Exemple #1
0
static void sendMsg(struct MsgCore_pvt* mcp,
                    Dict* msgDict,
                    struct Address* addr,
                    struct Allocator* allocator)
{
    struct Allocator* alloc = Allocator_child(allocator);

    // Send the encoding scheme definition
    Dict_putString(msgDict, CJDHTConstants_ENC_SCHEME, mcp->schemeDefinition, allocator);

    // And tell the asker which interface the message came from
    int encIdx = EncodingScheme_getFormNum(mcp->scheme, addr->path);
    Assert_true(encIdx != EncodingScheme_getFormNum_INVALID);
    Dict_putInt(msgDict, CJDHTConstants_ENC_INDEX, encIdx, allocator);

    // send the protocol version
    Dict_putInt(msgDict, CJDHTConstants_PROTOCOL, Version_CURRENT_PROTOCOL, allocator);

    if (!Defined(SUBNODE)) {
        String* q = Dict_getStringC(msgDict, "q");
        String* sq = Dict_getStringC(msgDict, "sq");
        if (q || sq) {
            Log_debug(mcp->log, "Send query [%s] to [%s]",
                ((q) ? q->bytes : sq->bytes),
                Address_toString(addr, alloc)->bytes);
            String* txid = Dict_getStringC(msgDict, "txid");
            Assert_true(txid);
            String* newTxid = String_newBinary(NULL, txid->len + 1, alloc);
            Bits_memcpy(&newTxid->bytes[1], txid->bytes, txid->len);
            newTxid->bytes[0] = '1';
            Dict_putStringC(msgDict, "txid", newTxid, alloc);
        }
    }

    struct Message* msg = Message_new(0, 2048, alloc);
    BencMessageWriter_write(msgDict, msg, NULL);

    //Log_debug(mcp->log, "Sending msg [%s]", Escape_getEscaped(msg->bytes, msg->length, alloc));

    // Sanity check (make sure the addr was actually calculated)
    Assert_true(addr->ip6.bytes[0] == 0xfc);

    struct DataHeader data;
    Bits_memset(&data, 0, sizeof(struct DataHeader));
    DataHeader_setVersion(&data, DataHeader_CURRENT_VERSION);
    DataHeader_setContentType(&data, ContentType_CJDHT);
    Message_push(msg, &data, sizeof(struct DataHeader), NULL);

    struct RouteHeader route;
    Bits_memset(&route, 0, sizeof(struct RouteHeader));
    Bits_memcpy(route.ip6, addr->ip6.bytes, 16);
    route.version_be = Endian_hostToBigEndian32(addr->protocolVersion);
    route.sh.label_be = Endian_hostToBigEndian64(addr->path);
    Bits_memcpy(route.publicKey, addr->key, 32);
    Message_push(msg, &route, sizeof(struct RouteHeader), NULL);

    Iface_send(&mcp->pub.interRouterIf, msg);
}
Exemple #2
0
static void reset(struct CryptoAuth_Wrapper* wrapper)
{
    wrapper->nextNonce = 0;
    wrapper->isInitiator = false;

    Bits_memset(wrapper->ourTempPrivKey, 0, 32);
    Bits_memset(wrapper->ourTempPubKey, 0, 32);
    Bits_memset(wrapper->herTempPubKey, 0, 32);
    Bits_memset(wrapper->sharedSecret, 0, 32);
    wrapper->established = false;

    Bits_memset(&wrapper->replayProtector, 0, sizeof(struct ReplayProtector));
}
Exemple #3
0
static void reset(struct CryptoAuth_Session_pvt* session)
{
    session->nextNonce = 0;
    session->isInitiator = false;

    Bits_memset(session->ourTempPrivKey, 0, 32);
    Bits_memset(session->ourTempPubKey, 0, 32);
    Bits_memset(session->herTempPubKey, 0, 32);
    Bits_memset(session->sharedSecret, 0, 32);
    session->established = false;

    Bits_memset(&session->pub.replayProtector, 0, sizeof(struct ReplayProtector));
}
Exemple #4
0
static void encryptRndNonceTest()
{
    uint8_t buff[44];
    Bits_memset(buff, 0, 44);

    uint8_t nonce[24];
    Bits_memset(nonce, 0, 24);

    uint8_t secret[32];
    Bits_memset(secret, 0, 32);

    struct Message m = { .bytes=&buff[32], .length=12, .padding=32};
    CString_strcpy((char*) m.bytes, "hello world");

    CryptoAuth_encryptRndNonce(nonce, &m, secret);

    uint8_t* expected = (uint8_t*) "1391ac5d03ba9f7099bffbb6e6c69d67ae5bd79391a5b94399b293dc";
    uint8_t output[57];
    Hex_encode(output, 57, m.bytes, m.length);

    //printf("\n%s\n%s\n", (char*) expected, (char*) output);
    Assert_true(!Bits_memcmp(expected, output, 56));

    Assert_true(!CryptoAuth_decryptRndNonce(nonce, &m, secret));
    Assert_true(m.length == 12 && !Bits_memcmp(m.bytes, "hello world", m.length));
}

static struct Random* evilRandom(struct Allocator* alloc, struct Log* logger)
{
    struct RandomSeed* evilSeed = DeterminentRandomSeed_new(alloc);
    return Random_newWithSeed(alloc, logger, evilSeed, NULL);
}

static void createNew()
{
    struct Allocator* allocator = MallocAllocator_new(BUFFER_SIZE);
    struct CryptoAuth* ca =
        CryptoAuth_new(allocator, privateKey, eventBase, NULL, evilRandom(allocator, NULL));
    /*for (int i = 0; i < 32; i++) {
        printf("%.2x", ca->publicKey[i]);
    }*/
    Assert_true(Bits_memcmp(ca->publicKey, publicKey, 32) == 0);
    Allocator_free(allocator);
}

static uint8_t receiveMessage(struct Message* message, struct Interface* iface)
{
    Message_pop(message, NULL, 4, NULL);
    *((struct Message**)iface->receiverContext) = message;
    return Error_NONE;
}
static void checkBytes(struct Random* rand, int alignment, int length)
{
    Assert_true(length < 128 && alignment < 8);

    uint64_t buff64[20] = {0};
    uint8_t* buff = (uint8_t*) (&buff64[1]);
    buff += alignment;

    // Check for bytes which are always the same, a few \0s are ok
    // but if every cycle they are always zero then there's a bug.
    uint8_t oldBuff[128] = {0};
    // Preload into the output buff so alignment is same.
    Random_bytes(rand, buff, length);
    Bits_memcpy(oldBuff, buff, length);

    uint8_t sameAsOld[128];
    Bits_memset(sameAsOld, 0xff, 128);

    // Check for bytes which are the same as other bytes every time.
    // if buff[3] always equals buff[8] then there's a bug.
    uint8_t sameBytes[128+128];
    Bits_memset(sameBytes, 0xff, 128+128);

    for (int i = 0; i < 100; i++) {
        Random_bytes(rand, buff, length);

        for (int j = 0; j < length; j++) {
            for (int jj = j; jj < length; jj++) {
                sameBytes[j+jj] &= (jj != j && buff[j] == buff[jj]);
            }
        }

        for (int j = 0; j < length; j++) {
            sameAsOld[j] &= (oldBuff[i] == buff[i]);
        }

        // Check that the function did not write after or before the buffer.
        uint8_t* origBuff = (uint8_t*) (buff64);
        Assert_true(Bits_isZero(origBuff, 8+alignment));
        Assert_true(Bits_isZero(buff+length, 8));
    }

    for (int i = 0; i < length+length-1; i++) {
        Assert_true(!sameBytes[i]);
    }
    for (int i = 0; i < length; i++) {
        Assert_true(!sameAsOld[i]);
    }
}
static int get(struct RandomSeed* randomSeed, uint64_t output[8])
{
    int mib[] = { CTL_KERN, KERN_ARND };
    Bits_memset(output, 0, 64);
    size_t len = 64;
    if (sysctl(mib, 2, output, &len, NULL, 0) == -1) {
        // TOR/Libevent retry this 4 bytes at a time if it fails initially.
        size_t four = 4;
        int tries = 0;
        union {
            uint64_t longs[8];
            uint32_t ints[16];
        } num;
        for (int i = 0; i < 16; i++) {
            if (sysctl(mib, 2, &num.ints[i], &four, NULL, 0) == -1) {
                return -1;
            }
            if (num.ints[i] == 0) {
                i--;
                if (++tries > MAX_TRIES) {
                    return -1;
                }
            }
        }
    }
    return Bits_isZero(output, 64) ? -1 : 0;
}
Exemple #7
0
static inline uint8_t incomingDHT(struct Message* message,
                                  struct Address* addr,
                                  struct Ducttape_pvt* context)
{
    struct DHTMessage dht;
    Bits_memset(&dht, 0, sizeof(struct DHTMessage));

    // TODO: These copies are not necessary at all.
    const uint32_t length = (message->length < DHTMessage_MAX_SIZE)
        ? message->length
        : DHTMessage_MAX_SIZE;
    Bits_memcpy(dht.bytes, message->bytes, length);

    dht.address = addr;

    uint8_t buffer[PER_MESSAGE_BUF_SZ];
    dht.allocator = BufferAllocator_new(buffer, PER_MESSAGE_BUF_SZ);

    struct Jmp j;
    Jmp_try(j) {
        BufferAllocator_onOOM(dht.allocator, &j.handler);
        DHTModuleRegistry_handleIncoming(&dht, context->registry);
    } Jmp_catch {
        uint8_t printed[60];
        Address_print(printed, addr);
        Log_warn(context->logger, "Parsing message from [%s] failed; out of memory.", printed);
    }

    // TODO: return something meaningful.
    return Error_NONE;
}
static void onPingResponse(enum SwitchPinger_Result result,
                           uint64_t label,
                           String* data,
                           uint32_t millisecondsLag,
                           uint32_t version,
                           void* onResponseContext)
{
    if (SwitchPinger_Result_OK != result) {
        return;
    }
    struct IFCPeer* ep = Identity_cast((struct IFCPeer*) onResponseContext);
    struct Context* ic = ifcontrollerForPeer(ep);

    struct Address addr;
    Bits_memset(&addr, 0, sizeof(struct Address));
    Bits_memcpyConst(addr.key, CryptoAuth_getHerPublicKey(ep->cryptoAuthIf), 32);
    addr.path = ep->switchLabel;
    Log_debug(ic->logger, "got switch pong from node with version [%d]", version);
    RouterModule_addNode(ic->routerModule, &addr, version);

    #ifdef Log_DEBUG
        // This will be false if it times out.
        //Assert_true(label == ep->switchLabel);
        uint8_t path[20];
        AddrTools_printPath(path, label);
        uint8_t sl[20];
        AddrTools_printPath(sl, ep->switchLabel);
        Log_debug(ic->logger, "Received [%s] from lazy endpoint [%s]  [%s]",
                  SwitchPinger_resultString(result)->bytes, path, sl);
    #endif
}
Exemple #9
0
static Iface_DEFUN incomingFromUpperDistributorIf(struct Message* msg,
                                                  struct Iface* upperDistributorIf)
{
    struct TUNAdapter_pvt* ud =
        Identity_containerOf(upperDistributorIf, struct TUNAdapter_pvt, pub.upperDistributorIf);
    Assert_true(msg->length >= RouteHeader_SIZE + DataHeader_SIZE);
    struct RouteHeader* hdr = (struct RouteHeader*) msg->bytes;
    struct DataHeader* dh = (struct DataHeader*) &hdr[1];
    enum ContentType type = DataHeader_getContentType(dh);
    Assert_true(type <= ContentType_IP6_RAW);

    // Shift ip address into destination slot.
    Bits_memmoveConst(&hdr->ip6[DataHeader_SIZE - 16], hdr->ip6, 16);
    // put my address as destination.
    Bits_memcpyConst(&hdr->ip6[DataHeader_SIZE], ud->myIp6, 16);

    Message_shift(msg, Headers_IP6Header_SIZE - DataHeader_SIZE - RouteHeader_SIZE, NULL);
    struct Headers_IP6Header* ip6 = (struct Headers_IP6Header*) msg->bytes;
    Bits_memset(ip6, 0, Headers_IP6Header_SIZE - 32);
    Headers_setIpVersion(ip6);
    ip6->payloadLength_be = Endian_bigEndianToHost16(msg->length - Headers_IP6Header_SIZE);
    ip6->nextHeader = type;
    ip6->hopLimit = 42;
    TUNMessageType_push(msg, Ethernet_TYPE_IP6, NULL);
    return sendToTunIf(msg, ud);
}
Exemple #10
0
static inline uint8_t incomingDHT(struct Message* message,
                                  struct Address* addr,
                                  struct Ducttape_pvt* context)
{
    struct DHTMessage dht = {
        .address = addr,
        .binMessage = message,
        .allocator = message->alloc
    };

    DHTModuleRegistry_handleIncoming(&dht, context->registry);

    // TODO(cjd): return something meaningful.
    return Error_NONE;
}

/** Header must not be encrypted and must be aligned on the beginning of the ipv6 header. */
static inline uint8_t sendToRouter(struct Message* message,
                                   struct Ducttape_MessageHeader* dtHeader,
                                   struct SessionManager_Session* session,
                                   struct Ducttape_pvt* context)
{
    int safeDistance = SwitchHeader_SIZE;

    CryptoAuth_resetIfTimeout(session->internal);
    if (CryptoAuth_getState(session->internal) < CryptoAuth_HANDSHAKE3) {
        // Put the handle into the message so that it's authenticated.
        // see: sendToSwitch()
        //Log_debug(context->logger, "Sending receive handle under CryptoAuth");
        Message_push(message, &session->receiveHandle_be, 4, NULL);

        safeDistance += CryptoHeader_SIZE;
    } else {
        // 16 for the authenticator, 4 for the nonce and 4 for the handle
        safeDistance += 24;
    }

    Message_shift(message, safeDistance, NULL);
    if (dtHeader->switchHeader) {
        if (message->bytes != (uint8_t*)dtHeader->switchHeader) {
            Bits_memmoveConst(message->bytes, dtHeader->switchHeader, SwitchHeader_SIZE);
            dtHeader->switchHeader = (struct SwitchHeader*) message->bytes;
        }
    } else {
        dtHeader->switchHeader = (struct SwitchHeader*) message->bytes;
        Bits_memset(dtHeader->switchHeader, 0, SwitchHeader_SIZE);
    }
    Message_shift(message, -safeDistance, NULL);

    SwitchHeader_setVersion(dtHeader->switchHeader, SwitchHeader_CURRENT_VERSION);
    SwitchHeader_setLabelShift(dtHeader->switchHeader, 0);
    dtHeader->switchHeader->label_be = Endian_hostToBigEndian64(dtHeader->switchLabel);

    // This comes out in outgoingFromCryptoAuth() then sendToSwitch()
    dtHeader->receiveHandle = Endian_bigEndianToHost32(session->receiveHandle_be);
    dtHeader->layer = Ducttape_SessionLayer_OUTER;
    return Interface_sendMessage(session->internal, message);
}
Exemple #11
0
static void nodeForAddress(struct PFChan_Node* nodeOut, struct Address* addr, uint32_t metric)
{
    Bits_memset(nodeOut, 0, PFChan_Node_SIZE);
    nodeOut->version_be = Endian_hostToBigEndian32(addr->protocolVersion);
    nodeOut->metric_be = Endian_hostToBigEndian32(metric | 0xffff0000);
    nodeOut->path_be = Endian_hostToBigEndian64(addr->path);
    Bits_memcpy(nodeOut->publicKey, addr->key, 32);
    Bits_memcpy(nodeOut->ip6, addr->ip6.bytes, 16);
}
static void onPingResponse(struct SwitchPinger_Response* resp, void* onResponseContext)
{
    if (SwitchPinger_Result_OK != resp->res) {
        return;
    }
    struct InterfaceController_Peer* ep =
        Identity_check((struct InterfaceController_Peer*) onResponseContext);
    struct InterfaceController_pvt* ic = ifcontrollerForPeer(ep);

    struct Address addr;
    Bits_memset(&addr, 0, sizeof(struct Address));
    Bits_memcpyConst(addr.key, CryptoAuth_getHerPublicKey(ep->cryptoAuthIf), 32);
    addr.path = ep->switchLabel;
    addr.protocolVersion = resp->version;

    #ifdef Log_DEBUG
        uint8_t addrStr[60];
        Address_print(addrStr, &addr);
        uint8_t key[56];
        Base32_encode(key, 56, CryptoAuth_getHerPublicKey(ep->cryptoAuthIf), 32);
    #endif

    if (!Version_isCompatible(Version_CURRENT_PROTOCOL, resp->version)) {
        Log_debug(ic->logger, "got switch pong from node [%s] with incompatible version [%d]",
                  key, resp->version);
    } else {
        Log_debug(ic->logger, "got switch pong from node [%s] with version [%d]",
                  key, resp->version);
    }

    if (!ep->timeOfLastPing) {
        // We've never heard from this machine before (or we've since forgotten about it)
        // This is here because we want the tests to function without the janitor present.
        // Other than that, it just makes a slightly more synchronous/guaranteed setup.
        Router_sendGetPeers(ic->router, &addr, 0, 0, ic->allocator);
    }

    struct Node_Link* link = Router_linkForPath(ic->router, resp->label);
    if (!link || !Node_getBestParent(link->child)) {
        RumorMill_addNode(ic->rumorMill, &addr);
    } else {
        Log_debug(ic->logger, "link exists");
    }

    ep->timeOfLastPing = Time_currentTimeMilliseconds(ic->eventBase);

    #ifdef Log_DEBUG
        // This will be false if it times out.
        //Assert_true(label == ep->switchLabel);
        uint8_t path[20];
        AddrTools_printPath(path, resp->label);
        uint8_t sl[20];
        AddrTools_printPath(sl, ep->switchLabel);
        Log_debug(ic->logger, "Received [%s] from lazy endpoint [%s]  [%s]",
                  SwitchPinger_resultString(resp->res)->bytes, path, sl);
    #endif
}
/** @see BencSerializer.h */
static int32_t serializeint64_t(const struct Writer* writer,
                                int64_t integer)
{
    char buffer[32];
    Bits_memset(buffer, 0, 32);

    snprintf(buffer, 32, "%" PRId64, integer);

    return writer->write(buffer, strlen(buffer), writer);
}
Exemple #14
0
static void pushRouteDataHeaders(struct Context* ctx, struct Message* message)
{
    Message_shift(message, RouteHeader_SIZE + DataHeader_SIZE, NULL);
    struct RouteHeader* rh = (struct RouteHeader*) message->bytes;
    struct DataHeader* dh = (struct DataHeader*) &rh[1];
    Bits_memset(rh, 0, RouteHeader_SIZE + DataHeader_SIZE);
    Bits_memcpy(rh->ip6, ctx->ipv6, 16);
    Bits_memcpy(rh->publicKey, ctx->pubKey, 32);
    DataHeader_setContentType(dh, ContentType_IPTUN);
}
Exemple #15
0
void* Allocator__calloc(struct Allocator* alloc,
                        unsigned long length,
                        unsigned long count,
                        const char* fileName,
                        int lineNum)
{
    void* pointer = Allocator__malloc(alloc, length * count, fileName, lineNum);
    Bits_memset(pointer, 0, length * count);
    return pointer;
}
static int getUUID(uint64_t output[2])
{
    int mib[] = { CTL_KERN, KERN_RANDOM, RANDOM_UUID };
    size_t sixteen = 16;

    Bits_memset(output, 0, 16);
    if (sysctl(mib, 3, output, &sixteen, NULL, 0)
        || Bits_isZero(output, 16))
    {
        return -1;
    }
    return 0;
}
Exemple #17
0
static uint8_t receiveMessage(struct Message* msg, struct Interface* iface)
{
    struct Context* ctx = Identity_cast((struct Context*) iface->receiverContext);

    struct Sockaddr_storage source;
    Message_pop(msg, &source, ctx->targetAddr->addrLen, NULL);
    if (Bits_memcmp(&source, ctx->targetAddr, ctx->targetAddr->addrLen)) {
        Log_info(ctx->logger, "Got spurious message from [%s], expecting messages from [%s]",
                 Sockaddr_print(&source.addr, msg->alloc),
                 Sockaddr_print(ctx->targetAddr, msg->alloc));
        return 0;
    }

    // we don't yet know with which message this data belongs,
    // the message alloc lives the length of the message reception.
    struct Allocator* alloc = Allocator_child(msg->alloc);

    struct Reader* reader = ArrayReader_new(msg->bytes, msg->length, alloc);
    Dict* d = Dict_new(alloc);
    if (StandardBencSerializer_get()->parseDictionary(reader, alloc, d)) {
        return 0;
    }

    String* txid = Dict_getString(d, String_CONST("txid"));
    if (!txid || txid->len != 8) {
        return 0;
    }

    // look up the result
    uint32_t handle = ~0u;
    Hex_decode((uint8_t*)&handle, 4, txid->bytes, 8);
    int idx = Map_OfRequestByHandle_indexForHandle(handle, &ctx->outstandingRequests);
    if (idx < 0) {
        return 0;
    }

    struct Request* req = ctx->outstandingRequests.values[idx];

    // now this data will outlive the life of the message.
    Allocator_adopt(req->promise->alloc, alloc);

    req->res.responseDict = d;

    int len =
        (msg->length > AdminClient_MAX_MESSAGE_SIZE) ? AdminClient_MAX_MESSAGE_SIZE : msg->length;
    Bits_memset(req->res.messageBytes, 0, AdminClient_MAX_MESSAGE_SIZE);
    Bits_memcpy(req->res.messageBytes, msg->bytes, len);
    done(req, AdminClient_Error_NONE);
    return 0;
}
Exemple #18
0
static uint8_t sendMessage(struct Message* message, struct Interface* ethIf)
{
    struct ETHInterface* context = Identity_cast((struct ETHInterface*) ethIf);

    struct sockaddr_ll addr;
    Bits_memcpyConst(&addr, &context->addrBase, sizeof(struct sockaddr_ll));
    Message_pop(message, addr.sll_addr, 8);

    /* Cut down on the noise
    uint8_t buff[sizeof(addr) * 2 + 1] = {0};
    Hex_encode(buff, sizeof(buff), (uint8_t*)&addr, sizeof(addr));
    Log_debug(context->logger, "Sending ethernet frame to [%s]", buff);
    */

    // Check if we will have to pad the message and pad if necessary.
    int pad = 0;
    for (int length = message->length; length+2 < MIN_PACKET_SIZE; length += 8) {
        pad++;
    }
    if (pad > 0) {
        int length = message->length;
        Message_shift(message, pad*8);
        Bits_memset(message->bytes, 0, pad*8);
        Bits_memmove(message->bytes, &message->bytes[pad*8], length);
    }
    Assert_true(pad < 8);
    uint16_t padAndId_be = Endian_hostToBigEndian16((context->id << 3) | pad);
    Message_push(message, &padAndId_be, 2);

    if (sendto(context->socket,
               message->bytes,
               message->length,
               0,
               (struct sockaddr*) &addr,
               sizeof(struct sockaddr_ll)) < 0)
    {
        switch (errno) {
            case EMSGSIZE:
                return Error_OVERSIZE_MESSAGE;

            case ENOBUFS:
            case EAGAIN:
                return Error_LINK_LIMIT_EXCEEDED;

            default:;
                Log_info(context->logger, "Got error sending to socket [%s]", strerror(errno));
        }
    }
    return 0;
}
void encryptRndNonceTest()
{
    uint8_t buff[44];
    Bits_memset(buff, 0, 44);

    uint8_t nonce[24];
    Bits_memset(nonce, 0, 24);

    uint8_t secret[32];
    Bits_memset(secret, 0, 32);

    struct Message m = { .bytes=&buff[32], .length=12, .padding=32};
    strcpy((char*) m.bytes, "hello world");

    Exports_encryptRndNonce(nonce, &m, secret);

    uint8_t* expected = (uint8_t*) "1391ac5d03ba9f7099bffbb6e6c69d67ae5bd79391a5b94399b293dc";
    uint8_t output[57];
    Hex_encode(output, 57, m.bytes, m.length);

    //printf("\n%s\n%s\n", (char*) expected, (char*) output);
    Assert_always(!Bits_memcmp(expected, output, 56));

    Assert_always(!Exports_decryptRndNonce(nonce, &m, secret));
    Assert_always(m.length == 12 && !Bits_memcmp(m.bytes, "hello world", m.length));
}

void createNew()
{
    uint8_t buff[BUFFER_SIZE];
    struct Allocator* allocator = CanaryAllocator_new(BufferAllocator_new(buff, BUFFER_SIZE), NULL);
    struct CryptoAuth* ca = CryptoAuth_new(allocator, privateKey, eventBase, NULL, NULL);
    /*for (int i = 0; i < 32; i++) {
        printf("%.2x", ca->publicKey[i]);
    }*/
    Assert_always(Bits_memcmp(ca->publicKey, publicKey, 32) == 0);
}
Exemple #20
0
/** Header must not be encrypted and must be aligned on the beginning of the ipv6 header. */
static inline uint8_t sendToRouter(struct Message* message,
                                   struct Ducttape_MessageHeader* dtHeader,
                                   struct SessionManager_Session* session,
                                   struct Ducttape_pvt* context)
{
    int safeDistance = Headers_SwitchHeader_SIZE;

    if (CryptoAuth_getState(&session->iface) < CryptoAuth_HANDSHAKE3) {
        // Bug 104, see Version.h
        #ifdef Version_2_COMPAT
        if (session->version >= 3) {
        #endif
            // Put the handle into the message so that it's authenticated.
            // see: sendToSwitch()
            Log_debug(context->logger, "Sending receive handle under CryptoAuth");
            Message_push(message, &session->receiveHandle_be, 4);
        #ifdef Version_2_COMPAT
        } else {
            // Otherwise it will be added on the other side.
            safeDistance += 4;
        }
        #endif

        safeDistance += Headers_CryptoAuth_SIZE;
    } else {
        // 16 for the authenticator, 4 for the nonce and 4 for the handle
        safeDistance += 24;
    }

    Message_shift(message, safeDistance);
    if (dtHeader->switchHeader) {
        if (message->bytes != (uint8_t*)dtHeader->switchHeader) {
            Bits_memmoveConst(message->bytes, dtHeader->switchHeader, Headers_SwitchHeader_SIZE);
            dtHeader->switchHeader = (struct Headers_SwitchHeader*) message->bytes;
        }
    } else {
        dtHeader->switchHeader = (struct Headers_SwitchHeader*) message->bytes;
        Bits_memset(dtHeader->switchHeader, 0, Headers_SwitchHeader_SIZE);
    }
    Message_shift(message, -safeDistance);

    dtHeader->switchHeader->label_be = Endian_hostToBigEndian64(dtHeader->switchLabel);


    // This comes out in outgoingFromCryptoAuth() then sendToSwitch()
    dtHeader->receiveHandle = Endian_bigEndianToHost32(session->receiveHandle_be);
    dtHeader->layer = Ducttape_SessionLayer_OUTER;
    return session->iface.sendMessage(message, &session->iface);
}
Exemple #21
0
static struct Ducttape_MessageHeader* getDtHeader(struct Message* message, bool init)
{
    int padding = message->padding;
    Assert_true(padding > Ducttape_MessageHeader_SIZE);
    Message_shift(message, padding);
    struct Ducttape_MessageHeader* dtHeader = (struct Ducttape_MessageHeader*) message->bytes;
    Message_shift(message, -padding);
    if (init) {
        Bits_memset(dtHeader, 0, Ducttape_MessageHeader_SIZE);
        Identity_set(dtHeader);
    } else {
        Identity_check(dtHeader);
    }
    return dtHeader;
}
Exemple #22
0
/**
 * Encrypt and authenticate.
 * Shifts the message by 16 bytes.
 *
 * @param nonce a 24 byte number, may be random, cannot repeat.
 * @param msg a message to encipher and authenticate.
 * @param secret a shared secret.
 */
static inline void encryptRndNonce(uint8_t nonce[24],
                                   struct Message* msg,
                                   uint8_t secret[32])
{
    Assert_true(msg->padding >= 32);
    uint8_t* startAt = msg->bytes - 32;
    // This function trashes 16 bytes of the padding so we will put it back
    uint8_t paddingSpace[16];
    Bits_memcpyConst(paddingSpace, startAt, 16);
    Bits_memset(startAt, 0, 32);
    crypto_box_curve25519xsalsa20poly1305_afternm(
        startAt, startAt, msg->length + 32, nonce, secret);

    Bits_memcpyConst(startAt, paddingSpace, 16);
    Message_shift(msg, 16, NULL);
}
Exemple #23
0
static int incomingFromDHT(struct DHTMessage* dmessage, void* vpf)
{
    struct Pathfinder_pvt* pf = Identity_check((struct Pathfinder_pvt*) vpf);
    struct Message* msg = dmessage->binMessage;
    struct Address* addr = dmessage->address;

    if (addr->path == 1) {
        // Message to myself, can't handle this later because encrypting a message to yourself
        // causes problems.
        DHTModuleRegistry_handleIncoming(dmessage, pf->registry);
        return 0;
    }

    // Sanity check (make sure the addr was actually calculated)
    Assert_true(AddressCalc_validAddress(addr->ip6.bytes));

    Message_shift(msg, PFChan_Msg_MIN_SIZE, NULL);
    struct PFChan_Msg* emsg = (struct PFChan_Msg*) msg->bytes;
    Bits_memset(emsg, 0, PFChan_Msg_MIN_SIZE);

    DataHeader_setVersion(&emsg->data, DataHeader_CURRENT_VERSION);
    DataHeader_setContentType(&emsg->data, ContentType_CJDHT);

    Bits_memcpy(emsg->route.ip6, addr->ip6.bytes, 16);
    emsg->route.version_be = Endian_hostToBigEndian32(addr->protocolVersion);
    emsg->route.sh.label_be = Endian_hostToBigEndian64(addr->path);
    emsg->route.flags |= RouteHeader_flags_PATHFINDER;
    SwitchHeader_setVersion(&emsg->route.sh, SwitchHeader_CURRENT_VERSION);
    Bits_memcpy(emsg->route.publicKey, addr->key, 32);

    Assert_true(!Bits_isZero(emsg->route.publicKey, 32));
    Assert_true(emsg->route.sh.label_be);
    Assert_true(emsg->route.version_be);

    Message_push32(msg, PFChan_Pathfinder_SENDMSG, NULL);

    if (dmessage->replyTo) {
        // see incomingMsg
        dmessage->replyTo->pleaseRespond = true;
        //Log_debug(pf->log, "send DHT reply");
        return 0;
    }
    //Log_debug(pf->log, "send DHT request");

    Iface_send(&pf->pub.eventIf, msg);
    return 0;
}
Exemple #24
0
static void releaseAllocation(struct Allocator_pvt* context,
                              struct Allocator_Allocation_pvt* allocation,
                              Allocator_Provider provider,
                              Allocator_Provider_CONTEXT_TYPE* providerCtx)
{
    checkCanaries(allocation, context);

    // TODO(cjd): make this optional.
    Bits_memset(&(&allocation->pub)[1],
                0xee,
                allocation->pub.size - sizeof(struct Allocator_Allocation));

    provider(providerCtx,
             &allocation->pub,
             0,
             ((char*)context != (char*)allocation) ? &context->pub : NULL);
}
Exemple #25
0
static Iface_DEFUN receiveMessage(struct Message* msg, struct Iface* addrIface)
{
    struct Context* ctx = Identity_containerOf(addrIface, struct Context, addrIface);

    struct Sockaddr_storage source;
    Message_pop(msg, &source, ctx->targetAddr->addrLen, NULL);
    if (Bits_memcmp(&source, ctx->targetAddr, ctx->targetAddr->addrLen)) {
        Log_info(ctx->logger, "Got spurious message from [%s], expecting messages from [%s]",
                 Sockaddr_print(&source.addr, msg->alloc),
                 Sockaddr_print(ctx->targetAddr, msg->alloc));
        return NULL;
    }

    // we don't yet know with which message this data belongs,
    // the message alloc lives the length of the message reception.
    struct Allocator* alloc = Allocator_child(msg->alloc);

    int origLen = msg->length;
    Dict* d = NULL;
    char* err = BencMessageReader_readNoExcept(msg, alloc, &d);
    if (err) { return NULL; }
    Message_shift(msg, origLen, NULL);

    String* txid = Dict_getString(d, String_CONST("txid"));
    if (!txid || txid->len != 8) { return NULL; }

    // look up the result
    uint32_t handle = ~0u;
    Hex_decode((uint8_t*)&handle, 4, txid->bytes, 8);
    int idx = Map_OfRequestByHandle_indexForHandle(handle, &ctx->outstandingRequests);
    if (idx < 0) { return NULL; }

    struct Request* req = ctx->outstandingRequests.values[idx];

    // now this data will outlive the life of the message.
    Allocator_adopt(req->promise->alloc, alloc);

    req->res.responseDict = d;

    int len =
        (msg->length > AdminClient_MAX_MESSAGE_SIZE) ? AdminClient_MAX_MESSAGE_SIZE : msg->length;
    Bits_memset(req->res.messageBytes, 0, AdminClient_MAX_MESSAGE_SIZE);
    Bits_memcpy(req->res.messageBytes, msg->bytes, len);
    done(req, AdminClient_Error_NONE);
    return NULL;
}
static int get(struct RandomSeed* randomSeed, uint64_t output[8])
{

#ifdef SYS_getrandom
    // Try using getrandom instead sysctl as with systems with getrandom
    // sysctl is probably alrady deprecated and possibly disabled.
    Bits_memset(output, 0, 64); // Just make sure that it is zero all along.

    long ret = syscall(SYS_getrandom, output, 64, 0);
    if (ret == 64 && !Bits_isZero(output, 64)) {
        return 0;
    }
#endif
    if (getUUID(output) || getUUID(output+2) || getUUID(output+4) || getUUID(output+6)) {
        return -1;
    }
    return 0;
}
Exemple #27
0
int main()
{
    struct Allocator* alloc;
    BufferAllocator_STACK(alloc, 512);
    struct Random* rand = Random_new(alloc, NULL);

    uint8_t bytes[32];
    Random_bytes(rand, bytes, 32);

    uint8_t base32[64];
    Bits_memset(base32, 0, 64);

    Assert_always(Base32_encode(base32, 64, bytes, 32) == 52);

    //printf("base32 encoded: %s\n", base32);

    uint8_t bytes2[32];
    Assert_always(Base32_decode(bytes2, 32, base32, 52) == 32);

    Assert_always(Bits_memcmp(bytes, bytes2, 32) == 0);
}
Exemple #28
0
/**
 * Decrypt and authenticate.
 *
 * @param nonce a 24 byte number, may be random, cannot repeat.
 * @param msg a message to encipher and authenticate.
 * @param secret a shared secret.
 * @return 0 if decryption is succeddful, otherwise -1.
 */
static inline int decryptRndNonce(uint8_t nonce[24],
                                  struct Message* msg,
                                  uint8_t secret[32])
{
    if (msg->length < 16) {
        return -1;
    }
    Assert_true(msg->padding >= 16);
    uint8_t* startAt = msg->bytes - 16;
    uint8_t paddingSpace[16];
    Bits_memcpyConst(paddingSpace, startAt, 16);
    Bits_memset(startAt, 0, 16);
    if (crypto_box_curve25519xsalsa20poly1305_open_afternm(
            startAt, startAt, msg->length + 16, nonce, secret) != 0)
    {
        return -1;
    }

    Bits_memcpyConst(startAt, paddingSpace, 16);
    Message_shift(msg, -16, NULL);
    return 0;
}
Exemple #29
0
int main()
{
    struct Allocator* alloc = MallocAllocator_new(20000);
    struct Random* rand = Random_new(alloc, NULL, NULL);

    uint8_t bytes[32];
    Random_bytes(rand, bytes, 32);

    uint8_t base32[64];
    Bits_memset(base32, 0, 64);

    Assert_always(Base32_encode(base32, 64, bytes, 32) == 52);

    //printf("base32 encoded: %s\n", base32);

    uint8_t bytes2[32];
    Assert_always(Base32_decode(bytes2, 32, base32, 52) == 32);

    Assert_always(Bits_memcmp(bytes, bytes2, 32) == 0);

    Allocator_free(alloc);
    return 0;
}
Exemple #30
0
/** @see Allocator->calloc() */
static void* allocatorCalloc(size_t length, size_t count, const struct Allocator* allocator)
{
    void* pointer = allocator->malloc(length * count, allocator);
    Bits_memset(pointer, 0, length * count);
    return pointer;
}