void
fbsdrun_addcpu(struct vmctx *ctx, int fromcpu, int newcpu, uint64_t rip)
{
	int error;

	assert(fromcpu == BSP);

	/*
	 * The 'newcpu' must be activated in the context of 'fromcpu'. If
	 * vm_activate_cpu() is delayed until newcpu's pthread starts running
	 * then vmm.ko is out-of-sync with bhyve and this can create a race
	 * with vm_suspend().
	 */
	error = vm_activate_cpu(ctx, newcpu);
	assert(error == 0);

	CPU_SET_ATOMIC(newcpu, &cpumask);

	/*
	 * Set up the vmexit struct to allow execution to start
	 * at the given RIP
	 */
	vmexit[newcpu].rip = rip;
	vmexit[newcpu].inst_length = 0;

	mt_vmm_info[newcpu].mt_ctx = ctx;
	mt_vmm_info[newcpu].mt_vcpu = newcpu;

	error = pthread_create(&mt_vmm_info[newcpu].mt_thr, NULL,
	    fbsdrun_start_thread, &mt_vmm_info[newcpu]);
	assert(error == 0);
}
Exemple #2
0
static int
add_cpu(struct vmctx *ctx, int guest_ncpus)
{
	int i;
	int error;

	for (i = 0; i < guest_ncpus; i++) {
		error = vm_create_vcpu(ctx, (uint16_t)i);
		if (error != 0) {
			fprintf(stderr, "ERROR: could not create VCPU %d\n", i);
			return error;
		}

		CPU_SET_ATOMIC(i, &cpumask);

		mt_vmm_info[i].mt_ctx = ctx;
		mt_vmm_info[i].mt_vcpu = i;
	}

	vm_set_vcpu_regs(ctx, &ctx->bsp_regs);

	error = pthread_create(&mt_vmm_info[0].mt_thr, NULL,
	    start_thread, &mt_vmm_info[0]);

	return error;
}
Exemple #3
0
void
vm_activate_cpu(struct vm *vm, int vcpuid)
{

	KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU,
	    ("vm_activate_cpu: invalid vcpuid %d", vcpuid));
	KASSERT(!CPU_ISSET(vcpuid, &vm->active_cpus),
	    ("vm_activate_cpu: vcpuid %d is already active", vcpuid));

	VCPU_CTR0(vm, vcpuid, "activated");
	CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
}
Exemple #4
0
int
vm_activate_cpu(struct vm *vm, int vcpuid)
{

	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
		return (EINVAL);

	if (CPU_ISSET(((unsigned) vcpuid), &vm->active_cpus))
		return (EBUSY);

	VCPU_CTR0(vm, vcpuid, "activated");
	CPU_SET_ATOMIC(((unsigned) vcpuid), &vm->active_cpus);
	return (0);
}
Exemple #5
0
/*
 * send an IPI to a specific CPU.
 */
void
ipi_cpu(int cpu, u_int ipi)
{

	/*
	 * IPI_STOP_HARD maps to a NMI and the trap handler needs a bit
	 * of help in order to understand what is the source.
	 * Set the mask of receiving CPUs for this purpose.
	 */
	if (ipi == IPI_STOP_HARD)
		CPU_SET_ATOMIC(cpu, &ipi_nmi_pending);

	CTR3(KTR_SMP, "%s: cpu: %d ipi: %x", __func__, cpu, ipi);
	ipi_send_cpu(cpu, ipi);
}
Exemple #6
0
void
fbsdrun_addcpu(struct vmctx *ctx, int fromcpu, int newcpu, uint64_t rip)
{
	int error;

	assert(fromcpu == BSP);

	CPU_SET_ATOMIC(newcpu, &cpumask);

	/*
	 * Set up the vmexit struct to allow execution to start
	 * at the given RIP
	 */
	vmexit[newcpu].rip = rip;
	vmexit[newcpu].inst_length = 0;

	mt_vmm_info[newcpu].mt_ctx = ctx;
	mt_vmm_info[newcpu].mt_vcpu = newcpu;

	error = pthread_create(&mt_vmm_info[newcpu].mt_thr, NULL,
	    fbsdrun_start_thread, &mt_vmm_info[newcpu]);
	assert(error == 0);
}
Exemple #7
0
/*
 * Handle an IPI_STOP by saving our current context and spinning until we
 * are resumed.
 */
void
cpustop_handler(void)
{
	int cpu;

	cpu = PCPU_GET(cpuid);

	savectx(&stoppcbs[cpu]);

	/* Indicate that we are stopped */
	CPU_SET_ATOMIC(cpu, &stopped_cpus);

	/* Wait for restart */
	while (!CPU_ISSET(cpu, &started_cpus))
	    ia32_pause();

	CPU_CLR_ATOMIC(cpu, &started_cpus);
	CPU_CLR_ATOMIC(cpu, &stopped_cpus);

	if (cpu == 0 && cpustop_restartfunc != NULL) {
		cpustop_restartfunc();
		cpustop_restartfunc = NULL;
	}
}
Exemple #8
0
/*
 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
 */
static int
vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled)
{
	struct vcpu *vcpu;
	const char *wmesg;
	int vcpu_halted, vm_halted;
	const struct timespec ts = {.tv_sec = 1, .tv_nsec = 0}; /* 1 second */

	KASSERT(!CPU_ISSET(((unsigned) vcpuid), &vm->halted_cpus),
		("vcpu already halted"));

	vcpu = &vm->vcpu[vcpuid];
	vcpu_halted = 0;
	vm_halted = 0;

	vcpu_lock(vcpu);
	while (1) {
		/*
		 * Do a final check for pending NMI or interrupts before
		 * really putting this thread to sleep. Also check for
		 * software events that would cause this vcpu to wakeup.
		 *
		 * These interrupts/events could have happened after the
		 * vcpu returned from VMRUN() and before it acquired the
		 * vcpu lock above.
		 */
		if (vm->rendezvous_func != NULL || vm->suspend)
			break;
		if (vm_nmi_pending(vm, vcpuid))
			break;
		if (!intr_disabled) {
			if (vm_extint_pending(vm, vcpuid) ||
			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
				break;
			}
		}

		/*
		 * Some Linux guests implement "halt" by having all vcpus
		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
		 * track of the vcpus that have entered this state. When all
		 * vcpus enter the halted state the virtual machine is halted.
		 */
		if (intr_disabled) {
			wmesg = "vmhalt";
			VCPU_CTR0(vm, vcpuid, "Halted");
			if (!vcpu_halted && halt_detection_enabled) {
				vcpu_halted = 1;
				CPU_SET_ATOMIC(((unsigned) vcpuid), &vm->halted_cpus);
			}
			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
				vm_halted = 1;
				break;
			}
		} else {
			wmesg = "vmidle";
		}

		//t = ticks;
		vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
		/*
		 * XXX msleep_spin() cannot be interrupted by signals so
		 * wake up periodically to check pending signals.
		 */
		pthread_mutex_lock(&vcpu->vcpu_sleep_mtx);
		vcpu_unlock(vcpu);
		pthread_cond_timedwait_relative_np(&vcpu->vcpu_sleep_cnd,
			&vcpu->vcpu_sleep_mtx, &ts);
		vcpu_lock(vcpu);
		pthread_mutex_unlock(&vcpu->vcpu_sleep_mtx);
		//msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
		vcpu_require_state_locked(vcpu, VCPU_FROZEN);
		//vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
	}

	if (vcpu_halted)
		CPU_CLR_ATOMIC(((unsigned) vcpuid), &vm->halted_cpus);

	vcpu_unlock(vcpu);

	if (vm_halted)
		vm_suspend(vm, VM_SUSPEND_HALT);

	return (0);
}

static int
vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
{
	struct vie *vie;
	struct vcpu *vcpu;
	struct vm_exit *vme;
	uint64_t gla, gpa, cs_base;
	struct vm_guest_paging *paging;
	mem_region_read_t mread;
	mem_region_write_t mwrite;
	enum vm_cpu_mode cpu_mode;
	int cs_d, error, fault, length;

	vcpu = &vm->vcpu[vcpuid];
	vme = &vcpu->exitinfo;

	gla = vme->u.inst_emul.gla;
	gpa = vme->u.inst_emul.gpa;
	cs_base = vme->u.inst_emul.cs_base;
	cs_d = vme->u.inst_emul.cs_d;
	vie = &vme->u.inst_emul.vie;
	paging = &vme->u.inst_emul.paging;
	cpu_mode = paging->cpu_mode;

	VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#llx", gpa);

	/* Fetch, decode and emulate the faulting instruction */
	if (vie->num_valid == 0) {
		/*
		 * If the instruction length is not known then assume a
		 * maximum size instruction.
		 */
		length = vme->inst_length ? vme->inst_length : VIE_INST_SIZE;
		error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
		    cs_base, length, vie, &fault);
	} else {
		/*
		 * The instruction bytes have already been copied into 'vie'
		 */
		error = fault = 0;
	}
	if (error || fault)
		return (error);

	if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
		VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#llx",
		    vme->rip + cs_base);
		*retu = true;	    /* dump instruction bytes in userspace */
		return (0);
	}

	/*
	 * If the instruction length was not specified then update it now
	 * along with 'nextrip'.
	 */
	if (vme->inst_length == 0) {
		vme->inst_length = vie->num_processed;
		vcpu->nextrip += vie->num_processed;
	}
 
	/* return to userland unless this is an in-kernel emulated device */
	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + XHYVE_PAGE_SIZE) {
		mread = lapic_mmio_read;
		mwrite = lapic_mmio_write;
	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
		mread = vioapic_mmio_read;
		mwrite = vioapic_mmio_write;
	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
		mread = vhpet_mmio_read;
		mwrite = vhpet_mmio_write;
	} else {
		*retu = true;
		return (0);
	}

	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
	    mread, mwrite, retu);

	return (error);
}

static int
vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
{
	int i, done;
	struct vcpu *vcpu;
	const struct timespec ts = {.tv_sec = 1, .tv_nsec = 0}; /* 1 second */

	done = 0;
	vcpu = &vm->vcpu[vcpuid];

	CPU_SET_ATOMIC(((unsigned) vcpuid), &vm->suspended_cpus);

	/*
	 * Wait until all 'active_cpus' have suspended themselves.
	 *
	 * Since a VM may be suspended at any time including when one or
	 * more vcpus are doing a rendezvous we need to call the rendezvous
	 * handler while we are waiting to prevent a deadlock.
	 */
	vcpu_lock(vcpu);
	while (1) {
		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
			VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
			break;
		}

		if (vm->rendezvous_func == NULL) {
			VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
			vcpu_require_state_locked(vcpu, VCPU_SLEEPING);

			pthread_mutex_lock(&vcpu->vcpu_sleep_mtx);
			vcpu_unlock(vcpu);
			pthread_cond_timedwait_relative_np(&vcpu->vcpu_sleep_cnd,
				&vcpu->vcpu_sleep_mtx, &ts);
			vcpu_lock(vcpu);
			pthread_mutex_unlock(&vcpu->vcpu_sleep_mtx);
			//msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);

			vcpu_require_state_locked(vcpu, VCPU_FROZEN);
		} else {
			VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
			vcpu_unlock(vcpu);
			vm_handle_rendezvous(vm, vcpuid);
			vcpu_lock(vcpu);
		}
	}
	vcpu_unlock(vcpu);

	/*
	 * Wakeup the other sleeping vcpus and return to userspace.
	 */
	for (i = 0; i < VM_MAXCPU; i++) {
		if (CPU_ISSET(((unsigned) i), &vm->suspended_cpus)) {
			vcpu_notify_event(vm, i, false);
		}
	}

	*retu = true;
	return (0);
}

int
vm_suspend(struct vm *vm, enum vm_suspend_how how)
{
	int i;

	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
		return (EINVAL);

	if (atomic_cmpset_int(((volatile u_int *) &vm->suspend), 0, how) == 0) {
		VM_CTR2(vm, "virtual machine already suspended %d/%d",
		    vm->suspend, how);
		return (EALREADY);
	}

	VM_CTR1(vm, "virtual machine successfully suspended %d", how);

	/*
	 * Notify all active vcpus that they are now suspended.
	 */
	for (i = 0; i < VM_MAXCPU; i++) {
		if (CPU_ISSET(((unsigned) i), &vm->active_cpus))
			vcpu_notify_event(vm, i, false);
	}

	return (0);
}
Exemple #9
0
static int
ipi_handler(void *arg)
{
	u_int	cpu, ipi;

	cpu = PCPU_GET(cpuid);

	ipi = pic_ipi_read((int)arg);

	while ((ipi != 0x3ff)) {
		switch (ipi) {
		case IPI_RENDEZVOUS:
			CTR0(KTR_SMP, "IPI_RENDEZVOUS");
			smp_rendezvous_action();
			break;

		case IPI_AST:
			CTR0(KTR_SMP, "IPI_AST");
			break;

		case IPI_STOP:
			/*
			 * IPI_STOP_HARD is mapped to IPI_STOP so it is not
			 * necessary to add it in the switch.
			 */
			CTR0(KTR_SMP, "IPI_STOP or IPI_STOP_HARD");

			savectx(&stoppcbs[cpu]);

			/*
			 * CPUs are stopped when entering the debugger and at
			 * system shutdown, both events which can precede a
			 * panic dump.  For the dump to be correct, all caches
			 * must be flushed and invalidated, but on ARM there's
			 * no way to broadcast a wbinv_all to other cores.
			 * Instead, we have each core do the local wbinv_all as
			 * part of stopping the core.  The core requesting the
			 * stop will do the l2 cache flush after all other cores
			 * have done their l1 flushes and stopped.
			 */
			cpu_idcache_wbinv_all();

			/* Indicate we are stopped */
			CPU_SET_ATOMIC(cpu, &stopped_cpus);

			/* Wait for restart */
			while (!CPU_ISSET(cpu, &started_cpus))
				cpu_spinwait();

			CPU_CLR_ATOMIC(cpu, &started_cpus);
			CPU_CLR_ATOMIC(cpu, &stopped_cpus);
			CTR0(KTR_SMP, "IPI_STOP (restart)");
			break;
		case IPI_PREEMPT:
			CTR1(KTR_SMP, "%s: IPI_PREEMPT", __func__);
			sched_preempt(curthread);
			break;
		case IPI_HARDCLOCK:
			CTR1(KTR_SMP, "%s: IPI_HARDCLOCK", __func__);
			hardclockintr();
			break;
		case IPI_TLB:
			CTR1(KTR_SMP, "%s: IPI_TLB", __func__);
			cpufuncs.cf_tlb_flushID();
			break;
		default:
			panic("Unknown IPI 0x%0x on cpu %d", ipi, curcpu);
		}

		pic_ipi_clear(ipi);
		ipi = pic_ipi_read(-1);
	}

	return (FILTER_HANDLED);
}