NTSTATUS CdCommonWrite ( _Inout_ PIRP_CONTEXT IrpContext, _Inout_ PIRP Irp ) /*++ Routine Description: This is the common entry point for NtWriteFile calls. For synchronous requests, CommonWrite will complete the request in the current thread. If not synchronous the request will be passed to the Fsp if there is a need to block. Arguments: Irp - Supplies the Irp to process Return Value: NTSTATUS - The result of this operation. --*/ { NTSTATUS Status = STATUS_SUCCESS; PIO_STACK_LOCATION IrpSp = IoGetCurrentIrpStackLocation( Irp ); TYPE_OF_OPEN TypeOfOpen; PFCB Fcb; PCCB Ccb; BOOLEAN Wait; ULONG SynchronousIo; PVOID UserBuffer; LONGLONG StartingOffset; LONGLONG ByteRange; ULONG ByteCount; ULONG WriteByteCount; ULONG OriginalByteCount; BOOLEAN ReleaseFile = TRUE; CD_IO_CONTEXT LocalIoContext; PAGED_CODE(); // // If this is a zero length write then return SUCCESS immediately. // if (IrpSp->Parameters.Write.Length == 0) { CdCompleteRequest( IrpContext, Irp, STATUS_SUCCESS ); return STATUS_SUCCESS; } // // Decode the file object and verify we support write on this. It // must be a volume file. // TypeOfOpen = CdDecodeFileObject( IrpContext, IrpSp->FileObject, &Fcb, &Ccb ); // Internal lock object is acquired if return status is STATUS_PENDING _Analysis_suppress_lock_checking_(Fcb->Resource); if (TypeOfOpen != UserVolumeOpen) { CdCompleteRequest( IrpContext, Irp, STATUS_INVALID_DEVICE_REQUEST ); return STATUS_INVALID_DEVICE_REQUEST; } // // Examine our input parameters to determine if this is noncached and/or // a paging io operation. // Wait = BooleanFlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_WAIT ); SynchronousIo = FlagOn( IrpSp->FileObject->Flags, FO_SYNCHRONOUS_IO ); // // Extract the range of the Io. // StartingOffset = IrpSp->Parameters.Write.ByteOffset.QuadPart; OriginalByteCount = ByteCount = IrpSp->Parameters.Write.Length; ByteRange = StartingOffset + ByteCount; // // Acquire the file shared to perform the write. // CdAcquireFileShared( IrpContext, Fcb ); // // Use a try-finally to facilitate cleanup. // try { // // Verify the Fcb. Allow writes if this is a DASD handle that is // dismounting the volume. // if (!FlagOn( Ccb->Flags, CCB_FLAG_DISMOUNT_ON_CLOSE )) { CdVerifyFcbOperation( IrpContext, Fcb ); } if (!FlagOn( Ccb->Flags, CCB_FLAG_ALLOW_EXTENDED_DASD_IO )) { // // Complete the request if it begins beyond the end of file. // if (StartingOffset >= Fcb->FileSize.QuadPart) { try_return( Status = STATUS_END_OF_FILE ); } // // Truncate the write if it extends beyond the end of the file. // if (ByteRange > Fcb->FileSize.QuadPart) { ByteCount = (ULONG) (Fcb->FileSize.QuadPart - StartingOffset); ByteRange = Fcb->FileSize.QuadPart; } } // // If we have an unaligned transfer then post this request if // we can't wait. Unaligned means that the starting offset // is not on a sector boundary or the write is not integral // sectors. // WriteByteCount = BlockAlign( Fcb->Vcb, ByteCount ); if (SectorOffset( StartingOffset ) || SectorOffset( WriteByteCount ) || (WriteByteCount > OriginalByteCount)) { if (!Wait) { CdRaiseStatus( IrpContext, STATUS_CANT_WAIT ); } // // Make sure we don't overwrite the buffer. // WriteByteCount = ByteCount; } // // Initialize the IoContext for the write. // If there is a context pointer, we need to make sure it was // allocated and not a stale stack pointer. // if (IrpContext->IoContext == NULL || !FlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_ALLOC_IO )) { // // If we can wait, use the context on the stack. Otherwise // we need to allocate one. // if (Wait) { IrpContext->IoContext = &LocalIoContext; ClearFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_ALLOC_IO ); } else { IrpContext->IoContext = CdAllocateIoContext(); SetFlag( IrpContext->Flags, IRP_CONTEXT_FLAG_ALLOC_IO ); } } RtlZeroMemory( IrpContext->IoContext, sizeof( CD_IO_CONTEXT ) ); // // Store whether we allocated this context structure in the structure // itself. // IrpContext->IoContext->AllocatedContext = BooleanFlagOn( IrpContext->Flags, IRP_CONTEXT_FLAG_ALLOC_IO ); if (Wait) { KeInitializeEvent( &IrpContext->IoContext->SyncEvent, NotificationEvent, FALSE ); } else { IrpContext->IoContext->ResourceThreadId = ExGetCurrentResourceThread(); IrpContext->IoContext->Resource = Fcb->Resource; IrpContext->IoContext->RequestedByteCount = ByteCount; } Irp->IoStatus.Information = WriteByteCount; // // Set the FO_MODIFIED flag here to trigger a verify when this // handle is closed. Note that we can err on the conservative // side with no problem, i.e. if we accidently do an extra // verify there is no problem. // SetFlag( IrpSp->FileObject->Flags, FO_FILE_MODIFIED ); // // Dasd access is always non-cached. Call the Dasd write routine to // perform the actual write. // Status = CdVolumeDasdWrite( IrpContext, Fcb, StartingOffset, WriteByteCount ); // // Don't complete this request now if STATUS_PENDING was returned. // if (Status == STATUS_PENDING) { Irp = NULL; ReleaseFile = FALSE; // // Test is we should zero part of the buffer or update the // synchronous file position. // } else { // // Convert any unknown error code to IO_ERROR. // if (!NT_SUCCESS( Status )) { // // Set the information field to zero. // Irp->IoStatus.Information = 0; // // Raise if this is a user induced error. // if (IoIsErrorUserInduced( Status )) { CdRaiseStatus( IrpContext, Status ); } Status = FsRtlNormalizeNtstatus( Status, STATUS_UNEXPECTED_IO_ERROR ); // // Check if there is any portion of the user's buffer to zero. // } else if (WriteByteCount != ByteCount) { CdMapUserBuffer( IrpContext, &UserBuffer ); SafeZeroMemory( IrpContext, Add2Ptr( UserBuffer, ByteCount, PVOID ), WriteByteCount - ByteCount ); Irp->IoStatus.Information = ByteCount; } // // Update the file position if this is a synchronous request. // if (SynchronousIo && NT_SUCCESS( Status )) { IrpSp->FileObject->CurrentByteOffset.QuadPart = ByteRange; } } try_exit: NOTHING; } finally { // // Release the Fcb. // if (ReleaseFile) { CdReleaseFile( IrpContext, Fcb ); } } // // Post the request if we got CANT_WAIT. // if (Status == STATUS_CANT_WAIT) { Status = CdFsdPostRequest( IrpContext, Irp ); // // Otherwise complete the request. // } else { CdCompleteRequest( IrpContext, Irp, Status ); } return Status; }
VOID CdAddAllocationFromDirent ( __in PIRP_CONTEXT IrpContext, __inout PFCB Fcb, __in ULONG McbEntryOffset, __in LONGLONG StartingFileOffset, __in PDIRENT Dirent ) /*++ Routine Description: This routine is called to add an entry into the Cd Mcb. We grow the Mcb as necessary and update the new entry. NOTE - The Fcb has already been locked prior to makeing this call. Arguments: Fcb - Fcb containing the Mcb to update. McbEntryOffset - Offset into the Mcb array to add this data. StartingFileOffset - Offset in bytes from the start of the file. Dirent - Dirent containing the on-disk data for this entry. Return Value: None --*/ { ULONG NewArraySize; PVOID NewMcbArray; PCD_MCB_ENTRY McbEntry; PAGED_CODE(); UNREFERENCED_PARAMETER( IrpContext ); ASSERT_IRP_CONTEXT( IrpContext ); ASSERT_FCB( Fcb ); ASSERT_LOCKED_FCB( Fcb ); // // If we need to grow the Mcb then do it now. // if (McbEntryOffset >= Fcb->Mcb.MaximumEntryCount) { // // Allocate a new buffer and copy the old data over. // NewArraySize = Fcb->Mcb.MaximumEntryCount * 2 * sizeof( CD_MCB_ENTRY ); NewMcbArray = FsRtlAllocatePoolWithTag( CdPagedPool, NewArraySize, TAG_MCB_ARRAY ); RtlZeroMemory( NewMcbArray, NewArraySize ); RtlCopyMemory( NewMcbArray, Fcb->Mcb.McbArray, Fcb->Mcb.MaximumEntryCount * sizeof( CD_MCB_ENTRY )); // // Deallocate the current array unless it is embedded in the Fcb. // if (Fcb->Mcb.MaximumEntryCount != 1) { CdFreePool( &Fcb->Mcb.McbArray ); } // // Now update the Mcb with the new array. // Fcb->Mcb.MaximumEntryCount *= 2; Fcb->Mcb.McbArray = NewMcbArray; } // // Update the new entry with the input data. // McbEntry = Fcb->Mcb.McbArray + McbEntryOffset; // // Start with the location and length on disk. // McbEntry->DiskOffset = LlBytesFromBlocks( Fcb->Vcb, Dirent->StartingOffset ); McbEntry->ByteCount = Dirent->DataLength; // // Round the byte count up to a logical block boundary if this is // the last extent. // if (!FlagOn( Dirent->DirentFlags, CD_ATTRIBUTE_MULTI )) { McbEntry->ByteCount = BlockAlign( Fcb->Vcb, McbEntry->ByteCount ); } // // The file offset is the logical position within this file. // We know this is correct regardless of whether we bias the // file size or disk offset. // McbEntry->FileOffset = StartingFileOffset; // // Convert the interleave information from logical blocks to // bytes. // if (Dirent->FileUnitSize != 0) { McbEntry->DataBlockByteCount = LlBytesFromBlocks( Fcb->Vcb, Dirent->FileUnitSize ); McbEntry->TotalBlockByteCount = McbEntry->DataBlockByteCount + LlBytesFromBlocks( Fcb->Vcb, Dirent->InterleaveGapSize ); // // If the file is not interleaved then the size of the data block // and total block are the same as the byte count. // } else { McbEntry->DataBlockByteCount = McbEntry->TotalBlockByteCount = McbEntry->ByteCount; } // // Update the number of entries in the Mcb. The Mcb is never sparse // so whenever we add an entry it becomes the last entry in the Mcb. // Fcb->Mcb.CurrentEntryCount = McbEntryOffset + 1; return; }