Exemple #1
0
int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
                    const ECDSA_SIG *sig, const EC_KEY *eckey) {
  int ret = 0;
  BN_CTX *ctx;
  BIGNUM *u1, *u2, *m, *X;
  EC_POINT *point = NULL;
  const EC_GROUP *group;
  const EC_POINT *pub_key;

  // check input values
  if ((group = EC_KEY_get0_group(eckey)) == NULL ||
      (pub_key = EC_KEY_get0_public_key(eckey)) == NULL ||
      sig == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
    return 0;
  }

  ctx = BN_CTX_new();
  if (!ctx) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
    return 0;
  }
  BN_CTX_start(ctx);
  u1 = BN_CTX_get(ctx);
  u2 = BN_CTX_get(ctx);
  m = BN_CTX_get(ctx);
  X = BN_CTX_get(ctx);
  if (u1 == NULL || u2 == NULL || m == NULL || X == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
    goto err;
  }

  const BIGNUM *order = EC_GROUP_get0_order(group);
  if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
      BN_ucmp(sig->r, order) >= 0 || BN_is_zero(sig->s) ||
      BN_is_negative(sig->s) || BN_ucmp(sig->s, order) >= 0) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
    goto err;
  }
  // calculate tmp1 = inv(S) mod order
  int no_inverse;
  if (!BN_mod_inverse_odd(u2, &no_inverse, sig->s, order, ctx)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
    goto err;
  }
  if (!digest_to_bn(m, digest, digest_len, order)) {
    goto err;
  }
  // u1 = m * tmp mod order
  if (!BN_mod_mul(u1, m, u2, order, ctx)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
    goto err;
  }
  // u2 = r * w mod q
  if (!BN_mod_mul(u2, sig->r, u2, order, ctx)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
    goto err;
  }

  point = EC_POINT_new(group);
  if (point == NULL) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
    goto err;
  }
  if (!EC_POINT_mul(group, point, u1, pub_key, u2, ctx)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
    goto err;
  }
  if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
    goto err;
  }
  if (!BN_nnmod(u1, X, order, ctx)) {
    OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
    goto err;
  }
  // if the signature is correct u1 is equal to sig->r
  if (BN_ucmp(u1, sig->r) != 0) {
    OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
    goto err;
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_CTX_free(ctx);
  EC_POINT_free(point);
  return ret;
}
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
                                     EC_POINT *points[], BN_CTX *ctx) {
  BN_CTX *new_ctx = NULL;
  BIGNUM *tmp, *tmp_Z;
  BIGNUM **prod_Z = NULL;
  int ret = 0;

  if (num == 0) {
    return 1;
  }

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  BN_CTX_start(ctx);
  tmp = BN_CTX_get(ctx);
  tmp_Z = BN_CTX_get(ctx);
  if (tmp == NULL || tmp_Z == NULL) {
    goto err;
  }

  prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
  if (prod_Z == NULL) {
    goto err;
  }
  OPENSSL_memset(prod_Z, 0, num * sizeof(prod_Z[0]));
  for (size_t i = 0; i < num; i++) {
    prod_Z[i] = BN_new();
    if (prod_Z[i] == NULL) {
      goto err;
    }
  }

  // Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
  // skipping any zero-valued inputs (pretend that they're 1).

  if (!BN_is_zero(&points[0]->Z)) {
    if (!BN_copy(prod_Z[0], &points[0]->Z)) {
      goto err;
    }
  } else {
    if (BN_copy(prod_Z[0], &group->one) == NULL) {
      goto err;
    }
  }

  for (size_t i = 1; i < num; i++) {
    if (!BN_is_zero(&points[i]->Z)) {
      if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
                                  &points[i]->Z, ctx)) {
        goto err;
      }
    } else {
      if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
        goto err;
      }
    }
  }

  // Now use a single explicit inversion to replace every non-zero points[i]->Z
  // by its inverse. We use |BN_mod_inverse_odd| instead of doing a constant-
  // time inversion using Fermat's Little Theorem because this function is
  // usually only used for converting multiples of a public key point to
  // affine, and a public key point isn't secret. If we were to use Fermat's
  // Little Theorem then the cost of the inversion would usually be so high
  // that converting the multiples to affine would be counterproductive.
  int no_inverse;
  if (!BN_mod_inverse_odd(tmp, &no_inverse, prod_Z[num - 1], &group->field,
                          ctx)) {
    OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
    goto err;
  }

  if (group->meth->field_encode != NULL) {
    // In the Montgomery case, we just turned R*H (representing H)
    // into 1/(R*H), but we need R*(1/H) (representing 1/H);
    // i.e. we need to multiply by the Montgomery factor twice.
    if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
        !group->meth->field_encode(group, tmp, tmp, ctx)) {
      goto err;
    }
  }

  for (size_t i = num - 1; i > 0; --i) {
    // Loop invariant: tmp is the product of the inverses of
    // points[0]->Z .. points[i]->Z (zero-valued inputs skipped).
    if (BN_is_zero(&points[i]->Z)) {
      continue;
    }

    // Set tmp_Z to the inverse of points[i]->Z (as product
    // of Z inverses 0 .. i, Z values 0 .. i - 1).
    if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
        // Update tmp to satisfy the loop invariant for i - 1.
        !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
        // Replace points[i]->Z by its inverse.
        !BN_copy(&points[i]->Z, tmp_Z)) {
      goto err;
    }
  }

  // Replace points[0]->Z by its inverse.
  if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
    goto err;
  }

  // Finally, fix up the X and Y coordinates for all points.
  for (size_t i = 0; i < num; i++) {
    EC_POINT *p = points[i];

    if (!BN_is_zero(&p->Z)) {
      // turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1).
      if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
          !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
          !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
          !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
        goto err;
      }

      if (BN_copy(&p->Z, &group->one) == NULL) {
        goto err;
      }
    }
  }

  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  if (prod_Z != NULL) {
    for (size_t i = 0; i < num; i++) {
      if (prod_Z[i] == NULL) {
        break;
      }
      BN_clear_free(prod_Z[i]);
    }
    OPENSSL_free(prod_Z);
  }

  return ret;
}