const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
                                                  NonLoc Cond,
                                                  bool Assumption) {

  // We cannot reason about SymIntExpr and SymSymExpr.
  if (!canReasonAbout(Cond)) {
    // Just return the current state indicating that the path is feasible.
    // This may be an over-approximation of what is possible.
    return state;
  }

  BasicValueFactory &BasicVals = state->getBasicVals();
  SymbolManager &SymMgr = state->getSymbolManager();

  switch (Cond.getSubKind()) {
  default:
    assert(false && "'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    QualType T =  SymMgr.getType(sym);
    const llvm::APSInt &zero = BasicVals.getValue(0, T);

    return Assumption ? AssumeSymNE(state, sym, zero)
                      : AssumeSymEQ(state, sym, zero);
  }

  case nonloc::SymExprValKind: {
    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
    if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression())){
      // FIXME: This is a hack.  It silently converts the RHS integer to be
      // of the same type as on the left side.  This should be removed once
      // we support truncation/extension of symbolic values.      
      GRStateManager &StateMgr = state->getStateManager();
      ASTContext &Ctx = StateMgr.getContext();
      QualType LHSType = SE->getLHS()->getType(Ctx);
      BasicValueFactory &BasicVals = StateMgr.getBasicVals();
      const llvm::APSInt &RHS = BasicVals.Convert(LHSType, SE->getRHS());
      SymIntExpr SENew(SE->getLHS(), SE->getOpcode(), RHS, SE->getType(Ctx));

      return AssumeSymInt(state, Assumption, &SENew);
    }

    // For all other symbolic expressions, over-approximate and consider
    // the constraint feasible.
    return state;
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? state : NULL;
  }

  case nonloc::LocAsIntegerKind:
    return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption);
  } // end switch
}
const GRState*
SimpleConstraintManager::AssumeSymInt(const GRState* St, bool Assumption,
                                      const SymIntExpr *SE, bool& isFeasible) {


  // Here we assume that LHS is a symbol.  This is consistent with the
  // rest of the constraint manager logic.
  SymbolRef Sym = cast<SymbolData>(SE->getLHS());
  const llvm::APSInt &Int = SE->getRHS();
  
  switch (SE->getOpcode()) {
  default:
    // No logic yet for other operators.
    isFeasible = true;
    return St;

  case BinaryOperator::EQ:
    return Assumption ? AssumeSymEQ(St, Sym, Int, isFeasible)
                      : AssumeSymNE(St, Sym, Int, isFeasible);

  case BinaryOperator::NE:
    return Assumption ? AssumeSymNE(St, Sym, Int, isFeasible)
                      : AssumeSymEQ(St, Sym, Int, isFeasible);

  case BinaryOperator::GT:
    return Assumption ? AssumeSymGT(St, Sym, Int, isFeasible)
                      : AssumeSymLE(St, Sym, Int, isFeasible);

  case BinaryOperator::GE:
    return Assumption ? AssumeSymGE(St, Sym, Int, isFeasible)
                      : AssumeSymLT(St, Sym, Int, isFeasible);

  case BinaryOperator::LT:
    return Assumption ? AssumeSymLT(St, Sym, Int, isFeasible)
                      : AssumeSymGE(St, Sym, Int, isFeasible);
      
  case BinaryOperator::LE:
      return Assumption ? AssumeSymLE(St, Sym, Int, isFeasible)
                        : AssumeSymGT(St, Sym, Int, isFeasible);
  } // end switch
}
const GRState*
SimpleConstraintManager::AssumeAux(const GRState* St,NonLoc Cond,
                                   bool Assumption, bool& isFeasible) {
  // We cannot reason about SymIntExpr and SymSymExpr.
  if (!canReasonAbout(Cond)) {
    isFeasible = true;
    return St;
  }  

  BasicValueFactory& BasicVals = StateMgr.getBasicVals();
  SymbolManager& SymMgr = StateMgr.getSymbolManager();

  switch (Cond.getSubKind()) {
  default:
    assert(false && "'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    QualType T =  SymMgr.getType(sym);
    
    if (Assumption)
      return AssumeSymNE(St, sym, BasicVals.getValue(0, T), isFeasible);
    else
      return AssumeSymEQ(St, sym, BasicVals.getValue(0, T), isFeasible);
  }

  case nonloc::SymExprValKind: {
    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);
    if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression()))
      return AssumeSymInt(St, Assumption, SE, isFeasible);
    
    isFeasible = true;
    return St;
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    isFeasible = b ? Assumption : !Assumption;
    return St;
  }

  case nonloc::LocAsIntegerKind:
    return AssumeAux(St, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption, isFeasible);
  } // end switch
}
const GRState*
SimpleConstraintManager::AssumeAux(const GRState* St, Loc Cond, bool Assumption,
                                   bool& isFeasible) {
  BasicValueFactory& BasicVals = StateMgr.getBasicVals();

  switch (Cond.getSubKind()) {
  default:
    assert (false && "'Assume' not implemented for this Loc.");
    return St;

  case loc::MemRegionKind: {
    // FIXME: Should this go into the storemanager?
    
    const MemRegion* R = cast<loc::MemRegionVal>(Cond).getRegion();
    const SubRegion* SubR = dyn_cast<SubRegion>(R);

    while (SubR) {
      // FIXME: now we only find the first symbolic region.
      if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(SubR)) {
        if (Assumption)
          return AssumeSymNE(St, SymR->getSymbol(),
                             BasicVals.getZeroWithPtrWidth(), isFeasible);
        else
          return AssumeSymEQ(St, SymR->getSymbol(),
                             BasicVals.getZeroWithPtrWidth(), isFeasible);
      }
      SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
    }
    
    // FALL-THROUGH.
  }
      
  case loc::GotoLabelKind:
    isFeasible = Assumption;
    return St;

  case loc::ConcreteIntKind: {
    bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0;
    isFeasible = b ? Assumption : !Assumption;
    return St;
  }
  } // end switch
}
Exemple #5
0
const GRState *SimpleConstraintManager::AssumeSymRel(const GRState *state,
                                                     const SymExpr *LHS,
                                                     BinaryOperator::Opcode op,
                                                     const llvm::APSInt& Int) {
  assert(BinaryOperator::isComparisonOp(op) &&
         "Non-comparison ops should be rewritten as comparisons to zero.");

   // We only handle simple comparisons of the form "$sym == constant"
   // or "($sym+constant1) == constant2".
   // The adjustment is "constant1" in the above expression. It's used to
   // "slide" the solution range around for modular arithmetic. For example,
   // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
   // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
   // the subclasses of SimpleConstraintManager to handle the adjustment.
   llvm::APSInt Adjustment;

  // First check if the LHS is a simple symbol reference.
  SymbolRef Sym = dyn_cast<SymbolData>(LHS);
  if (Sym) {
    Adjustment = 0;
  } else {
    // Next, see if it's a "($sym+constant1)" expression.
    const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS);

    // We don't handle "($sym1+$sym2)".
    // Give up and assume the constraint is feasible.
    if (!SE)
      return state;

    // We don't handle "(<expr>+constant1)".
    // Give up and assume the constraint is feasible.
    Sym = dyn_cast<SymbolData>(SE->getLHS());
    if (!Sym)
      return state;

    // Get the constant out of the expression "($sym+constant1)".
    switch (SE->getOpcode()) {
    case BO_Add:
      Adjustment = SE->getRHS();
      break;
    case BO_Sub:
      Adjustment = -SE->getRHS();
      break;
    default:
      // We don't handle non-additive operators.
      // Give up and assume the constraint is feasible.
      return state;
    }
  }

  // FIXME: This next section is a hack. It silently converts the integers to
  // be of the same type as the symbol, which is not always correct. Really the
  // comparisons should be performed using the Int's type, then mapped back to
  // the symbol's range of values.
  GRStateManager &StateMgr = state->getStateManager();
  ASTContext &Ctx = StateMgr.getContext();

  QualType T = Sym->getType(Ctx);
  assert(T->isIntegerType() || Loc::IsLocType(T));
  unsigned bitwidth = Ctx.getTypeSize(T);
  bool isSymUnsigned = T->isUnsignedIntegerType() || Loc::IsLocType(T);

  // Convert the adjustment.
  Adjustment.setIsUnsigned(isSymUnsigned);
  Adjustment.extOrTrunc(bitwidth);

  // Convert the right-hand side integer.
  llvm::APSInt ConvertedInt(Int, isSymUnsigned);
  ConvertedInt.extOrTrunc(bitwidth);

  switch (op) {
  default:
    // No logic yet for other operators.  Assume the constraint is feasible.
    return state;

  case BO_EQ:
    return AssumeSymEQ(state, Sym, ConvertedInt, Adjustment);

  case BO_NE:
    return AssumeSymNE(state, Sym, ConvertedInt, Adjustment);

  case BO_GT:
    return AssumeSymGT(state, Sym, ConvertedInt, Adjustment);

  case BO_GE:
    return AssumeSymGE(state, Sym, ConvertedInt, Adjustment);

  case BO_LT:
    return AssumeSymLT(state, Sym, ConvertedInt, Adjustment);

  case BO_LE:
    return AssumeSymLE(state, Sym, ConvertedInt, Adjustment);
  } // end switch
}
Exemple #6
0
const GRState *SimpleConstraintManager::AssumeAux(const GRState *state,
                                                  NonLoc Cond,
                                                  bool Assumption) {

  // We cannot reason about SymSymExprs,
  // and can only reason about some SymIntExprs.
  if (!canReasonAbout(Cond)) {
    // Just return the current state indicating that the path is feasible.
    // This may be an over-approximation of what is possible.
    return state;
  }

  BasicValueFactory &BasicVals = state->getBasicVals();
  SymbolManager &SymMgr = state->getSymbolManager();

  switch (Cond.getSubKind()) {
  default:
    assert(false && "'Assume' not implemented for this NonLoc");

  case nonloc::SymbolValKind: {
    nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond);
    SymbolRef sym = SV.getSymbol();
    QualType T =  SymMgr.getType(sym);
    const llvm::APSInt &zero = BasicVals.getValue(0, T);
    if (Assumption)
      return AssumeSymNE(state, sym, zero, zero);
    else
      return AssumeSymEQ(state, sym, zero, zero);
  }

  case nonloc::SymExprValKind: {
    nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond);

    // For now, we only handle expressions whose RHS is an integer.
    // All other expressions are assumed to be feasible.
    const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression());
    if (!SE)
      return state;

    BinaryOperator::Opcode op = SE->getOpcode();
    // Implicitly compare non-comparison expressions to 0.
    if (!BinaryOperator::isComparisonOp(op)) {
      QualType T = SymMgr.getType(SE);
      const llvm::APSInt &zero = BasicVals.getValue(0, T);
      op = (Assumption ? BO_NE : BO_EQ);
      return AssumeSymRel(state, SE, op, zero);
    }

    // From here on out, op is the real comparison we'll be testing.
    if (!Assumption)
      op = NegateComparison(op);
  
    return AssumeSymRel(state, SE->getLHS(), op, SE->getRHS());
  }

  case nonloc::ConcreteIntKind: {
    bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0;
    bool isFeasible = b ? Assumption : !Assumption;
    return isFeasible ? state : NULL;
  }

  case nonloc::LocAsIntegerKind:
    return AssumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(),
                     Assumption);
  } // end switch
}