gsl_matrix *query(char *d, char *q, int no_plot){
	apop_db_open(d);
    apop_data *result = apop_query_to_data("%s", q);
	apop_db_close(0);
    Apop_stopif(!result, exit(2), 0, "Your query returned a blank table. Quitting.");
    Apop_stopif(result->error, exit(2), 0, "Error running your query. Quitting.");
    if (no_plot){
        apop_data_show(result);
        exit(0);
    }
    return result->matrix;
}
FILE *open_output(char *outfile, int sf){
    FILE  *f;
    if (sf && !strcmp (outfile, "-"))
        return stdout;
    if (sf && outfile){
        f = fopen(outfile, "w");
        Apop_stopif(!f, exit(0), 0, "Trouble opening %s.", outfile);
        return f;
    }
    f = popen("`which gnuplot` -persist", "w");
    Apop_stopif(!f, exit(0), 0, "Trouble opening %s.", "gnuplot");
    return f;
}
Exemple #3
0
 apop_data * apop_bootstrap_cov_base(apop_data * data, apop_model *model, gsl_rng *rng, int iterations, char keep_boots, char ignore_nans, apop_data **boot_store){
#endif
    Get_vmsizes(data); //vsize, msize1, msize2
    apop_model *e = apop_model_copy(model);
    apop_data *subset = apop_data_copy(data);
    apop_data *array_of_boots = NULL,
              *summary;
    //prevent and infinite regression of covariance calculation.
    Apop_model_add_group(e, apop_parts_wanted); //default wants for nothing.
    size_t i, nan_draws=0;
    apop_name *tmpnames = (data && data->names) ? data->names : NULL; //save on some copying below.
    if (data && data->names) data->names = NULL;

    int height = GSL_MAX(msize1, GSL_MAX(vsize, (data?(*data->textsize):0)));
	for (i=0; i<iterations && nan_draws < iterations; i++){
		for (size_t j=0; j< height; j++){       //create the data set
			size_t randrow	= gsl_rng_uniform_int(rng, height);
            apop_data_memcpy(Apop_r(subset, j), Apop_r(data, randrow));
		}
		//get the parameter estimates.
		apop_model *est = apop_estimate(subset, e);
        gsl_vector *estp = apop_data_pack(est->parameters);
        if (!gsl_isnan(apop_sum(estp))){
            if (i==0){
                array_of_boots	      = apop_data_alloc(iterations, estp->size);
                apop_name_stack(array_of_boots->names, est->parameters->names, 'c', 'v');
                apop_name_stack(array_of_boots->names, est->parameters->names, 'c', 'c');
                apop_name_stack(array_of_boots->names, est->parameters->names, 'c', 'r');
            }
            gsl_matrix_set_row(array_of_boots->matrix, i, estp);
        } else if (ignore_nans=='y'){
            i--; 
            nan_draws++;
        }
        apop_model_free(est);
        gsl_vector_free(estp);
	}
    if(data) data->names = tmpnames;
    apop_data_free(subset);
    apop_model_free(e);
    int set_error=0;
    Apop_stopif(i == 0 && nan_draws == iterations, apop_return_data_error(N),
                1, "I ran into %i NaNs and no not-NaN estimations, and so stopped. "
                       , iterations);
    Apop_stopif(nan_draws == iterations,  set_error++;
            apop_matrix_realloc(array_of_boots->matrix, i, array_of_boots->matrix->size2),
                1, "I ran into %i NaNs, and so stopped. Returning results based "
                       "on %zu bootstrap iterations.", iterations, i);
	summary	= apop_data_covariance(array_of_boots);
    if (boot_store) *boot_store = array_of_boots;
    else            apop_data_free(array_of_boots);
    if (set_error) summary->error = 'N';
	return summary;
}
char *read_query(char *infile){
    char in[1000];
    char *q = malloc(10);
    q[0] = '\0';
    FILE *inf = fopen(infile, "r");
    Apop_stopif(!inf, exit(0), 0, "Trouble opening %s. Look into that.\n", infile);
    while(fgets(in, 1000, inf)){
        q = realloc(q, strlen(q) + strlen(in) + 4);
        sprintf(q, "%s%s", q, in);
    }
    sprintf(q, "%s;\n", q);
    fclose(inf);
    return q;
}
Exemple #5
0
/** Give me a data set and a model, and I'll give you the jackknifed covariance matrix of the model parameters.

The basic algorithm for the jackknife (glossing over the details): create a sequence of data
sets, each with exactly one observation removed, and then produce a new set of parameter estimates 
using that slightly shortened data set. Then, find the covariance matrix of the derived parameters.

\li Jackknife or bootstrap? As a broad rule of thumb, the jackknife works best on models
    that are closer to linear. The worse a linear approximation does (at the given data),
    the worse the jackknife approximates the variance.

\param in	    The data set. An \ref apop_data set where each row is a single data point.
\param model    An \ref apop_model, that will be used internally by \ref apop_estimate.
            
\exception out->error=='n'   \c NULL input data.
\return         An \c apop_data set whose matrix element is the estimated covariance matrix of the parameters.
\see apop_bootstrap_cov

For example:
\include jack.c
*/
apop_data * apop_jackknife_cov(apop_data *in, apop_model *model){
    Apop_stopif(!in, apop_return_data_error(n), 0, "The data input can't be NULL.");
    Get_vmsizes(in); //msize1, msize2, vsize
    apop_model *e = apop_model_copy(model);
    int i, n = GSL_MAX(msize1, GSL_MAX(vsize, in->textsize[0]));
    apop_model *overall_est = e->parameters ? e : apop_estimate(in, e);//if not estimated, do so
    gsl_vector *overall_params = apop_data_pack(overall_est->parameters);
    gsl_vector_scale(overall_params, n); //do it just once.
    gsl_vector *pseudoval = gsl_vector_alloc(overall_params->size);

    //Copy the original, minus the first row.
    apop_data *subset = apop_data_copy(Apop_rs(in, 1, n-1));
    apop_name *tmpnames = in->names; 
    in->names = NULL;  //save on some copying below.

    apop_data *array_of_boots = apop_data_alloc(n, overall_params->size);

    for(i = -1; i< n-1; i++){
        //Get a view of row i, and copy it to position i-1 in the short matrix.
        if (i >= 0) apop_data_memcpy(Apop_r(subset, i), Apop_r(in, i));
        apop_model *est = apop_estimate(subset, e);
        gsl_vector *estp = apop_data_pack(est->parameters);
        gsl_vector_memcpy(pseudoval, overall_params);// *n above.
        gsl_vector_scale(estp, n-1);
        gsl_vector_sub(pseudoval, estp);
        gsl_matrix_set_row(array_of_boots->matrix, i+1, pseudoval);
        apop_model_free(est);
        gsl_vector_free(estp);
    }
    in->names = tmpnames;
    apop_data *out = apop_data_covariance(array_of_boots);
    gsl_matrix_scale(out->matrix, 1./(n-1.));
    apop_data_free(subset);
    gsl_vector_free(pseudoval);
    apop_data_free(array_of_boots);
    if (e!=overall_est)
        apop_model_free(overall_est);
    apop_model_free(e);
    gsl_vector_free(overall_params);
    return out;
}
Exemple #6
0
int check_levenshtein_distances(int max_lev_distance){
    int typo_counter=0;
    int min_distance;
    char *closest;
    if (!apop_table_exists("keys")) return 0;
    apop_data *userkeys = apop_query_to_text("select key from keys");
    for (int i=0; i < *userkeys->textsize; i++){
        min_distance = 100;
        for (char **keyptr=ok_keys; strlen(*keyptr); keyptr++){
            int ld = levenshtein_distance(*keyptr, *userkeys->text[i]);

            if (ld < min_distance){
                if(ld == 0) {min_distance=0; break;}
                min_distance=ld;
                closest = *keyptr;    
            }
        }
        Apop_stopif(min_distance > 0 && min_distance <= max_lev_distance, typo_counter++ , 0, 
                            "You wrote %s for one of the keys in your spec file. Did you "
                            "mean to write %s?", *userkeys->text[i], closest);
    }
    return typo_counter;
}