_NONE ) // miter node is present and legal { // get the representative of the miter node pObjRepr = Aig_ObjRepr( pMiter, pObjMiter ); pObjRepr = pObjRepr? pObjRepr : pObjMiter; // map pObj (whose ID is i) into the repr node ID (i.e. equiv class) Vec_IntWriteEntry( vId2Lit, i, Aig_ObjId(pObjRepr) ); } } return vId2Lit; }
/**Function************************************************************* Synopsis [Derives combinational miter of the two AIGs.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Gia_ManToAig_rec( Aig_Man_t * pNew, Aig_Obj_t ** ppNodes, Gia_Man_t * p, Gia_Obj_t * pObj ) { Gia_Obj_t * pNext; if ( ppNodes[Gia_ObjId(p, pObj)] ) return; if ( Gia_ObjIsCi(pObj) ) ppNodes[Gia_ObjId(p, pObj)] = Aig_ObjCreatePi( pNew ); else { assert( Gia_ObjIsAnd(pObj) ); Gia_ManToAig_rec( pNew, ppNodes, p, Gia_ObjFanin0(pObj) ); Gia_ManToAig_rec( pNew, ppNodes, p, Gia_ObjFanin1(pObj) ); ppNodes[Gia_ObjId(p, pObj)] = Aig_And( pNew, Gia_ObjChild0Copy2(ppNodes, pObj, Gia_ObjId(p, pObj)), Gia_ObjChild1Copy2(ppNodes, pObj, Gia_ObjId(p, pObj)) ); } if ( pNew->pEquivs && (pNext = Gia_ObjNextObj(p, Gia_ObjId(p, pObj))) ) { Aig_Obj_t * pObjNew, * pNextNew; Gia_ManToAig_rec( pNew, ppNodes, p, pNext ); pObjNew = ppNodes[Gia_ObjId(p, pObj)]; pNextNew = ppNodes[Gia_ObjId(p, pNext)]; if ( pNew->pEquivs ) pNew->pEquivs[Aig_Regular(pObjNew)->Id] = Aig_Regular(pNextNew); } }
/**Function************************************************************* Synopsis [Moves closer to the end the node that is best for sharing.] Description [If there is no node with sharing, randomly chooses one of the legal nodes.] SideEffects [] SeeAlso [] ***********************************************************************/ void Dar_BalancePermute( Aig_Man_t * p, Vec_Ptr_t * vSuper, int LeftBound, int fExor ) { Aig_Obj_t * pObj1, * pObj2, * pObj3, * pGhost; int RightBound, i; // get the right bound RightBound = Vec_PtrSize(vSuper) - 2; assert( LeftBound <= RightBound ); if ( LeftBound == RightBound ) return; // get the two last nodes pObj1 = (Aig_Obj_t *)Vec_PtrEntry( vSuper, RightBound + 1 ); pObj2 = (Aig_Obj_t *)Vec_PtrEntry( vSuper, RightBound ); if ( Aig_Regular(pObj1) == p->pConst1 || Aig_Regular(pObj2) == p->pConst1 || Aig_Regular(pObj1) == Aig_Regular(pObj2) ) return; // find the first node that can be shared for ( i = RightBound; i >= LeftBound; i-- ) { pObj3 = (Aig_Obj_t *)Vec_PtrEntry( vSuper, i ); if ( Aig_Regular(pObj3) == p->pConst1 ) { Vec_PtrWriteEntry( vSuper, i, pObj2 ); Vec_PtrWriteEntry( vSuper, RightBound, pObj3 ); return; } if ( Aig_Regular(pObj1) == Aig_Regular(pObj3) ) { if ( pObj3 == pObj2 ) return; Vec_PtrWriteEntry( vSuper, i, pObj2 ); Vec_PtrWriteEntry( vSuper, RightBound, pObj3 ); return; } pGhost = Aig_ObjCreateGhost( p, pObj1, pObj3, fExor? AIG_OBJ_EXOR : AIG_OBJ_AND ); if ( Aig_TableLookup( p, pGhost ) ) { if ( pObj3 == pObj2 ) return; Vec_PtrWriteEntry( vSuper, i, pObj2 ); Vec_PtrWriteEntry( vSuper, RightBound, pObj3 ); return; } } /* // we did not find the node to share, randomize choice { int Choice = Aig_ManRandom(0) % (RightBound - LeftBound + 1); pObj3 = Vec_PtrEntry( vSuper, LeftBound + Choice ); if ( pObj3 == pObj2 ) return; Vec_PtrWriteEntry( vSuper, LeftBound + Choice, pObj2 ); Vec_PtrWriteEntry( vSuper, RightBound, pObj3 ); } */ }
// update the CO pointers Ntl_ManForEachCoNet( p, pNetCo, i ) { if ( pNetCo->fMark ) continue; pNetCo->fMark = 1; pNet = (Ntl_Net_t *)Vec_PtrEntry( vCopies, Aig_Regular((Aig_Obj_t *)pNetCo->pCopy)->Id ); pNode = Ntl_ModelCreateNode( pRoot, 1 ); pNode->pSop = Aig_IsComplement((Aig_Obj_t *)pNetCo->pCopy)? Ntl_ManStoreSop( p->pMemSops, "0 1\n" ) : Ntl_ManStoreSop( p->pMemSops, "1 1\n" ); Ntl_ObjSetFanin( pNode, pNet, 0 ); // update the CO driver net assert( pNetCo->pDriver == NULL ); if ( !Ntl_ModelSetNetDriver( pNode, pNetCo ) ) { printf( "Ntl_ManInsert(): Internal error: PO net has more than one fanin.\n" ); return 0; } }
/**Function************************************************************* Synopsis [Computes the set of complete clock gates.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Vec_Ptr_t * Cgt_ManCompleteGates( Aig_Man_t * pAig, Vec_Vec_t * vGatesAll, int nOdcMax, int fVerbose ) { Vec_Ptr_t * vFanout, * vGatesFull; Aig_Obj_t * pGate, * pGateR; int i, k; vFanout = Vec_PtrAlloc( 100 ); vGatesFull = Vec_PtrAlloc( 100 ); Vec_VecForEachEntry( Aig_Obj_t *, vGatesAll, pGate, i, k ) { pGateR = Aig_Regular(pGate); if ( pGateR->fMarkA ) continue; pGateR->fMarkA = 1; Cgt_ManCollectFanoutPos( pAig, pGateR, vFanout ); if ( Cgt_ManCheckGateComplete( pAig, vGatesAll, pGate, vFanout ) ) Vec_PtrPush( vGatesFull, pGate ); }
ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Computes area, references, and nodes used in the mapping.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Aig_ManScanMapping_rec( Cnf_Man_t * p, Aig_Obj_t * pObj, Vec_Ptr_t * vMapped ) { Aig_Obj_t * pLeaf; Dar_Cut_t * pCutBest; int aArea, i; if ( pObj->nRefs++ || Aig_ObjIsCi(pObj) || Aig_ObjIsConst1(pObj) ) return 0; assert( Aig_ObjIsAnd(pObj) ); // collect the node first to derive pre-order if ( vMapped ) Vec_PtrPush( vMapped, pObj ); // visit the transitive fanin of the selected cut if ( pObj->fMarkB ) { Vec_Ptr_t * vSuper = Vec_PtrAlloc( 100 ); Aig_ObjCollectSuper( pObj, vSuper ); aArea = Vec_PtrSize(vSuper) + 1; Vec_PtrForEachEntry( Aig_Obj_t *, vSuper, pLeaf, i ) aArea += Aig_ManScanMapping_rec( p, Aig_Regular(pLeaf), vMapped ); Vec_PtrFree( vSuper ); //////////////////////////// pObj->fMarkB = 1; }
/**Function************************************************************* Synopsis [Returns 1 if simulation does not filter out this candidate.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Cgt_SimulationFilter( Cgt_Man_t * p, Aig_Obj_t * pCandPart, Aig_Obj_t * pMiterPart ) { unsigned * pInfoCand, * pInfoMiter; int w, nWords = Aig_BitWordNum( p->nPatts ); pInfoCand = (unsigned *)Vec_PtrEntry( p->vPatts, Aig_ObjId(Aig_Regular(pCandPart)) ); pInfoMiter = (unsigned *)Vec_PtrEntry( p->vPatts, Aig_ObjId(pMiterPart) ); // C => !M -- true is the same as C & M -- false if ( !Aig_IsComplement(pCandPart) ) { for ( w = 0; w < nWords; w++ ) if ( pInfoCand[w] & pInfoMiter[w] ) return 0; } else { for ( w = 0; w < nWords; w++ ) if ( ~pInfoCand[w] & pInfoMiter[w] ) return 0; } return 1; }
/**Function************************************************************* Synopsis [Sets variable activities in the cone.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Fra_SetActivityFactors_rec( Fra_Man_t * p, Aig_Obj_t * pObj, int LevelMin, int LevelMax ) { Vec_Ptr_t * vFanins; Aig_Obj_t * pFanin; int i, Counter = 0; assert( !Aig_IsComplement(pObj) ); assert( Fra_ObjSatNum(pObj) ); // skip visited variables if ( Aig_ObjIsTravIdCurrent(p->pManFraig, pObj) ) return 0; Aig_ObjSetTravIdCurrent(p->pManFraig, pObj); // add the PI to the list if ( pObj->Level <= (unsigned)LevelMin || Aig_ObjIsPi(pObj) ) return 0; // set the factor of this variable // (LevelMax-LevelMin) / (pObj->Level-LevelMin) = p->pPars->dActConeBumpMax / ThisBump p->pSat->factors[Fra_ObjSatNum(pObj)] = p->pPars->dActConeBumpMax * (pObj->Level - LevelMin)/(LevelMax - LevelMin); veci_push(&p->pSat->act_vars, Fra_ObjSatNum(pObj)); // explore the fanins vFanins = Fra_ObjFaninVec( pObj ); Vec_PtrForEachEntry( vFanins, pFanin, i ) Counter += Fra_SetActivityFactors_rec( p, Aig_Regular(pFanin), LevelMin, LevelMax ); return 1 + Counter; }
/**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Ref_ObjPrint( Aig_Obj_t * pObj ) { printf( "%d", pObj? Aig_Regular(pObj)->Id : -1 ); if ( pObj ) printf( "(%d) ", Aig_IsComplement(pObj) ); }
/**Function************************************************************* Synopsis [Constrains two nodes to be equivalent in the SAT solver.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Ssw_NodesAreConstrained( Ssw_Man_t * p, Aig_Obj_t * pOld, Aig_Obj_t * pNew ) { int pLits[2], RetValue, fComplNew; Aig_Obj_t * pTemp; // sanity checks assert( Aig_Regular(pOld) != Aig_Regular(pNew) ); assert( p->pPars->fConstrs || Aig_ObjPhaseReal(pOld) == Aig_ObjPhaseReal(pNew) ); // move constant to the old node if ( Aig_Regular(pNew) == Aig_ManConst1(p->pFrames) ) { assert( Aig_Regular(pOld) != Aig_ManConst1(p->pFrames) ); pTemp = pOld; pOld = pNew; pNew = pTemp; } // move complement to the new node if ( Aig_IsComplement(pOld) ) { pOld = Aig_Regular(pOld); pNew = Aig_Not(pNew); } assert( p->pMSat != NULL ); // if the nodes do not have SAT variables, allocate them Ssw_CnfNodeAddToSolver( p->pMSat, pOld ); Ssw_CnfNodeAddToSolver( p->pMSat, Aig_Regular(pNew) ); // transform the new node fComplNew = Aig_IsComplement( pNew ); pNew = Aig_Regular( pNew ); // consider the constant 1 case if ( pOld == Aig_ManConst1(p->pFrames) ) { // add constraint A = 1 ----> A pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), fComplNew ); if ( p->pPars->fPolarFlip ) { if ( pNew->fPhase ) pLits[0] = lit_neg( pLits[0] ); } RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 1 ); assert( RetValue ); } else { // add constraint A = B ----> (A v !B)(!A v B) // (A v !B) pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pOld), 0 ); pLits[1] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), !fComplNew ); if ( p->pPars->fPolarFlip ) { if ( pOld->fPhase ) pLits[0] = lit_neg( pLits[0] ); if ( pNew->fPhase ) pLits[1] = lit_neg( pLits[1] ); } pLits[0] = lit_neg( pLits[0] ); pLits[1] = lit_neg( pLits[1] ); RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 2 ); assert( RetValue ); // (!A v B) pLits[0] = toLitCond( Ssw_ObjSatNum(p->pMSat,pOld), 1 ); pLits[1] = toLitCond( Ssw_ObjSatNum(p->pMSat,pNew), fComplNew); if ( p->pPars->fPolarFlip ) { if ( pOld->fPhase ) pLits[0] = lit_neg( pLits[0] ); if ( pNew->fPhase ) pLits[1] = lit_neg( pLits[1] ); } pLits[0] = lit_neg( pLits[0] ); pLits[1] = lit_neg( pLits[1] ); RetValue = sat_solver_addclause( p->pMSat->pSat, pLits, pLits + 2 ); assert( RetValue ); } return 1; }
/**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Dar_ManRewrite( Aig_Man_t * pAig, Dar_RwrPar_t * pPars ) { extern Vec_Int_t * Saig_ManComputeSwitchProbs( Aig_Man_t * p, int nFrames, int nPref, int fProbOne ); Dar_Man_t * p; // Bar_Progress_t * pProgress; Dar_Cut_t * pCut; Aig_Obj_t * pObj, * pObjNew; int i, k, nNodesOld, nNodeBefore, nNodeAfter, Required; abctime clk = 0, clkStart; int Counter = 0; int nMffcSize;//, nMffcGains[MAX_VAL+1][MAX_VAL+1] = {{0}}; // prepare the library Dar_LibPrepare( pPars->nSubgMax ); // create rewriting manager p = Dar_ManStart( pAig, pPars ); if ( pPars->fPower ) pAig->vProbs = Saig_ManComputeSwitchProbs( pAig, 48, 16, 1 ); // remove dangling nodes Aig_ManCleanup( pAig ); // if updating levels is requested, start fanout and timing if ( p->pPars->fFanout ) Aig_ManFanoutStart( pAig ); if ( p->pPars->fUpdateLevel ) Aig_ManStartReverseLevels( pAig, 0 ); // set elementary cuts for the PIs // Dar_ManCutsStart( p ); // resynthesize each node once clkStart = Abc_Clock(); p->nNodesInit = Aig_ManNodeNum(pAig); nNodesOld = Vec_PtrSize( pAig->vObjs ); // pProgress = Bar_ProgressStart( stdout, nNodesOld ); Aig_ManForEachObj( pAig, pObj, i ) // pProgress = Bar_ProgressStart( stdout, 100 ); // Aig_ManOrderStart( pAig ); // Aig_ManForEachNodeInOrder( pAig, pObj ) { if ( pAig->Time2Quit && !(i & 256) && Abc_Clock() > pAig->Time2Quit ) break; // Bar_ProgressUpdate( pProgress, 100*pAig->nAndPrev/pAig->nAndTotal, NULL ); // Bar_ProgressUpdate( pProgress, i, NULL ); if ( !Aig_ObjIsNode(pObj) ) continue; if ( i > nNodesOld ) // if ( p->pPars->fUseZeros && i > nNodesOld ) break; if ( pPars->fRecycle && ++Counter % 50000 == 0 && Aig_DagSize(pObj) < Vec_PtrSize(p->vCutNodes)/100 ) { // printf( "Counter = %7d. Node = %7d. Dag = %5d. Vec = %5d.\n", // Counter, i, Aig_DagSize(pObj), Vec_PtrSize(p->vCutNodes) ); // fflush( stdout ); Dar_ManCutsRestart( p, pObj ); } // consider freeing the cuts // if ( (i & 0xFFF) == 0 && Aig_MmFixedReadMemUsage(p->pMemCuts)/(1<<20) > 100 ) // Dar_ManCutsStart( p ); // compute cuts for the node p->nNodesTried++; clk = Abc_Clock(); Dar_ObjSetCuts( pObj, NULL ); Dar_ObjComputeCuts_rec( p, pObj ); p->timeCuts += Abc_Clock() - clk; // check if there is a trivial cut Dar_ObjForEachCut( pObj, pCut, k ) if ( pCut->nLeaves == 0 || (pCut->nLeaves == 1 && pCut->pLeaves[0] != pObj->Id && Aig_ManObj(p->pAig, pCut->pLeaves[0])) ) break; if ( k < (int)pObj->nCuts ) { assert( pCut->nLeaves < 2 ); if ( pCut->nLeaves == 0 ) // replace by constant { assert( pCut->uTruth == 0 || pCut->uTruth == 0xFFFF ); pObjNew = Aig_NotCond( Aig_ManConst1(p->pAig), pCut->uTruth==0 ); } else { assert( pCut->uTruth == 0xAAAA || pCut->uTruth == 0x5555 ); pObjNew = Aig_NotCond( Aig_ManObj(p->pAig, pCut->pLeaves[0]), pCut->uTruth==0x5555 ); } // remove the old cuts Dar_ObjSetCuts( pObj, NULL ); // replace the node Aig_ObjReplace( pAig, pObj, pObjNew, p->pPars->fUpdateLevel ); continue; } // evaluate the cuts p->GainBest = -1; nMffcSize = -1; Required = pAig->vLevelR? Aig_ObjRequiredLevel(pAig, pObj) : ABC_INFINITY; Dar_ObjForEachCut( pObj, pCut, k ) { int nLeavesOld = pCut->nLeaves; if ( pCut->nLeaves == 3 ) pCut->pLeaves[pCut->nLeaves++] = 0; Dar_LibEval( p, pObj, pCut, Required, &nMffcSize ); pCut->nLeaves = nLeavesOld; } // check the best gain if ( !(p->GainBest > 0 || (p->GainBest == 0 && p->pPars->fUseZeros)) ) { // Aig_ObjOrderAdvance( pAig ); continue; } // nMffcGains[p->GainBest < MAX_VAL ? p->GainBest : MAX_VAL][nMffcSize < MAX_VAL ? nMffcSize : MAX_VAL]++; // remove the old cuts Dar_ObjSetCuts( pObj, NULL ); // if we end up here, a rewriting step is accepted nNodeBefore = Aig_ManNodeNum( pAig ); pObjNew = Dar_LibBuildBest( p ); // pObjNew can be complemented! pObjNew = Aig_NotCond( pObjNew, Aig_ObjPhaseReal(pObjNew) ^ pObj->fPhase ); assert( (int)Aig_Regular(pObjNew)->Level <= Required ); // replace the node Aig_ObjReplace( pAig, pObj, pObjNew, p->pPars->fUpdateLevel ); // compare the gains nNodeAfter = Aig_ManNodeNum( pAig ); assert( p->GainBest <= nNodeBefore - nNodeAfter ); // count gains of this class p->ClassGains[p->ClassBest] += nNodeBefore - nNodeAfter; }
/**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Dar_ManRewrite( Aig_Man_t * pAig, Dar_RwrPar_t * pPars ) { Dar_Man_t * p; ProgressBar * pProgress; Dar_Cut_t * pCut; Aig_Obj_t * pObj, * pObjNew; int i, k, nNodesOld, nNodeBefore, nNodeAfter, Required; int clk = 0, clkStart; // prepare the library Dar_LibPrepare( pPars->nSubgMax ); // create rewriting manager p = Dar_ManStart( pAig, pPars ); // remove dangling nodes Aig_ManCleanup( pAig ); // if updating levels is requested, start fanout and timing if ( p->pPars->fFanout ) Aig_ManFanoutStart( pAig ); if ( p->pPars->fUpdateLevel ) Aig_ManStartReverseLevels( pAig, 0 ); // set elementary cuts for the PIs Dar_ManCutsStart( p ); // resynthesize each node once clkStart = clock(); p->nNodesInit = Aig_ManNodeNum(pAig); nNodesOld = Vec_PtrSize( pAig->vObjs ); pProgress = Extra_ProgressBarStart( stdout, nNodesOld ); Aig_ManForEachObj( pAig, pObj, i ) // pProgress = Extra_ProgressBarStart( stdout, 100 ); // Aig_ManOrderStart( pAig ); // Aig_ManForEachNodeInOrder( pAig, pObj ) { // Extra_ProgressBarUpdate( pProgress, 100*pAig->nAndPrev/pAig->nAndTotal, NULL ); Extra_ProgressBarUpdate( pProgress, i, NULL ); if ( !Aig_ObjIsNode(pObj) ) continue; if ( i > nNodesOld ) break; // consider freeing the cuts // if ( (i & 0xFFF) == 0 && Aig_MmFixedReadMemUsage(p->pMemCuts)/(1<<20) > 100 ) // Dar_ManCutsStart( p ); // compute cuts for the node p->nNodesTried++; clk = clock(); Dar_ObjComputeCuts_rec( p, pObj ); p->timeCuts += clock() - clk; // check if there is a trivial cut Dar_ObjForEachCut( pObj, pCut, k ) if ( pCut->nLeaves == 0 || (pCut->nLeaves == 1 && pCut->pLeaves[0] != pObj->Id && Aig_ManObj(p->pAig, pCut->pLeaves[0])) ) break; if ( k < (int)pObj->nCuts ) { assert( pCut->nLeaves < 2 ); if ( pCut->nLeaves == 0 ) // replace by constant { assert( pCut->uTruth == 0 || pCut->uTruth == 0xFFFF ); pObjNew = Aig_NotCond( Aig_ManConst1(p->pAig), pCut->uTruth==0 ); } else { assert( pCut->uTruth == 0xAAAA || pCut->uTruth == 0x5555 ); pObjNew = Aig_NotCond( Aig_ManObj(p->pAig, pCut->pLeaves[0]), pCut->uTruth==0x5555 ); } // remove the old cuts Dar_ObjSetCuts( pObj, NULL ); // replace the node Aig_ObjReplace( pAig, pObj, pObjNew, 1, p->pPars->fUpdateLevel ); continue; } // evaluate the cuts p->GainBest = -1; Required = pAig->vLevelR? Aig_ObjRequiredLevel(pAig, pObj) : AIG_INFINITY; Dar_ObjForEachCut( pObj, pCut, k ) Dar_LibEval( p, pObj, pCut, Required ); // check the best gain if ( !(p->GainBest > 0 || (p->GainBest == 0 && p->pPars->fUseZeros)) ) { // Aig_ObjOrderAdvance( pAig ); continue; } // remove the old cuts Dar_ObjSetCuts( pObj, NULL ); // if we end up here, a rewriting step is accepted nNodeBefore = Aig_ManNodeNum( pAig ); pObjNew = Dar_LibBuildBest( p ); // pObjNew can be complemented! pObjNew = Aig_NotCond( pObjNew, Aig_ObjPhaseReal(pObjNew) ^ pObj->fPhase ); assert( (int)Aig_Regular(pObjNew)->Level <= Required ); // replace the node Aig_ObjReplace( pAig, pObj, pObjNew, 1, p->pPars->fUpdateLevel ); // compare the gains nNodeAfter = Aig_ManNodeNum( pAig ); assert( p->GainBest <= nNodeBefore - nNodeAfter ); // count gains of this class p->ClassGains[p->ClassBest] += nNodeBefore - nNodeAfter; }
ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Runs equivalence test for the two nodes.] Description [Both nodes should be regular and different from each other.] SideEffects [] SeeAlso [] ***********************************************************************/ int Cgt_CheckImplication( Cgt_Man_t * p, Aig_Obj_t * pGate, Aig_Obj_t * pMiter ) { int nBTLimit = p->pPars->nConfMax; int pLits[2], RetValue, clk; p->nCalls++; // sanity checks assert( p->pSat && p->pCnf ); assert( !Aig_IsComplement(pMiter) ); assert( Aig_Regular(pGate) != pMiter ); // solve under assumptions // G => !M -- true G & M -- false pLits[0] = toLitCond( p->pCnf->pVarNums[Aig_Regular(pGate)->Id], Aig_IsComplement(pGate) ); pLits[1] = toLitCond( p->pCnf->pVarNums[pMiter->Id], 0 ); clk = clock(); RetValue = sat_solver_solve( p->pSat, pLits, pLits + 2, (ABC_INT64_T)nBTLimit, (ABC_INT64_T)0, (ABC_INT64_T)0, (ABC_INT64_T)0 ); p->timeSat += clock() - clk; if ( RetValue == l_False ) { p->timeSatUnsat += clock() - clk; pLits[0] = lit_neg( pLits[0] ); pLits[1] = lit_neg( pLits[1] ); RetValue = sat_solver_addclause( p->pSat, pLits, pLits + 2 ); assert( RetValue ); sat_solver_compress( p->pSat ); p->nCallsUnsat++; return 1; } else if ( RetValue == l_True ) { p->timeSatSat += clock() - clk; p->nCallsSat++; return 0; } else // if ( RetValue1 == l_Undef ) { p->timeSatUndec += clock() - clk; p->nCallsUndec++; return -1; } return -2; }