double RangeSearchRules<MetricType, TreeType>::Score(const size_t queryIndex,
                                                     TreeType& referenceNode)
{
  // We must get the minimum and maximum distances and store them in this
  // object.
  math::Range distances;

  if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
  {
    // In this situation, we calculate the base case.  So we should check to be
    // sure we haven't already done that.
    double baseCase;
    if (tree::TreeTraits<TreeType>::HasSelfChildren &&
        (referenceNode.Parent() != NULL) &&
        (referenceNode.Point(0) == referenceNode.Parent()->Point(0)))
    {
      // If the tree has self-children and this is a self-child, the base case
      // was already calculated.
      baseCase = referenceNode.Parent()->Stat().LastDistance();
      lastQueryIndex = queryIndex;
      lastReferenceIndex = referenceNode.Point(0);
    }
    else
    {
      // We must calculate the base case by hand.
      baseCase = BaseCase(queryIndex, referenceNode.Point(0));
    }

    // This may be possibly loose for non-ball bound trees.
    distances.Lo() = baseCase - referenceNode.FurthestDescendantDistance();
    distances.Hi() = baseCase + referenceNode.FurthestDescendantDistance();

    // Update last distance calculation.
    referenceNode.Stat().LastDistance() = baseCase;
  }
  else
  {
    distances = referenceNode.RangeDistance(querySet.unsafe_col(queryIndex));
  }

  // If the ranges do not overlap, prune this node.
  if (!distances.Contains(range))
    return DBL_MAX;

  // In this case, all of the points in the reference node will be part of the
  // results.
  if ((distances.Lo() >= range.Lo()) && (distances.Hi() <= range.Hi()))
  {
    AddResult(queryIndex, referenceNode);
    return DBL_MAX; // We don't need to go any deeper.
  }

  // Otherwise the score doesn't matter.  Recursion order is irrelevant in
  // range search.
  return 0.0;
}
long RecComputeDegree(long u, const ZZ_pEX& h, const ZZ_pEXModulus& F,
                      FacVec& fvec)
{
   if (IsX(h)) return 1;

   if (fvec[u].link == -1) return BaseCase(h, fvec[u].q, fvec[u].a, F);

   ZZ_pEX h1, h2;
   long q1, q2, r1, r2;

   q1 = fvec[fvec[u].link].val; 
   q2 = fvec[fvec[u].link+1].val;

   TandemPowerCompose(h1, h2, h, q1, q2, F);
   r1 = RecComputeDegree(fvec[u].link, h2, F, fvec);
   r2 = RecComputeDegree(fvec[u].link+1, h1, F, fvec);
   return r1*r2;
}
Exemple #3
0
void LSHSearch<SortPolicy>::
Search(const size_t k,
       arma::Mat<size_t>& resultingNeighbors,
       arma::mat& distances,
       const size_t numTablesToSearch)
{
  // Set the size of the neighbor and distance matrices.
  resultingNeighbors.set_size(k, querySet.n_cols);
  distances.set_size(k, querySet.n_cols);
  distances.fill(SortPolicy::WorstDistance());
  resultingNeighbors.fill(referenceSet.n_cols);

  size_t avgIndicesReturned = 0;

  Timer::Start("computing_neighbors");

  // Go through every query point sequentially.
  for (size_t i = 0; i < querySet.n_cols; i++)
  {
    // Hash every query into every hash table and eventually into the
    // 'secondHashTable' to obtain the neighbor candidates.
    arma::uvec refIndices;
    ReturnIndicesFromTable(i, refIndices, numTablesToSearch);

    // An informative book-keeping for the number of neighbor candidates
    // returned on average.
    avgIndicesReturned += refIndices.n_elem;

    // Sequentially go through all the candidates and save the best 'k'
    // candidates.
    for (size_t j = 0; j < refIndices.n_elem; j++)
      BaseCase(distances, resultingNeighbors, i, (size_t) refIndices[j]);
  }

  Timer::Stop("computing_neighbors");

  distanceEvaluations += avgIndicesReturned;
  avgIndicesReturned /= querySet.n_cols;
  Log::Info << avgIndicesReturned << " distinct indices returned on average." <<
      std::endl;
}
inline double NeighborSearchRules<SortPolicy, MetricType, TreeType>::Score(
    const size_t queryIndex,
    TreeType& referenceNode)
{
  ++scores; // Count number of Score() calls.
  double distance;
  if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
  {
    // The first point in the tree is the centroid.  So we can then calculate
    // the base case between that and the query point.
    double baseCase = -1.0;
    if (tree::TreeTraits<TreeType>::HasSelfChildren)
    {
      // If the parent node is the same, then we have already calculated the
      // base case.
      if ((referenceNode.Parent() != NULL) &&
          (referenceNode.Point(0) == referenceNode.Parent()->Point(0)))
        baseCase = referenceNode.Parent()->Stat().LastDistance();
      else
        baseCase = BaseCase(queryIndex, referenceNode.Point(0));

      // Save this evaluation.
      referenceNode.Stat().LastDistance() = baseCase;
    }

    distance = SortPolicy::CombineBest(baseCase,
        referenceNode.FurthestDescendantDistance());
  }
  else
  {
    distance = SortPolicy::BestPointToNodeDistance(querySet.col(queryIndex),
        &referenceNode);
  }

  // Compare against the best k'th distance for this query point so far.
  const double bestDistance = distances(distances.n_rows - 1, queryIndex);

  return (SortPolicy::IsBetter(distance, bestDistance)) ? distance : DBL_MAX;
}
inline double NeighborSearchRules<SortPolicy, MetricType, TreeType>::Score(
    TreeType& queryNode,
    TreeType& referenceNode)
{
  ++scores; // Count number of Score() calls.

  // Update our bound.
  const double bestDistance = CalculateBound(queryNode);

  // Use the traversal info to see if a parent-child or parent-parent prune is
  // possible.  This is a looser bound than we could make, but it might be
  // sufficient.
  const double queryParentDist = queryNode.ParentDistance();
  const double queryDescDist = queryNode.FurthestDescendantDistance();
  const double refParentDist = referenceNode.ParentDistance();
  const double refDescDist = referenceNode.FurthestDescendantDistance();
  const double score = traversalInfo.LastScore();
  double adjustedScore;

  // We want to set adjustedScore to be the distance between the centroid of the
  // last query node and last reference node.  We will do this by adjusting the
  // last score.  In some cases, we can just use the last base case.
  if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
  {
    adjustedScore = traversalInfo.LastBaseCase();
  }
  else if (score == 0.0) // Nothing we can do here.
  {
    adjustedScore = 0.0;
  }
  else
  {
    // The last score is equal to the distance between the centroids minus the
    // radii of the query and reference bounds along the axis of the line
    // between the two centroids.  In the best case, these radii are the
    // furthest descendant distances, but that is not always true.  It would
    // take too long to calculate the exact radii, so we are forced to use
    // MinimumBoundDistance() as a lower-bound approximation.
    const double lastQueryDescDist =
        traversalInfo.LastQueryNode()->MinimumBoundDistance();
    const double lastRefDescDist =
        traversalInfo.LastReferenceNode()->MinimumBoundDistance();
    adjustedScore = SortPolicy::CombineWorst(score, lastQueryDescDist);
    adjustedScore = SortPolicy::CombineWorst(score, lastRefDescDist);
  }

  // Assemble an adjusted score.  For nearest neighbor search, this adjusted
  // score is a lower bound on MinDistance(queryNode, referenceNode) that is
  // assembled without actually calculating MinDistance().  For furthest
  // neighbor search, it is an upper bound on
  // MaxDistance(queryNode, referenceNode).  If the traversalInfo isn't usable
  // then the node should not be pruned by this.
  if (traversalInfo.LastQueryNode() == queryNode.Parent())
  {
    const double queryAdjust = queryParentDist + queryDescDist;
    adjustedScore = SortPolicy::CombineBest(adjustedScore, queryAdjust);
  }
  else if (traversalInfo.LastQueryNode() == &queryNode)
  {
    adjustedScore = SortPolicy::CombineBest(adjustedScore, queryDescDist);
  }
  else
  {
    // The last query node wasn't this query node or its parent.  So we force
    // the adjustedScore to be such that this combination can't be pruned here,
    // because we don't really know anything about it.

    // It would be possible to modify this section to try and make a prune based
    // on the query descendant distance and the distance between the query node
    // and last traversal query node, but this case doesn't actually happen for
    // kd-trees or cover trees.
    adjustedScore = SortPolicy::BestDistance();
  }

  if (traversalInfo.LastReferenceNode() == referenceNode.Parent())
  {
    const double refAdjust = refParentDist + refDescDist;
    adjustedScore = SortPolicy::CombineBest(adjustedScore, refAdjust);
  }
  else if (traversalInfo.LastReferenceNode() == &referenceNode)
  {
    adjustedScore = SortPolicy::CombineBest(adjustedScore, refDescDist);
  }
  else
  {
    // The last reference node wasn't this reference node or its parent.  So we
    // force the adjustedScore to be such that this combination can't be pruned
    // here, because we don't really know anything about it.

    // It would be possible to modify this section to try and make a prune based
    // on the reference descendant distance and the distance between the
    // reference node and last traversal reference node, but this case doesn't
    // actually happen for kd-trees or cover trees.
    adjustedScore = SortPolicy::BestDistance();
  }

  // Can we prune?
  if (SortPolicy::IsBetter(bestDistance, adjustedScore))
  {
    if (!(tree::TreeTraits<TreeType>::FirstPointIsCentroid && score == 0.0))
    {
      // There isn't any need to set the traversal information because no
      // descendant combinations will be visited, and those are the only
      // combinations that would depend on the traversal information.
      return DBL_MAX;
    }
  }

  double distance;
  if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
  {
    // The first point in the node is the centroid, so we can calculate the
    // distance between the two points using BaseCase() and then find the
    // bounds.  This is potentially loose for non-ball bounds.
    double baseCase = -1.0;
    if (tree::TreeTraits<TreeType>::HasSelfChildren &&
       (traversalInfo.LastQueryNode()->Point(0) == queryNode.Point(0)) &&
       (traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0)))
    {
      // We already calculated it.
      baseCase = traversalInfo.LastBaseCase();
    }
    else
    {
      baseCase = BaseCase(queryNode.Point(0), referenceNode.Point(0));
    }

    distance = SortPolicy::CombineBest(baseCase,
        queryNode.FurthestDescendantDistance() +
        referenceNode.FurthestDescendantDistance());

    lastQueryIndex = queryNode.Point(0);
    lastReferenceIndex = referenceNode.Point(0);
    lastBaseCase = baseCase;

    traversalInfo.LastBaseCase() = baseCase;
  }
  else
  {
    distance = SortPolicy::BestNodeToNodeDistance(&queryNode, &referenceNode);
  }

  if (SortPolicy::IsBetter(distance, bestDistance))
  {
    // Set traversal information.
    traversalInfo.LastQueryNode() = &queryNode;
    traversalInfo.LastReferenceNode() = &referenceNode;
    traversalInfo.LastScore() = distance;

    return distance;
  }
  else
  {
    // There isn't any need to set the traversal information because no
    // descendant combinations will be visited, and those are the only
    // combinations that would depend on the traversal information.
    return DBL_MAX;
  }
}
double RangeSearchRules<MetricType, TreeType>::Score(TreeType& queryNode,
                                                     TreeType& referenceNode)
{
  math::Range distances;
  if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
  {
    // It is possible that the base case has already been calculated.
    double baseCase = 0.0;
    bool alreadyDone = false;
    if (tree::TreeTraits<TreeType>::HasSelfChildren)
    {
      TreeType* lastQuery = (TreeType*) referenceNode.Stat().LastDistanceNode();
      TreeType* lastRef = (TreeType*) queryNode.Stat().LastDistanceNode();

      // Did the query node's last combination do the base case?
      if ((lastRef != NULL) && (referenceNode.Point(0) == lastRef->Point(0)))
      {
        baseCase = queryNode.Stat().LastDistance();
        alreadyDone = true;
      }

      // Did the reference node's last combination do the base case?
      if ((lastQuery != NULL) && (queryNode.Point(0) == lastQuery->Point(0)))
      {
        baseCase = referenceNode.Stat().LastDistance();
        alreadyDone = true;
      }

      // If the query node is a self-child, did the query parent's last
      // combination do the base case?
      if ((queryNode.Parent() != NULL) &&
          (queryNode.Point(0) == queryNode.Parent()->Point(0)))
      {
        TreeType* lastParentRef = (TreeType*)
            queryNode.Parent()->Stat().LastDistanceNode();
        if ((lastParentRef != NULL) &&
            (referenceNode.Point(0) == lastParentRef->Point(0)))
        {
          baseCase = queryNode.Parent()->Stat().LastDistance();
          alreadyDone = true;
        }
      }

      // If the reference node is a self-child, did the reference parent's last
      // combination do the base case?
      if ((referenceNode.Parent() != NULL) &&
          (referenceNode.Point(0) == referenceNode.Parent()->Point(0)))
      {
        TreeType* lastQueryRef = (TreeType*)
            referenceNode.Parent()->Stat().LastDistanceNode();
        if ((lastQueryRef != NULL) &&
            (queryNode.Point(0) == lastQueryRef->Point(0)))
        {
          baseCase = referenceNode.Parent()->Stat().LastDistance();
          alreadyDone = true;
        }
      }
    }

    if (!alreadyDone)
    {
      // We must calculate the base case.
      baseCase = BaseCase(queryNode.Point(0), referenceNode.Point(0));
    }
    else
    {
      // Make sure that if BaseCase() is called, we don't duplicate results.
      lastQueryIndex = queryNode.Point(0);
      lastReferenceIndex = referenceNode.Point(0);
    }

    distances.Lo() = baseCase - queryNode.FurthestDescendantDistance()
        - referenceNode.FurthestDescendantDistance();
    distances.Hi() = baseCase + queryNode.FurthestDescendantDistance()
        + referenceNode.FurthestDescendantDistance();

    // Update the last distances performed for the query and reference node.
    queryNode.Stat().LastDistanceNode() = (void*) &referenceNode;
    queryNode.Stat().LastDistance() = baseCase;
    referenceNode.Stat().LastDistanceNode() = (void*) &queryNode;
    referenceNode.Stat().LastDistance() = baseCase;
  }
  else
  {
    // Just perform the calculation.
    distances = referenceNode.RangeDistance(&queryNode);
  }

  // If the ranges do not overlap, prune this node.
  if (!distances.Contains(range))
    return DBL_MAX;

  // In this case, all of the points in the reference node will be part of all
  // the results for each point in the query node.
  if ((distances.Lo() >= range.Lo()) && (distances.Hi() <= range.Hi()))
  {
    for (size_t i = 0; i < queryNode.NumDescendants(); ++i)
      AddResult(queryNode.Descendant(i), referenceNode);
    return DBL_MAX; // We don't need to go any deeper.
  }

  // Otherwise the score doesn't matter.  Recursion order is irrelevant in range
  // search.
  return 0.0;
}
double FastMKSRules<KernelType, TreeType>::Score(TreeType& queryNode,
        TreeType& referenceNode)
{
    // Update and get the query node's bound.
    queryNode.Stat().Bound() = CalculateBound(queryNode);
    const double bestKernel = queryNode.Stat().Bound();

    // First, see if we can make a parent-child or parent-parent prune.  These
    // four bounds on the maximum kernel value are looser than the bound normally
    // used, but they can prevent a base case from needing to be calculated.

    // Convenience caching so lines are shorter.
    const double queryParentDist = queryNode.ParentDistance();
    const double queryDescDist = queryNode.FurthestDescendantDistance();
    const double refParentDist = referenceNode.ParentDistance();
    const double refDescDist = referenceNode.FurthestDescendantDistance();
    double adjustedScore = traversalInfo.LastBaseCase();

    const double queryDistBound = (queryParentDist + queryDescDist);
    const double refDistBound = (refParentDist + refDescDist);
    double dualQueryTerm;
    double dualRefTerm;

    // The parent-child and parent-parent prunes work by applying the same pruning
    // condition as when the parent node was used, except they are tighter because
    //    queryDistBound < queryNode.Parent()->FurthestDescendantDistance()
    // and
    //    refDistBound < referenceNode.Parent()->FurthestDescendantDistance()
    // so we construct the same bounds that were used when Score() was called with
    // the parents, except with the tighter distance bounds.  Sometimes this
    // allows us to prune nodes without evaluating the base cases between them.
    if (traversalInfo.LastQueryNode() == queryNode.Parent())
    {
        // We can assume that queryNode.Parent() != NULL, because at the root node
        // combination, the traversalInfo.LastQueryNode() pointer will _not_ be
        // NULL.  We also should be guaranteed that
        // traversalInfo.LastReferenceNode() is either the reference node or the
        // parent of the reference node.
        adjustedScore += queryDistBound *
                         traversalInfo.LastReferenceNode()->Stat().SelfKernel();
        dualQueryTerm = queryDistBound;
    }
    else
    {
        // The query parent could be NULL, which does weird things and we have to
        // consider.
        if (traversalInfo.LastReferenceNode() != NULL)
        {
            adjustedScore += queryDescDist *
                             traversalInfo.LastReferenceNode()->Stat().SelfKernel();
            dualQueryTerm = queryDescDist;
        }
        else
        {
            // This makes it so a child-parent (or parent-parent) prune is not
            // possible.
            dualQueryTerm = 0.0;
            adjustedScore = bestKernel;
        }
    }

    if (traversalInfo.LastReferenceNode() == referenceNode.Parent())
    {
        // We can assume that referenceNode.Parent() != NULL, because at the root
        // node combination, the traversalInfo.LastReferenceNode() pointer will
        // _not_ be NULL.
        adjustedScore += refDistBound *
                         traversalInfo.LastQueryNode()->Stat().SelfKernel();
        dualRefTerm = refDistBound;
    }
    else
    {
        // The reference parent could be NULL, which does weird things and we have
        // to consider.
        if (traversalInfo.LastQueryNode() != NULL)
        {
            adjustedScore += refDescDist *
                             traversalInfo.LastQueryNode()->Stat().SelfKernel();
            dualRefTerm = refDescDist;
        }
        else
        {
            // This makes it so a child-parent (or parent-parent) prune is not
            // possible.
            dualRefTerm = 0.0;
            adjustedScore = bestKernel;
        }
    }

    // Now add the dual term.
    adjustedScore += (dualQueryTerm * dualRefTerm);

    if (adjustedScore < bestKernel)
    {
        // It is not possible that this node combination can contain a point
        // combination with kernel value better than the minimum kernel value to
        // improve any of the results, so we can prune it.
        return DBL_MAX;
    }

    // We were unable to perform a parent-child or parent-parent prune, so now we
    // must calculate kernel evaluation, if necessary.
    double kernelEval = 0.0;
    if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
    {
        // For this type of tree, we may have already calculated the base case in
        // the parents.
        if ((traversalInfo.LastQueryNode() != NULL) &&
                (traversalInfo.LastReferenceNode() != NULL) &&
                (traversalInfo.LastQueryNode()->Point(0) == queryNode.Point(0)) &&
                (traversalInfo.LastReferenceNode()->Point(0) == referenceNode.Point(0)))
        {
            // Base case already done.
            kernelEval = traversalInfo.LastBaseCase();

            // When BaseCase() is called after Score(), these must be correct so that
            // another kernel evaluation is not performed.
            lastQueryIndex = queryNode.Point(0);
            lastReferenceIndex = referenceNode.Point(0);
        }
        else
        {
            // The kernel must be evaluated, but it is between points in the dataset,
            // so we can call BaseCase().  BaseCase() will set lastQueryIndex and
            // lastReferenceIndex correctly.
            kernelEval = BaseCase(queryNode.Point(0), referenceNode.Point(0));
        }

        traversalInfo.LastBaseCase() = kernelEval;
    }
    else
    {
        // Calculate the maximum possible kernel value.
        arma::vec queryCentroid;
        arma::vec refCentroid;
        queryNode.Centroid(queryCentroid);
        referenceNode.Centroid(refCentroid);

        kernelEval = kernel.Evaluate(queryCentroid, refCentroid);

        traversalInfo.LastBaseCase() = kernelEval;
    }
    ++scores;

    double maxKernel;
    if (kernel::KernelTraits<KernelType>::IsNormalized)
    {
        // We have a tighter bound for normalized kernels.
        const double querySqDist = std::pow(queryDescDist, 2.0);
        const double refSqDist = std::pow(refDescDist, 2.0);
        const double bothSqDist = std::pow((queryDescDist + refDescDist), 2.0);

        if (kernelEval <= (1 - 0.5 * bothSqDist))
        {
            const double queryDelta = (1 - 0.5 * querySqDist);
            const double queryGamma = queryDescDist * sqrt(1 - 0.25 * querySqDist);
            const double refDelta = (1 - 0.5 * refSqDist);
            const double refGamma = refDescDist * sqrt(1 - 0.25 * refSqDist);

            maxKernel = kernelEval * (queryDelta * refDelta - queryGamma * refGamma) +
                        sqrt(1 - std::pow(kernelEval, 2.0)) *
                        (queryGamma * refDelta + queryDelta * refGamma);
        }
        else
        {
            maxKernel = 1.0;
        }
    }
    else
    {
        // Use standard bound; kernel is not normalized.
        const double refKernelTerm = queryDescDist *
                                     referenceNode.Stat().SelfKernel();
        const double queryKernelTerm = refDescDist * queryNode.Stat().SelfKernel();

        maxKernel = kernelEval + refKernelTerm + queryKernelTerm +
                    (queryDescDist * refDescDist);
    }

    // Store relevant information for parent-child pruning.
    traversalInfo.LastQueryNode() = &queryNode;
    traversalInfo.LastReferenceNode() = &referenceNode;

    // We return the inverse of the maximum kernel so that larger kernels are
    // recursed into first.
    return (maxKernel > bestKernel) ? (1.0 / maxKernel) : DBL_MAX;
}
double FastMKSRules<KernelType, TreeType>::Score(const size_t queryIndex,
        TreeType& referenceNode)
{
    // Compare with the current best.
    const double bestKernel = products(products.n_rows - 1, queryIndex);

    // See if we can perform a parent-child prune.
    const double furthestDist = referenceNode.FurthestDescendantDistance();
    if (referenceNode.Parent() != NULL)
    {
        double maxKernelBound;
        const double parentDist = referenceNode.ParentDistance();
        const double combinedDistBound = parentDist + furthestDist;
        const double lastKernel = referenceNode.Parent()->Stat().LastKernel();
        if (kernel::KernelTraits<KernelType>::IsNormalized)
        {
            const double squaredDist = std::pow(combinedDistBound, 2.0);
            const double delta = (1 - 0.5 * squaredDist);
            if (lastKernel <= delta)
            {
                const double gamma = combinedDistBound * sqrt(1 - 0.25 * squaredDist);
                maxKernelBound = lastKernel * delta +
                                 gamma * sqrt(1 - std::pow(lastKernel, 2.0));
            }
            else
            {
                maxKernelBound = 1.0;
            }
        }
        else
        {
            maxKernelBound = lastKernel +
                             combinedDistBound * queryKernels[queryIndex];
        }

        if (maxKernelBound < bestKernel)
            return DBL_MAX;
    }

    // Calculate the maximum possible kernel value, either by calculating the
    // centroid or, if the centroid is a point, use that.
    ++scores;
    double kernelEval;
    if (tree::TreeTraits<TreeType>::FirstPointIsCentroid)
    {
        // Could it be that this kernel evaluation has already been calculated?
        if (tree::TreeTraits<TreeType>::HasSelfChildren &&
                referenceNode.Parent() != NULL &&
                referenceNode.Point(0) == referenceNode.Parent()->Point(0))
        {
            kernelEval = referenceNode.Parent()->Stat().LastKernel();
        }
        else
        {
            kernelEval = BaseCase(queryIndex, referenceNode.Point(0));
        }
    }
    else
    {
        const arma::vec queryPoint = querySet.unsafe_col(queryIndex);
        arma::vec refCentroid;
        referenceNode.Centroid(refCentroid);

        kernelEval = kernel.Evaluate(queryPoint, refCentroid);
    }

    referenceNode.Stat().LastKernel() = kernelEval;

    double maxKernel;
    if (kernel::KernelTraits<KernelType>::IsNormalized)
    {
        const double squaredDist = std::pow(furthestDist, 2.0);
        const double delta = (1 - 0.5 * squaredDist);
        if (kernelEval <= delta)
        {
            const double gamma = furthestDist * sqrt(1 - 0.25 * squaredDist);
            maxKernel = kernelEval * delta +
                        gamma * sqrt(1 - std::pow(kernelEval, 2.0));
        }
        else
        {
            maxKernel = 1.0;
        }
    }
    else
    {
        maxKernel = kernelEval + furthestDist * queryKernels[queryIndex];
    }

    // We return the inverse of the maximum kernel so that larger kernels are
    // recursed into first.
    return (maxKernel > bestKernel) ? (1.0 / maxKernel) : DBL_MAX;
}