/** * Enable or disable writing of frame buffer color components. * * \param red whether to mask writing of the red color component. * \param green whether to mask writing of the green color component. * \param blue whether to mask writing of the blue color component. * \param alpha whether to mask writing of the alpha color component. * * \sa glColorMask(). * * Sets the appropriate value of gl_colorbuffer_attrib::ColorMask. On a * change, flushes the vertices and notifies the driver via the * dd_function_table::ColorMask callback. */ void GLAPIENTRY _mesa_ColorMask( GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha ) { GET_CURRENT_CONTEXT(ctx); GLubyte tmp[4]; GLuint i; GLboolean flushed; if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glColorMask(%d, %d, %d, %d)\n", red, green, blue, alpha); /* Shouldn't have any information about channel depth in core mesa * -- should probably store these as the native booleans: */ tmp[RCOMP] = red ? 0xff : 0x0; tmp[GCOMP] = green ? 0xff : 0x0; tmp[BCOMP] = blue ? 0xff : 0x0; tmp[ACOMP] = alpha ? 0xff : 0x0; flushed = GL_FALSE; for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) { if (!TEST_EQ_4V(tmp, ctx->Color.ColorMask[i])) { if (!flushed) { FLUSH_VERTICES(ctx, _NEW_COLOR); } flushed = GL_TRUE; COPY_4UBV(ctx->Color.ColorMask[i], tmp); } } if (ctx->Driver.ColorMask) ctx->Driver.ColorMask( ctx, red, green, blue, alpha ); }
/** * For GL_EXT_draw_buffers2 and GL3 */ void GLAPIENTRY _mesa_ColorMaski( GLuint buf, GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha ) { GLubyte tmp[4]; GET_CURRENT_CONTEXT(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glColorMaskIndexed %u %d %d %d %d\n", buf, red, green, blue, alpha); if (buf >= ctx->Const.MaxDrawBuffers) { _mesa_error(ctx, GL_INVALID_VALUE, "glColorMaskIndexed(buf=%u)", buf); return; } /* Shouldn't have any information about channel depth in core mesa * -- should probably store these as the native booleans: */ tmp[RCOMP] = red ? 0xff : 0x0; tmp[GCOMP] = green ? 0xff : 0x0; tmp[BCOMP] = blue ? 0xff : 0x0; tmp[ACOMP] = alpha ? 0xff : 0x0; if (TEST_EQ_4V(tmp, ctx->Color.ColorMask[buf])) return; FLUSH_VERTICES(ctx, _NEW_COLOR); COPY_4UBV(ctx->Color.ColorMask[buf], tmp); }
/** * Enable or disable writing of frame buffer color components. * * \param red whether to mask writing of the red color component. * \param green whether to mask writing of the green color component. * \param blue whether to mask writing of the blue color component. * \param alpha whether to mask writing of the alpha color component. * * \sa glColorMask(). * * Sets the appropriate value of gl_colorbuffer_attrib::ColorMask. On a * change, flushes the vertices and notifies the driver via the * dd_function_table::ColorMask callback. */ void GLAPIENTRY _mesa_ColorMask( GLboolean red, GLboolean green, GLboolean blue, GLboolean alpha ) { GET_CURRENT_CONTEXT(ctx); GLubyte tmp[4]; ASSERT_OUTSIDE_BEGIN_END(ctx); if (MESA_VERBOSE & VERBOSE_API) _mesa_debug(ctx, "glColorMask %d %d %d %d\n", red, green, blue, alpha); /* Shouldn't have any information about channel depth in core mesa * -- should probably store these as the native booleans: */ tmp[RCOMP] = red ? 0xff : 0x0; tmp[GCOMP] = green ? 0xff : 0x0; tmp[BCOMP] = blue ? 0xff : 0x0; tmp[ACOMP] = alpha ? 0xff : 0x0; if (TEST_EQ_4UBV(tmp, ctx->Color.ColorMask)) return; FLUSH_VERTICES(ctx, _NEW_COLOR); COPY_4UBV(ctx->Color.ColorMask, tmp); if (ctx->Driver.ColorMask) ctx->Driver.ColorMask( ctx, red, green, blue, alpha ); }
/** * Clear the color buffer when glColorMask is in effect. */ static void clear_rgba_buffer_with_masking(GLcontext *ctx, struct gl_renderbuffer *rb) { const GLint x = ctx->DrawBuffer->_Xmin; const GLint y = ctx->DrawBuffer->_Ymin; const GLint height = ctx->DrawBuffer->_Ymax - ctx->DrawBuffer->_Ymin; const GLint width = ctx->DrawBuffer->_Xmax - ctx->DrawBuffer->_Xmin; SWspan span; GLint i; ASSERT(ctx->Visual.rgbMode); ASSERT(rb->PutRow); /* Initialize color span with clear color */ /* XXX optimize for clearcolor == black/zero (bzero) */ INIT_SPAN(span, GL_BITMAP, width, 0, SPAN_RGBA); span.array->ChanType = rb->DataType; if (span.array->ChanType == GL_UNSIGNED_BYTE) { GLubyte clearColor[4]; UNCLAMPED_FLOAT_TO_UBYTE(clearColor[RCOMP], ctx->Color.ClearColor[0]); UNCLAMPED_FLOAT_TO_UBYTE(clearColor[GCOMP], ctx->Color.ClearColor[1]); UNCLAMPED_FLOAT_TO_UBYTE(clearColor[BCOMP], ctx->Color.ClearColor[2]); UNCLAMPED_FLOAT_TO_UBYTE(clearColor[ACOMP], ctx->Color.ClearColor[3]); for (i = 0; i < width; i++) { COPY_4UBV(span.array->rgba[i], clearColor); } } else if (span.array->ChanType == GL_UNSIGNED_SHORT) { GLushort clearColor[4]; UNCLAMPED_FLOAT_TO_USHORT(clearColor[RCOMP], ctx->Color.ClearColor[0]); UNCLAMPED_FLOAT_TO_USHORT(clearColor[GCOMP], ctx->Color.ClearColor[1]); UNCLAMPED_FLOAT_TO_USHORT(clearColor[BCOMP], ctx->Color.ClearColor[2]); UNCLAMPED_FLOAT_TO_USHORT(clearColor[ACOMP], ctx->Color.ClearColor[3]); for (i = 0; i < width; i++) { COPY_4V(span.array->rgba[i], clearColor); } } else { ASSERT(span.array->ChanType == GL_FLOAT); for (i = 0; i < width; i++) { CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][0], ctx->Color.ClearColor[0]); CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][1], ctx->Color.ClearColor[1]); CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][2], ctx->Color.ClearColor[2]); CLAMPED_FLOAT_TO_CHAN(span.array->rgba[i][3], ctx->Color.ClearColor[3]); } } /* Note that masking will change the color values, but only the * channels for which the write mask is GL_FALSE. The channels * which which are write-enabled won't get modified. */ for (i = 0; i < height; i++) { span.x = x; span.y = y + i; _swrast_mask_rgba_span(ctx, rb, &span); /* write masked row */ rb->PutRow(ctx, rb, width, x, y + i, span.array->rgba, NULL); } }
static void trans_4_GLubyte_4ub(GLubyte (*t)[4], const struct gl_client_array *from, ARGS ) { GLuint stride = from->StrideB; const GLubyte *f = (GLubyte *) from->Ptr + SRC_START * stride; const GLubyte *first = f; GLuint i; (void) start; if (((((long) f | (long) stride)) & 3L) == 0L) { /* Aligned. */ for (i = DST_START ; i < n ; i++, NEXT_F) { CHECK { NEXT_F2; COPY_4UBV( t[i], f ); } } } else { for (i = DST_START ; i < n ; i++, NEXT_F) {
static void trans_4_GLubyte_4ub_raw(GLubyte (*t)[4], const void *Ptr, GLuint stride, ARGS ) { const GLubyte *f = (GLubyte *) Ptr + SRC_START * stride; GLuint i; if (((((uintptr_t) f | (uintptr_t) stride)) & 3L) == 0L) { /* Aligned. */ for (i = DST_START ; i < n ; i++, f += stride) { COPY_4UBV( t[i], f ); } } else { for (i = DST_START ; i < n ; i++, f += stride) { t[i][0] = f[0]; t[i][1] = f[1]; t[i][2] = f[2]; t[i][3] = f[3]; } } }
static void trans_4_GLubyte_4ub_raw (GLubyte (*t)[4], const struct gl_client_array *from, ARGS ) { GLuint stride = from->StrideB; const GLubyte *f = (GLubyte *) from->Ptr + SRC_START * stride; GLuint i; if (((((long) f | (long) stride)) & 3L) == 0L) { /* Aligned. */ for (i = DST_START ; i < n ; i++, f += stride) { COPY_4UBV( t[i], f ); } } else { for (i = DST_START ; i < n ; i++, f += stride) { t[i][0] = f[0]; t[i][1] = f[1]; t[i][2] = f[2]; t[i][3] = f[3]; } } }
/** * Helper function called from _swrast_write_zoomed_rgba/rgb/ * index/depth_span(). */ static void zoom_span( struct gl_context *ctx, GLint imgX, GLint imgY, const SWspan *span, const GLvoid *src, GLenum format ) { SWcontext *swrast = SWRAST_CONTEXT(ctx); SWspan zoomed; GLint x0, x1, y0, y1; GLint zoomedWidth; if (!compute_zoomed_bounds(ctx, imgX, imgY, span->x, span->y, span->end, &x0, &x1, &y0, &y1)) { return; /* totally clipped */ } if (!swrast->ZoomedArrays) { /* allocate on demand */ swrast->ZoomedArrays = (SWspanarrays *) CALLOC(sizeof(SWspanarrays)); if (!swrast->ZoomedArrays) return; } zoomedWidth = x1 - x0; ASSERT(zoomedWidth > 0); ASSERT(zoomedWidth <= MAX_WIDTH); /* no pixel arrays! must be horizontal spans. */ ASSERT((span->arrayMask & SPAN_XY) == 0); ASSERT(span->primitive == GL_BITMAP); INIT_SPAN(zoomed, GL_BITMAP); zoomed.x = x0; zoomed.end = zoomedWidth; zoomed.array = swrast->ZoomedArrays; zoomed.array->ChanType = span->array->ChanType; if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->rgba8; else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->rgba16; else zoomed.array->rgba = (GLchan (*)[4]) zoomed.array->attribs[FRAG_ATTRIB_COL]; COPY_4V(zoomed.attrStart[FRAG_ATTRIB_WPOS], span->attrStart[FRAG_ATTRIB_WPOS]); COPY_4V(zoomed.attrStepX[FRAG_ATTRIB_WPOS], span->attrStepX[FRAG_ATTRIB_WPOS]); COPY_4V(zoomed.attrStepY[FRAG_ATTRIB_WPOS], span->attrStepY[FRAG_ATTRIB_WPOS]); zoomed.attrStart[FRAG_ATTRIB_FOGC][0] = span->attrStart[FRAG_ATTRIB_FOGC][0]; zoomed.attrStepX[FRAG_ATTRIB_FOGC][0] = span->attrStepX[FRAG_ATTRIB_FOGC][0]; zoomed.attrStepY[FRAG_ATTRIB_FOGC][0] = span->attrStepY[FRAG_ATTRIB_FOGC][0]; if (format == GL_RGBA || format == GL_RGB) { /* copy Z info */ zoomed.z = span->z; zoomed.zStep = span->zStep; /* we'll generate an array of colorss */ zoomed.interpMask = span->interpMask & ~SPAN_RGBA; zoomed.arrayMask |= SPAN_RGBA; zoomed.arrayAttribs |= FRAG_BIT_COL; /* we'll produce these values */ ASSERT(span->arrayMask & SPAN_RGBA); } else if (format == GL_DEPTH_COMPONENT) { /* Copy color info */ zoomed.red = span->red; zoomed.green = span->green; zoomed.blue = span->blue; zoomed.alpha = span->alpha; zoomed.redStep = span->redStep; zoomed.greenStep = span->greenStep; zoomed.blueStep = span->blueStep; zoomed.alphaStep = span->alphaStep; /* we'll generate an array of depth values */ zoomed.interpMask = span->interpMask & ~SPAN_Z; zoomed.arrayMask |= SPAN_Z; ASSERT(span->arrayMask & SPAN_Z); } else { _mesa_problem(ctx, "Bad format in zoom_span"); return; } /* zoom the span horizontally */ if (format == GL_RGBA) { if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) { const GLubyte (*rgba)[4] = (const GLubyte (*)[4]) src; GLint i; for (i = 0; i < zoomedWidth; i++) { GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; ASSERT(j >= 0); ASSERT(j < (GLint) span->end); COPY_4UBV(zoomed.array->rgba8[i], rgba[j]); } } else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) { const GLushort (*rgba)[4] = (const GLushort (*)[4]) src; GLint i; for (i = 0; i < zoomedWidth; i++) { GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; ASSERT(j >= 0); ASSERT(j < (GLint) span->end); COPY_4V(zoomed.array->rgba16[i], rgba[j]); } } else { const GLfloat (*rgba)[4] = (const GLfloat (*)[4]) src; GLint i; for (i = 0; i < zoomedWidth; i++) { GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; ASSERT(j >= 0); ASSERT(j < span->end); COPY_4V(zoomed.array->attribs[FRAG_ATTRIB_COL][i], rgba[j]); } } } else if (format == GL_RGB) { if (zoomed.array->ChanType == GL_UNSIGNED_BYTE) { const GLubyte (*rgb)[3] = (const GLubyte (*)[3]) src; GLint i; for (i = 0; i < zoomedWidth; i++) { GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; ASSERT(j >= 0); ASSERT(j < (GLint) span->end); zoomed.array->rgba8[i][0] = rgb[j][0]; zoomed.array->rgba8[i][1] = rgb[j][1]; zoomed.array->rgba8[i][2] = rgb[j][2]; zoomed.array->rgba8[i][3] = 0xff; } } else if (zoomed.array->ChanType == GL_UNSIGNED_SHORT) { const GLushort (*rgb)[3] = (const GLushort (*)[3]) src; GLint i; for (i = 0; i < zoomedWidth; i++) { GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; ASSERT(j >= 0); ASSERT(j < (GLint) span->end); zoomed.array->rgba16[i][0] = rgb[j][0]; zoomed.array->rgba16[i][1] = rgb[j][1]; zoomed.array->rgba16[i][2] = rgb[j][2]; zoomed.array->rgba16[i][3] = 0xffff; } } else { const GLfloat (*rgb)[3] = (const GLfloat (*)[3]) src; GLint i; for (i = 0; i < zoomedWidth; i++) { GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; ASSERT(j >= 0); ASSERT(j < span->end); zoomed.array->attribs[FRAG_ATTRIB_COL][i][0] = rgb[j][0]; zoomed.array->attribs[FRAG_ATTRIB_COL][i][1] = rgb[j][1]; zoomed.array->attribs[FRAG_ATTRIB_COL][i][2] = rgb[j][2]; zoomed.array->attribs[FRAG_ATTRIB_COL][i][3] = 1.0F; } } } else if (format == GL_DEPTH_COMPONENT) { const GLuint *zValues = (const GLuint *) src; GLint i; for (i = 0; i < zoomedWidth; i++) { GLint j = unzoom_x(ctx->Pixel.ZoomX, imgX, x0 + i) - span->x; ASSERT(j >= 0); ASSERT(j < (GLint) span->end); zoomed.array->z[i] = zValues[j]; } /* Now, fall into the RGB path below */ format = GL_RGBA; } /* write the span in rows [r0, r1) */ if (format == GL_RGBA || format == GL_RGB) { /* Writing the span may modify the colors, so make a backup now if we're * going to call _swrast_write_zoomed_span() more than once. * Also, clipping may change the span end value, so store it as well. */ const GLint end = zoomed.end; /* save */ void *rgbaSave; const GLint pixelSize = (zoomed.array->ChanType == GL_UNSIGNED_BYTE) ? 4 * sizeof(GLubyte) : ((zoomed.array->ChanType == GL_UNSIGNED_SHORT) ? 4 * sizeof(GLushort) : 4 * sizeof(GLfloat)); rgbaSave = malloc(zoomed.end * pixelSize); if (!rgbaSave) { return; } if (y1 - y0 > 1) { memcpy(rgbaSave, zoomed.array->rgba, zoomed.end * pixelSize); } for (zoomed.y = y0; zoomed.y < y1; zoomed.y++) { _swrast_write_rgba_span(ctx, &zoomed); zoomed.end = end; /* restore */ if (y1 - y0 > 1) { /* restore the colors */ memcpy(zoomed.array->rgba, rgbaSave, zoomed.end * pixelSize); } } free(rgbaSave); } }
/** * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16) * color array. */ static inline void interpolate_int_colors(struct gl_context *ctx, SWspan *span) { #if CHAN_BITS != 32 const GLuint n = span->end; GLuint i; ASSERT(!(span->arrayMask & SPAN_RGBA)); #endif switch (span->array->ChanType) { #if CHAN_BITS != 32 case GL_UNSIGNED_BYTE: { GLubyte (*rgba)[4] = span->array->rgba8; if (span->interpMask & SPAN_FLAT) { GLubyte color[4]; color[RCOMP] = FixedToInt(span->red); color[GCOMP] = FixedToInt(span->green); color[BCOMP] = FixedToInt(span->blue); color[ACOMP] = FixedToInt(span->alpha); for (i = 0; i < n; i++) { COPY_4UBV(rgba[i], color); } } else { GLfixed r = span->red; GLfixed g = span->green; GLfixed b = span->blue; GLfixed a = span->alpha; GLint dr = span->redStep; GLint dg = span->greenStep; GLint db = span->blueStep; GLint da = span->alphaStep; for (i = 0; i < n; i++) { rgba[i][RCOMP] = FixedToChan(r); rgba[i][GCOMP] = FixedToChan(g); rgba[i][BCOMP] = FixedToChan(b); rgba[i][ACOMP] = FixedToChan(a); r += dr; g += dg; b += db; a += da; } } } break; case GL_UNSIGNED_SHORT: { GLushort (*rgba)[4] = span->array->rgba16; if (span->interpMask & SPAN_FLAT) { GLushort color[4]; color[RCOMP] = FixedToInt(span->red); color[GCOMP] = FixedToInt(span->green); color[BCOMP] = FixedToInt(span->blue); color[ACOMP] = FixedToInt(span->alpha); for (i = 0; i < n; i++) { COPY_4V(rgba[i], color); } } else { GLushort (*rgba)[4] = span->array->rgba16; GLfixed r, g, b, a; GLint dr, dg, db, da; r = span->red; g = span->green; b = span->blue; a = span->alpha; dr = span->redStep; dg = span->greenStep; db = span->blueStep; da = span->alphaStep; for (i = 0; i < n; i++) { rgba[i][RCOMP] = FixedToChan(r); rgba[i][GCOMP] = FixedToChan(g); rgba[i][BCOMP] = FixedToChan(b); rgba[i][ACOMP] = FixedToChan(a); r += dr; g += dg; b += db; a += da; } } } break; #endif case GL_FLOAT: interpolate_active_attribs(ctx, span, FRAG_BIT_COL); break; default: _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors", span->array->ChanType); } span->arrayMask |= SPAN_RGBA; }