Exemple #1
0
/*-
 * Set s := p, r := 2p.
 *
 * For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
 * multiplication resistant against side channel attacks" appendix, as described
 * at
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
 *
 * The input point p will be in randomized Jacobian projective coords:
 *      x = X/Z**2, y=Y/Z**3
 *
 * The output points p, s, and r are converted to standard (homogeneous)
 * projective coords:
 *      x = X/Z, y=Y/Z
 */
int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
                             EC_POINT *r, EC_POINT *s,
                             EC_POINT *p, BN_CTX *ctx)
{
    BIGNUM *t1, *t2, *t3, *t4, *t5, *t6 = NULL;

    t1 = r->Z;
    t2 = r->Y;
    t3 = s->X;
    t4 = r->X;
    t5 = s->Y;
    t6 = s->Z;

    /* convert p: (X,Y,Z) -> (XZ,Y,Z**3) */
    if (!group->meth->field_mul(group, p->X, p->X, p->Z, ctx)
        || !group->meth->field_sqr(group, t1, p->Z, ctx)
        || !group->meth->field_mul(group, p->Z, p->Z, t1, ctx)
        /* r := 2p */
        || !group->meth->field_sqr(group, t2, p->X, ctx)
        || !group->meth->field_sqr(group, t3, p->Z, ctx)
        || !group->meth->field_mul(group, t4, t3, group->a, ctx)
        || !BN_mod_sub_quick(t5, t2, t4, group->field)
        || !BN_mod_add_quick(t2, t2, t4, group->field)
        || !group->meth->field_sqr(group, t5, t5, ctx)
        || !group->meth->field_mul(group, t6, t3, group->b, ctx)
        || !group->meth->field_mul(group, t1, p->X, p->Z, ctx)
        || !group->meth->field_mul(group, t4, t1, t6, ctx)
        || !BN_mod_lshift_quick(t4, t4, 3, group->field)
        /* r->X coord output */
        || !BN_mod_sub_quick(r->X, t5, t4, group->field)
        || !group->meth->field_mul(group, t1, t1, t2, ctx)
        || !group->meth->field_mul(group, t2, t3, t6, ctx)
        || !BN_mod_add_quick(t1, t1, t2, group->field)
        /* r->Z coord output */
        || !BN_mod_lshift_quick(r->Z, t1, 2, group->field)
        || !EC_POINT_copy(s, p))
        return 0;

    r->Z_is_one = 0;
    s->Z_is_one = 0;
    p->Z_is_one = 0;

    return 1;
}
int ec_GFp_simple_set_compressed_coordinates(const EC_GROUP *group,
                                             EC_POINT *point, const BIGNUM *x_,
                                             int y_bit, BN_CTX *ctx) {
  BN_CTX *new_ctx = NULL;
  BIGNUM *tmp1, *tmp2, *x, *y;
  int ret = 0;

  ERR_clear_error();

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  y_bit = (y_bit != 0);

  BN_CTX_start(ctx);
  tmp1 = BN_CTX_get(ctx);
  tmp2 = BN_CTX_get(ctx);
  x = BN_CTX_get(ctx);
  y = BN_CTX_get(ctx);
  if (y == NULL) {
    goto err;
  }

  /* Recover y.  We have a Weierstrass equation
   *     y^2 = x^3 + a*x + b,
   * so  y  is one of the square roots of  x^3 + a*x + b. */

  /* tmp1 := x^3 */
  if (!BN_nnmod(x, x_, &group->field, ctx)) {
    goto err;
  }

  if (group->meth->field_decode == 0) {
    /* field_{sqr,mul} work on standard representation */
    if (!group->meth->field_sqr(group, tmp2, x_, ctx) ||
        !group->meth->field_mul(group, tmp1, tmp2, x_, ctx)) {
      goto err;
    }
  } else {
    if (!BN_mod_sqr(tmp2, x_, &group->field, ctx) ||
        !BN_mod_mul(tmp1, tmp2, x_, &group->field, ctx)) {
      goto err;
    }
  }

  /* tmp1 := tmp1 + a*x */
  if (group->a_is_minus3) {
    if (!BN_mod_lshift1_quick(tmp2, x, &group->field) ||
        !BN_mod_add_quick(tmp2, tmp2, x, &group->field) ||
        !BN_mod_sub_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  } else {
    if (group->meth->field_decode) {
      if (!group->meth->field_decode(group, tmp2, &group->a, ctx) ||
          !BN_mod_mul(tmp2, tmp2, x, &group->field, ctx)) {
        goto err;
      }
    } else {
      /* field_mul works on standard representation */
      if (!group->meth->field_mul(group, tmp2, &group->a, x, ctx)) {
        goto err;
      }
    }

    if (!BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  }

  /* tmp1 := tmp1 + b */
  if (group->meth->field_decode) {
    if (!group->meth->field_decode(group, tmp2, &group->b, ctx) ||
        !BN_mod_add_quick(tmp1, tmp1, tmp2, &group->field)) {
      goto err;
    }
  } else {
    if (!BN_mod_add_quick(tmp1, tmp1, &group->b, &group->field)) {
      goto err;
    }
  }

  if (!BN_mod_sqrt(y, tmp1, &group->field, ctx)) {
    unsigned long err = ERR_peek_last_error();

    if (ERR_GET_LIB(err) == ERR_LIB_BN &&
        ERR_GET_REASON(err) == BN_R_NOT_A_SQUARE) {
      ERR_clear_error();
      OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, EC_R_INVALID_COMPRESSED_POINT);
    } else {
      OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates, ERR_R_BN_LIB);
    }
    goto err;
  }

  if (y_bit != BN_is_odd(y)) {
    if (BN_is_zero(y)) {
      int kron;

      kron = BN_kronecker(x, &group->field, ctx);
      if (kron == -2) {
        goto err;
      }

      if (kron == 1) {
        OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                          EC_R_INVALID_COMPRESSION_BIT);
      } else {
        /* BN_mod_sqrt() should have cought this error (not a square) */
        OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                          EC_R_INVALID_COMPRESSED_POINT);
      }
      goto err;
    }
    if (!BN_usub(y, &group->field, y)) {
      goto err;
    }
  }
  if (y_bit != BN_is_odd(y)) {
    OPENSSL_PUT_ERROR(EC, ec_GFp_simple_set_compressed_coordinates,
                      ERR_R_INTERNAL_ERROR);
    goto err;
  }

  if (!EC_POINT_set_affine_coordinates_GFp(group, point, x, y, ctx))
    goto err;

  ret = 1;

err:
  BN_CTX_end(ctx);
  if (new_ctx != NULL)
    BN_CTX_free(new_ctx);
  return ret;
}
Exemple #3
0
int ec_GFp_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
                              BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *rh, *tmp, *Z4, *Z6;
    int ret = -1;

    if (EC_POINT_is_at_infinity(group, point))
        return 1;

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return -1;
    }

    BN_CTX_start(ctx);
    rh = BN_CTX_get(ctx);
    tmp = BN_CTX_get(ctx);
    Z4 = BN_CTX_get(ctx);
    Z6 = BN_CTX_get(ctx);
    if (Z6 == NULL)
        goto err;

    /*-
     * We have a curve defined by a Weierstrass equation
     *      y^2 = x^3 + a*x + b.
     * The point to consider is given in Jacobian projective coordinates
     * where  (X, Y, Z)  represents  (x, y) = (X/Z^2, Y/Z^3).
     * Substituting this and multiplying by  Z^6  transforms the above equation into
     *      Y^2 = X^3 + a*X*Z^4 + b*Z^6.
     * To test this, we add up the right-hand side in 'rh'.
     */

    /* rh := X^2 */
    if (!field_sqr(group, rh, point->X, ctx))
        goto err;

    if (!point->Z_is_one) {
        if (!field_sqr(group, tmp, point->Z, ctx))
            goto err;
        if (!field_sqr(group, Z4, tmp, ctx))
            goto err;
        if (!field_mul(group, Z6, Z4, tmp, ctx))
            goto err;

        /* rh := (rh + a*Z^4)*X */
        if (group->a_is_minus3) {
            if (!BN_mod_lshift1_quick(tmp, Z4, p))
                goto err;
            if (!BN_mod_add_quick(tmp, tmp, Z4, p))
                goto err;
            if (!BN_mod_sub_quick(rh, rh, tmp, p))
                goto err;
            if (!field_mul(group, rh, rh, point->X, ctx))
                goto err;
        } else {
            if (!field_mul(group, tmp, Z4, group->a, ctx))
                goto err;
            if (!BN_mod_add_quick(rh, rh, tmp, p))
                goto err;
            if (!field_mul(group, rh, rh, point->X, ctx))
                goto err;
        }

        /* rh := rh + b*Z^6 */
        if (!field_mul(group, tmp, group->b, Z6, ctx))
            goto err;
        if (!BN_mod_add_quick(rh, rh, tmp, p))
            goto err;
    } else {
        /* point->Z_is_one */

        /* rh := (rh + a)*X */
        if (!BN_mod_add_quick(rh, rh, group->a, p))
            goto err;
        if (!field_mul(group, rh, rh, point->X, ctx))
            goto err;
        /* rh := rh + b */
        if (!BN_mod_add_quick(rh, rh, group->b, p))
            goto err;
    }

    /* 'lh' := Y^2 */
    if (!field_sqr(group, tmp, point->Y, ctx))
        goto err;

    ret = (0 == BN_ucmp(tmp, rh));

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}
Exemple #4
0
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *n0, *n1, *n2, *n3;
    int ret = 0;

    if (EC_POINT_is_at_infinity(group, a)) {
        BN_zero(r->Z);
        r->Z_is_one = 0;
        return 1;
    }

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    n0 = BN_CTX_get(ctx);
    n1 = BN_CTX_get(ctx);
    n2 = BN_CTX_get(ctx);
    n3 = BN_CTX_get(ctx);
    if (n3 == NULL)
        goto err;

    /*
     * Note that in this function we must not read components of 'a' once we
     * have written the corresponding components of 'r'. ('r' might the same
     * as 'a'.)
     */

    /* n1 */
    if (a->Z_is_one) {
        if (!field_sqr(group, n0, a->X, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n1, n0, p))
            goto err;
        if (!BN_mod_add_quick(n0, n0, n1, p))
            goto err;
        if (!BN_mod_add_quick(n1, n0, group->a, p))
            goto err;
        /* n1 = 3 * X_a^2 + a_curve */
    } else if (group->a_is_minus3) {
        if (!field_sqr(group, n1, a->Z, ctx))
            goto err;
        if (!BN_mod_add_quick(n0, a->X, n1, p))
            goto err;
        if (!BN_mod_sub_quick(n2, a->X, n1, p))
            goto err;
        if (!field_mul(group, n1, n0, n2, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n0, n1, p))
            goto err;
        if (!BN_mod_add_quick(n1, n0, n1, p))
            goto err;
        /*-
         * n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
         *    = 3 * X_a^2 - 3 * Z_a^4
         */
    } else {
        if (!field_sqr(group, n0, a->X, ctx))
            goto err;
        if (!BN_mod_lshift1_quick(n1, n0, p))
            goto err;
        if (!BN_mod_add_quick(n0, n0, n1, p))
            goto err;
        if (!field_sqr(group, n1, a->Z, ctx))
            goto err;
        if (!field_sqr(group, n1, n1, ctx))
            goto err;
        if (!field_mul(group, n1, n1, group->a, ctx))
            goto err;
        if (!BN_mod_add_quick(n1, n1, n0, p))
            goto err;
        /* n1 = 3 * X_a^2 + a_curve * Z_a^4 */
    }

    /* Z_r */
    if (a->Z_is_one) {
        if (!BN_copy(n0, a->Y))
            goto err;
    } else {
        if (!field_mul(group, n0, a->Y, a->Z, ctx))
            goto err;
    }
    if (!BN_mod_lshift1_quick(r->Z, n0, p))
        goto err;
    r->Z_is_one = 0;
    /* Z_r = 2 * Y_a * Z_a */

    /* n2 */
    if (!field_sqr(group, n3, a->Y, ctx))
        goto err;
    if (!field_mul(group, n2, a->X, n3, ctx))
        goto err;
    if (!BN_mod_lshift_quick(n2, n2, 2, p))
        goto err;
    /* n2 = 4 * X_a * Y_a^2 */

    /* X_r */
    if (!BN_mod_lshift1_quick(n0, n2, p))
        goto err;
    if (!field_sqr(group, r->X, n1, ctx))
        goto err;
    if (!BN_mod_sub_quick(r->X, r->X, n0, p))
        goto err;
    /* X_r = n1^2 - 2 * n2 */

    /* n3 */
    if (!field_sqr(group, n0, n3, ctx))
        goto err;
    if (!BN_mod_lshift_quick(n3, n0, 3, p))
        goto err;
    /* n3 = 8 * Y_a^4 */

    /* Y_r */
    if (!BN_mod_sub_quick(n0, n2, r->X, p))
        goto err;
    if (!field_mul(group, n0, n1, n0, ctx))
        goto err;
    if (!BN_mod_sub_quick(r->Y, n0, n3, p))
        goto err;
    /* Y_r = n1 * (n2 - X_r) - n3 */

    ret = 1;

 err:
    BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}
Exemple #5
0
int ec_GFp_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      const EC_POINT *b, BN_CTX *ctx)
{
    int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *,
                      const BIGNUM *, BN_CTX *);
    int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
    const BIGNUM *p;
    BN_CTX *new_ctx = NULL;
    BIGNUM *n0, *n1, *n2, *n3, *n4, *n5, *n6;
    int ret = 0;

    if (a == b)
        return EC_POINT_dbl(group, r, a, ctx);
    if (EC_POINT_is_at_infinity(group, a))
        return EC_POINT_copy(r, b);
    if (EC_POINT_is_at_infinity(group, b))
        return EC_POINT_copy(r, a);

    field_mul = group->meth->field_mul;
    field_sqr = group->meth->field_sqr;
    p = group->field;

    if (ctx == NULL) {
        ctx = new_ctx = BN_CTX_new();
        if (ctx == NULL)
            return 0;
    }

    BN_CTX_start(ctx);
    n0 = BN_CTX_get(ctx);
    n1 = BN_CTX_get(ctx);
    n2 = BN_CTX_get(ctx);
    n3 = BN_CTX_get(ctx);
    n4 = BN_CTX_get(ctx);
    n5 = BN_CTX_get(ctx);
    n6 = BN_CTX_get(ctx);
    if (n6 == NULL)
        goto end;

    /*
     * Note that in this function we must not read components of 'a' or 'b'
     * once we have written the corresponding components of 'r'. ('r' might
     * be one of 'a' or 'b'.)
     */

    /* n1, n2 */
    if (b->Z_is_one) {
        if (!BN_copy(n1, a->X))
            goto end;
        if (!BN_copy(n2, a->Y))
            goto end;
        /* n1 = X_a */
        /* n2 = Y_a */
    } else {
        if (!field_sqr(group, n0, b->Z, ctx))
            goto end;
        if (!field_mul(group, n1, a->X, n0, ctx))
            goto end;
        /* n1 = X_a * Z_b^2 */

        if (!field_mul(group, n0, n0, b->Z, ctx))
            goto end;
        if (!field_mul(group, n2, a->Y, n0, ctx))
            goto end;
        /* n2 = Y_a * Z_b^3 */
    }

    /* n3, n4 */
    if (a->Z_is_one) {
        if (!BN_copy(n3, b->X))
            goto end;
        if (!BN_copy(n4, b->Y))
            goto end;
        /* n3 = X_b */
        /* n4 = Y_b */
    } else {
        if (!field_sqr(group, n0, a->Z, ctx))
            goto end;
        if (!field_mul(group, n3, b->X, n0, ctx))
            goto end;
        /* n3 = X_b * Z_a^2 */

        if (!field_mul(group, n0, n0, a->Z, ctx))
            goto end;
        if (!field_mul(group, n4, b->Y, n0, ctx))
            goto end;
        /* n4 = Y_b * Z_a^3 */
    }

    /* n5, n6 */
    if (!BN_mod_sub_quick(n5, n1, n3, p))
        goto end;
    if (!BN_mod_sub_quick(n6, n2, n4, p))
        goto end;
    /* n5 = n1 - n3 */
    /* n6 = n2 - n4 */

    if (BN_is_zero(n5)) {
        if (BN_is_zero(n6)) {
            /* a is the same point as b */
            BN_CTX_end(ctx);
            ret = EC_POINT_dbl(group, r, a, ctx);
            ctx = NULL;
            goto end;
        } else {
            /* a is the inverse of b */
            BN_zero(r->Z);
            r->Z_is_one = 0;
            ret = 1;
            goto end;
        }
    }

    /* 'n7', 'n8' */
    if (!BN_mod_add_quick(n1, n1, n3, p))
        goto end;
    if (!BN_mod_add_quick(n2, n2, n4, p))
        goto end;
    /* 'n7' = n1 + n3 */
    /* 'n8' = n2 + n4 */

    /* Z_r */
    if (a->Z_is_one && b->Z_is_one) {
        if (!BN_copy(r->Z, n5))
            goto end;
    } else {
        if (a->Z_is_one) {
            if (!BN_copy(n0, b->Z))
                goto end;
        } else if (b->Z_is_one) {
            if (!BN_copy(n0, a->Z))
                goto end;
        } else {
            if (!field_mul(group, n0, a->Z, b->Z, ctx))
                goto end;
        }
        if (!field_mul(group, r->Z, n0, n5, ctx))
            goto end;
    }
    r->Z_is_one = 0;
    /* Z_r = Z_a * Z_b * n5 */

    /* X_r */
    if (!field_sqr(group, n0, n6, ctx))
        goto end;
    if (!field_sqr(group, n4, n5, ctx))
        goto end;
    if (!field_mul(group, n3, n1, n4, ctx))
        goto end;
    if (!BN_mod_sub_quick(r->X, n0, n3, p))
        goto end;
    /* X_r = n6^2 - n5^2 * 'n7' */

    /* 'n9' */
    if (!BN_mod_lshift1_quick(n0, r->X, p))
        goto end;
    if (!BN_mod_sub_quick(n0, n3, n0, p))
        goto end;
    /* n9 = n5^2 * 'n7' - 2 * X_r */

    /* Y_r */
    if (!field_mul(group, n0, n0, n6, ctx))
        goto end;
    if (!field_mul(group, n5, n4, n5, ctx))
        goto end;               /* now n5 is n5^3 */
    if (!field_mul(group, n1, n2, n5, ctx))
        goto end;
    if (!BN_mod_sub_quick(n0, n0, n1, p))
        goto end;
    if (BN_is_odd(n0))
        if (!BN_add(n0, n0, p))
            goto end;
    /* now  0 <= n0 < 2*p,  and n0 is even */
    if (!BN_rshift1(r->Y, n0))
        goto end;
    /* Y_r = (n6 * 'n9' - 'n8' * 'n5^3') / 2 */

    ret = 1;

 end:
    if (ctx)                    /* otherwise we already called BN_CTX_end */
        BN_CTX_end(ctx);
    BN_CTX_free(new_ctx);
    return ret;
}
Exemple #6
0
/*-
 * Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
 * Elliptic Curves and Side-Channel Attacks", modified to work in projective
 * coordinates and return r in Jacobian projective coordinates.
 *
 * X4 = two*Y1*X2*Z3*Z2*Z1;
 * Y4 = two*b*Z3*SQR(Z2*Z1) + Z3*(a*Z2*Z1+X1*X2)*(X1*Z2+X2*Z1) - X3*SQR(X1*Z2-X2*Z1);
 * Z4 = two*Y1*Z3*SQR(Z2)*Z1;
 *
 * Z4 != 0 because:
 *  - Z1==0 implies p is at infinity, which would have caused an early exit in
 *    the caller;
 *  - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
 *  - Z3==0 implies s is at infinity (handled by the BN_is_zero(s->Z) branch);
 *  - Y1==0 implies p has order 2, so either r or s are infinity and handled by
 *    one of the BN_is_zero(...) branches.
 */
int ec_GFp_simple_ladder_post(const EC_GROUP *group,
                              EC_POINT *r, EC_POINT *s,
                              EC_POINT *p, BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;

    if (BN_is_zero(r->Z))
        return EC_POINT_set_to_infinity(group, r);

    if (BN_is_zero(s->Z)) {
        /* (X,Y,Z) -> (XZ,YZ**2,Z) */
        if (!group->meth->field_mul(group, r->X, p->X, p->Z, ctx)
            || !group->meth->field_sqr(group, r->Z, p->Z, ctx)
            || !group->meth->field_mul(group, r->Y, p->Y, r->Z, ctx)
            || !BN_copy(r->Z, p->Z)
            || !EC_POINT_invert(group, r, ctx))
            return 0;
        return 1;
    }

    BN_CTX_start(ctx);
    t0 = BN_CTX_get(ctx);
    t1 = BN_CTX_get(ctx);
    t2 = BN_CTX_get(ctx);
    t3 = BN_CTX_get(ctx);
    t4 = BN_CTX_get(ctx);
    t5 = BN_CTX_get(ctx);
    t6 = BN_CTX_get(ctx);

    if (t6 == NULL
        || !BN_mod_lshift1_quick(t0, p->Y, group->field)
        || !group->meth->field_mul(group, t1, r->X, p->Z, ctx)
        || !group->meth->field_mul(group, t2, r->Z, s->Z, ctx)
        || !group->meth->field_mul(group, t2, t1, t2, ctx)
        || !group->meth->field_mul(group, t3, t2, t0, ctx)
        || !group->meth->field_mul(group, t2, r->Z, p->Z, ctx)
        || !group->meth->field_sqr(group, t4, t2, ctx)
        || !BN_mod_lshift1_quick(t5, group->b, group->field)
        || !group->meth->field_mul(group, t4, t4, t5, ctx)
        || !group->meth->field_mul(group, t6, t2, group->a, ctx)
        || !group->meth->field_mul(group, t5, r->X, p->X, ctx)
        || !BN_mod_add_quick(t5, t6, t5, group->field)
        || !group->meth->field_mul(group, t6, r->Z, p->X, ctx)
        || !BN_mod_add_quick(t2, t6, t1, group->field)
        || !group->meth->field_mul(group, t5, t5, t2, ctx)
        || !BN_mod_sub_quick(t6, t6, t1, group->field)
        || !group->meth->field_sqr(group, t6, t6, ctx)
        || !group->meth->field_mul(group, t6, t6, s->X, ctx)
        || !BN_mod_add_quick(t4, t5, t4, group->field)
        || !group->meth->field_mul(group, t4, t4, s->Z, ctx)
        || !BN_mod_sub_quick(t4, t4, t6, group->field)
        || !group->meth->field_sqr(group, t5, r->Z, ctx)
        || !group->meth->field_mul(group, r->Z, p->Z, s->Z, ctx)
        || !group->meth->field_mul(group, r->Z, t5, r->Z, ctx)
        || !group->meth->field_mul(group, r->Z, r->Z, t0, ctx)
        /* t3 := X, t4 := Y */
        /* (X,Y,Z) -> (XZ,YZ**2,Z) */
        || !group->meth->field_mul(group, r->X, t3, r->Z, ctx)
        || !group->meth->field_sqr(group, t3, r->Z, ctx)
        || !group->meth->field_mul(group, r->Y, t4, t3, ctx))
        goto err;

    ret = 1;

 err:
    BN_CTX_end(ctx);
    return ret;
}
Exemple #7
0
/*-
 * Differential addition-and-doubling using  Eq. (9) and (10) from Izu-Takagi
 * "A fast parallel elliptic curve multiplication resistant against side channel
 * attacks", as described at
 * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
 */
int ec_GFp_simple_ladder_step(const EC_GROUP *group,
                              EC_POINT *r, EC_POINT *s,
                              EC_POINT *p, BN_CTX *ctx)
{
    int ret = 0;
    BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6, *t7 = NULL;

    BN_CTX_start(ctx);
    t0 = BN_CTX_get(ctx);
    t1 = BN_CTX_get(ctx);
    t2 = BN_CTX_get(ctx);
    t3 = BN_CTX_get(ctx);
    t4 = BN_CTX_get(ctx);
    t5 = BN_CTX_get(ctx);
    t6 = BN_CTX_get(ctx);
    t7 = BN_CTX_get(ctx);

    if (t7 == NULL
        || !group->meth->field_mul(group, t0, r->X, s->X, ctx)
        || !group->meth->field_mul(group, t1, r->Z, s->Z, ctx)
        || !group->meth->field_mul(group, t2, r->X, s->Z, ctx)
        || !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
        || !group->meth->field_mul(group, t4, group->a, t1, ctx)
        || !BN_mod_add_quick(t0, t0, t4, group->field)
        || !BN_mod_add_quick(t4, t3, t2, group->field)
        || !group->meth->field_mul(group, t0, t4, t0, ctx)
        || !group->meth->field_sqr(group, t1, t1, ctx)
        || !BN_mod_lshift_quick(t7, group->b, 2, group->field)
        || !group->meth->field_mul(group, t1, t7, t1, ctx)
        || !BN_mod_lshift1_quick(t0, t0, group->field)
        || !BN_mod_add_quick(t0, t1, t0, group->field)
        || !BN_mod_sub_quick(t1, t2, t3, group->field)
        || !group->meth->field_sqr(group, t1, t1, ctx)
        || !group->meth->field_mul(group, t3, t1, p->X, ctx)
        || !group->meth->field_mul(group, t0, p->Z, t0, ctx)
        /* s->X coord output */
        || !BN_mod_sub_quick(s->X, t0, t3, group->field)
        /* s->Z coord output */
        || !group->meth->field_mul(group, s->Z, p->Z, t1, ctx)
        || !group->meth->field_sqr(group, t3, r->X, ctx)
        || !group->meth->field_sqr(group, t2, r->Z, ctx)
        || !group->meth->field_mul(group, t4, t2, group->a, ctx)
        || !BN_mod_add_quick(t5, r->X, r->Z, group->field)
        || !group->meth->field_sqr(group, t5, t5, ctx)
        || !BN_mod_sub_quick(t5, t5, t3, group->field)
        || !BN_mod_sub_quick(t5, t5, t2, group->field)
        || !BN_mod_sub_quick(t6, t3, t4, group->field)
        || !group->meth->field_sqr(group, t6, t6, ctx)
        || !group->meth->field_mul(group, t0, t2, t5, ctx)
        || !group->meth->field_mul(group, t0, t7, t0, ctx)
        /* r->X coord output */
        || !BN_mod_sub_quick(r->X, t6, t0, group->field)
        || !BN_mod_add_quick(t6, t3, t4, group->field)
        || !group->meth->field_sqr(group, t3, t2, ctx)
        || !group->meth->field_mul(group, t7, t3, t7, ctx)
        || !group->meth->field_mul(group, t5, t5, t6, ctx)
        || !BN_mod_lshift1_quick(t5, t5, group->field)
        /* r->Z coord output */
        || !BN_mod_add_quick(r->Z, t7, t5, group->field))
        goto err;

    ret = 1;

 err:
    BN_CTX_end(ctx);
    return ret;
}
Exemple #8
0
int ec_GFp_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
                      BN_CTX *ctx) {
  int (*field_mul)(const EC_GROUP *, BIGNUM *, const BIGNUM *, const BIGNUM *,
                   BN_CTX *);
  int (*field_sqr)(const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *);
  const BIGNUM *p;
  BN_CTX *new_ctx = NULL;
  BIGNUM *n0, *n1, *n2, *n3;
  int ret = 0;

  if (EC_POINT_is_at_infinity(group, a)) {
    BN_zero(&r->Z);
    return 1;
  }

  field_mul = group->meth->field_mul;
  field_sqr = group->meth->field_sqr;
  p = &group->field;

  if (ctx == NULL) {
    ctx = new_ctx = BN_CTX_new();
    if (ctx == NULL) {
      return 0;
    }
  }

  BN_CTX_start(ctx);
  n0 = BN_CTX_get(ctx);
  n1 = BN_CTX_get(ctx);
  n2 = BN_CTX_get(ctx);
  n3 = BN_CTX_get(ctx);
  if (n3 == NULL) {
    goto err;
  }

  /* Note that in this function we must not read components of 'a'
   * once we have written the corresponding components of 'r'.
   * ('r' might the same as 'a'.)
   */

  /* n1 */
  if (BN_cmp(&a->Z, &group->one) == 0) {
    if (!field_sqr(group, n0, &a->X, ctx) ||
        !BN_mod_lshift1_quick(n1, n0, p) ||
        !BN_mod_add_quick(n0, n0, n1, p) ||
        !BN_mod_add_quick(n1, n0, &group->a, p)) {
      goto err;
    }
    /* n1 = 3 * X_a^2 + a_curve */
  } else {
    /* ring: This assumes a == -3. */
    if (!field_sqr(group, n1, &a->Z, ctx) ||
        !BN_mod_add_quick(n0, &a->X, n1, p) ||
        !BN_mod_sub_quick(n2, &a->X, n1, p) ||
        !field_mul(group, n1, n0, n2, ctx) ||
        !BN_mod_lshift1_quick(n0, n1, p) ||
        !BN_mod_add_quick(n1, n0, n1, p)) {
      goto err;
    }
    /* n1 = 3 * (X_a + Z_a^2) * (X_a - Z_a^2)
     *    = 3 * X_a^2 - 3 * Z_a^4 */
  }

  /* Z_r */
  if (BN_cmp(&a->Z, &group->one) == 0) {
    if (!BN_copy(n0, &a->Y)) {
      goto err;
    }
  } else if (!field_mul(group, n0, &a->Y, &a->Z, ctx)) {
    goto err;
  }
  if (!BN_mod_lshift1_quick(&r->Z, n0, p)) {
    goto err;
  }
  /* Z_r = 2 * Y_a * Z_a */

  /* n2 */
  if (!field_sqr(group, n3, &a->Y, ctx) ||
      !field_mul(group, n2, &a->X, n3, ctx) ||
      !BN_mod_lshift_quick(n2, n2, 2, p)) {
    goto err;
  }
  /* n2 = 4 * X_a * Y_a^2 */

  /* X_r */
  if (!BN_mod_lshift1_quick(n0, n2, p) ||
      !field_sqr(group, &r->X, n1, ctx) ||
      !BN_mod_sub_quick(&r->X, &r->X, n0, p)) {
    goto err;
  }
  /* X_r = n1^2 - 2 * n2 */

  /* n3 */
  if (!field_sqr(group, n0, n3, ctx) ||
      !BN_mod_lshift_quick(n3, n0, 3, p)) {
    goto err;
  }
  /* n3 = 8 * Y_a^4 */

  /* Y_r */
  if (!BN_mod_sub_quick(n0, n2, &r->X, p) ||
      !field_mul(group, n0, n1, n0, ctx) ||
      !BN_mod_sub_quick(&r->Y, n0, n3, p)) {
    goto err;
  }
  /* Y_r = n1 * (n2 - X_r) - n3 */

  ret = 1;

err:
  BN_CTX_end(ctx);
  BN_CTX_free(new_ctx);
  return ret;
}