Exemple #1
0
int main(int argc, char **argv)
{
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
    char *p = NULL, *q = NULL;

    if (!CRYPTO_secure_malloc_init(4096, 32)) {
        perror("failed");
        return 1;
    }
    p = OPENSSL_secure_malloc(20);
    if (!CRYPTO_secure_allocated(p)) {
        perror("failed 1");
        return 1;
    }
    q = OPENSSL_malloc(20);
    if (CRYPTO_secure_allocated(q)) {
        perror("failed 1");
        return 1;
    }
    OPENSSL_secure_free(p);
    OPENSSL_free(q);
    CRYPTO_secure_malloc_done();
#else
    /* Should fail. */
    if (CRYPTO_secure_malloc_init(4096, 32)) {
        perror("failed");
        return 1;
    }
#endif
    return 0;
}
Exemple #2
0
int module_close()
{
	sc_notify_close();
#if defined(ENABLE_OPENSSL) && defined(OPENSSL_SECURE_MALLOC_SIZE)
	CRYPTO_secure_malloc_done();
#endif
#ifdef ENABLE_OPENPACE
	EAC_cleanup();
#endif
	return 1;
}
Exemple #3
0
static int test_sec_mem_clear(void)
{
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
    const int size = 64;
    unsigned char *p = NULL;
    int i, res = 0;

    if (!TEST_true(CRYPTO_secure_malloc_init(4096, 32))
            || !TEST_ptr(p = OPENSSL_secure_malloc(size)))
        goto err;

    for (i = 0; i < size; i++)
        if (!TEST_uchar_eq(p[i], 0))
            goto err;

    for (i = 0; i < size; i++)
        p[i] = (unsigned char)(i + ' ' + 1);

    OPENSSL_secure_free(p);

    /*
     * A deliberate use after free here to verify that the memory has been
     * cleared properly.  Since secure free doesn't return the memory to
     * libc's memory pool, it technically isn't freed.  However, the header
     * bytes have to be skipped and these consist of two pointers in the
     * current implementation.
     */
    for (i = sizeof(void *) * 2; i < size; i++)
        if (!TEST_uchar_eq(p[i], 0))
            return 0;

    res = 1;
    p = NULL;

err:
    OPENSSL_secure_free(p);
    CRYPTO_secure_malloc_done();
    return res;
#else
    return 1;
#endif
}
Exemple #4
0
static int test_sec_mem(void)
{
#if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX)
    int testresult = 0;
    char *p = NULL, *q = NULL, *r = NULL, *s = NULL;

    s = OPENSSL_secure_malloc(20);
    /* s = non-secure 20 */
    if (!TEST_ptr(s)
        || !TEST_false(CRYPTO_secure_allocated(s)))
        goto end;
    r = OPENSSL_secure_malloc(20);
    /* r = non-secure 20, s = non-secure 20 */
    if (!TEST_ptr(r)
        || !TEST_true(CRYPTO_secure_malloc_init(4096, 32))
        || !TEST_false(CRYPTO_secure_allocated(r)))
        goto end;
    p = OPENSSL_secure_malloc(20);
    if (!TEST_ptr(p)
        /* r = non-secure 20, p = secure 20, s = non-secure 20 */
        || !TEST_true(CRYPTO_secure_allocated(p))
        /* 20 secure -> 32-byte minimum allocation unit */
        || !TEST_size_t_eq(CRYPTO_secure_used(), 32))
        goto end;
    q = OPENSSL_malloc(20);
    if (!TEST_ptr(q))
        goto end;
    /* r = non-secure 20, p = secure 20, q = non-secure 20, s = non-secure 20 */
    if (!TEST_false(CRYPTO_secure_allocated(q)))
        goto end;
    OPENSSL_secure_clear_free(s, 20);
    s = OPENSSL_secure_malloc(20);
    if (!TEST_ptr(s)
        /* r = non-secure 20, p = secure 20, q = non-secure 20, s = secure 20 */
        || !TEST_true(CRYPTO_secure_allocated(s))
        /* 2 * 20 secure -> 64 bytes allocated */
        || !TEST_size_t_eq(CRYPTO_secure_used(), 64))
        goto end;
    OPENSSL_secure_clear_free(p, 20);
    p = NULL;
    /* 20 secure -> 32 bytes allocated */
    if (!TEST_size_t_eq(CRYPTO_secure_used(), 32))
        goto end;
    OPENSSL_free(q);
    q = NULL;
    /* should not complete, as secure memory is still allocated */
    if (!TEST_false(CRYPTO_secure_malloc_done())
        || !TEST_true(CRYPTO_secure_malloc_initialized()))
        goto end;
    OPENSSL_secure_free(s);
    s = NULL;
    /* secure memory should now be 0, so done should complete */
    if (!TEST_size_t_eq(CRYPTO_secure_used(), 0)
        || !TEST_true(CRYPTO_secure_malloc_done())
        || !TEST_false(CRYPTO_secure_malloc_initialized()))
        goto end;

    TEST_info("Possible infinite loop: allocate more than available");
    if (!TEST_true(CRYPTO_secure_malloc_init(32768, 16)))
        goto end;
    TEST_ptr_null(OPENSSL_secure_malloc((size_t)-1));
    TEST_true(CRYPTO_secure_malloc_done());

    /*
     * If init fails, then initialized should be false, if not, this
     * could cause an infinite loop secure_malloc, but we don't test it
     */
    if (TEST_false(CRYPTO_secure_malloc_init(16, 16)) &&
        !TEST_false(CRYPTO_secure_malloc_initialized())) {
        TEST_true(CRYPTO_secure_malloc_done());
        goto end;
    }

    /*-
     * There was also a possible infinite loop when the number of
     * elements was 1<<31, as |int i| was set to that, which is a
     * negative number. However, it requires minimum input values:
     *
     * CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4);
     *
     * Which really only works on 64-bit systems, since it took 16 GB
     * secure memory arena to trigger the problem. It naturally takes
     * corresponding amount of available virtual and physical memory
     * for test to be feasible/representative. Since we can't assume
     * that every system is equipped with that much memory, the test
     * remains disabled. If the reader of this comment really wants
     * to make sure that infinite loop is fixed, they can enable the
     * code below.
     */
# if 0
    /*-
     * On Linux and BSD this test has a chance to complete in minimal
     * time and with minimum side effects, because mlock is likely to
     * fail because of RLIMIT_MEMLOCK, which is customarily [much]
     * smaller than 16GB. In other words Linux and BSD users can be
     * limited by virtual space alone...
     */
    if (sizeof(size_t) > 4) {
        TEST_info("Possible infinite loop: 1<<31 limit");
        if (TEST_true(CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4) != 0))
            TEST_true(CRYPTO_secure_malloc_done());
    }
# endif

    /* this can complete - it was not really secure */
    testresult = 1;
 end:
    OPENSSL_secure_free(p);
    OPENSSL_free(q);
    OPENSSL_secure_free(r);
    OPENSSL_secure_free(s);
    return testresult;
#else
    /* Should fail. */
    return TEST_false(CRYPTO_secure_malloc_init(4096, 32));
#endif
}
Exemple #5
0
void OPENSSL_cleanup(void)
{
    OPENSSL_INIT_STOP *currhandler, *lasthandler;
    CRYPTO_THREAD_LOCAL key;

    /* If we've not been inited then no need to deinit */
    if (!base_inited)
        return;

    /* Might be explicitly called and also by atexit */
    if (stopped)
        return;
    stopped = 1;

    /*
     * Thread stop may not get automatically called by the thread library for
     * the very last thread in some situations, so call it directly.
     */
    ossl_init_thread_stop(ossl_init_get_thread_local(0));

    currhandler = stop_handlers;
    while (currhandler != NULL) {
        currhandler->handler();
        lasthandler = currhandler;
        currhandler = currhandler->next;
        OPENSSL_free(lasthandler);
    }
    stop_handlers = NULL;

    CRYPTO_THREAD_lock_free(init_lock);
    init_lock = NULL;

    /*
     * We assume we are single-threaded for this function, i.e. no race
     * conditions for the various "*_inited" vars below.
     */

#ifndef OPENSSL_NO_COMP
    if (zlib_inited) {
        OSSL_TRACE(INIT, "OPENSSL_cleanup: comp_zlib_cleanup_int()\n");
        comp_zlib_cleanup_int();
    }
#endif

    if (async_inited) {
        OSSL_TRACE(INIT, "OPENSSL_cleanup: async_deinit()\n");
        async_deinit();
    }

    if (load_crypto_strings_inited) {
        OSSL_TRACE(INIT, "OPENSSL_cleanup: err_free_strings_int()\n");
        err_free_strings_int();
    }

    key = destructor_key.value;
    destructor_key.sane = -1;
    CRYPTO_THREAD_cleanup_local(&key);

    /*
     * Note that cleanup order is important:
     * - rand_cleanup_int could call an ENGINE's RAND cleanup function so
     * must be called before engine_cleanup_int()
     * - ENGINEs use CRYPTO_EX_DATA and therefore, must be cleaned up
     * before the ex data handlers are wiped in CRYPTO_cleanup_all_ex_data().
     * - conf_modules_free_int() can end up in ENGINE code so must be called
     * before engine_cleanup_int()
     * - ENGINEs and additional EVP algorithms might use added OIDs names so
     * obj_cleanup_int() must be called last
     */
    OSSL_TRACE(INIT, "OPENSSL_cleanup: rand_cleanup_int()\n");
    rand_cleanup_int();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: rand_drbg_cleanup_int()\n");
    rand_drbg_cleanup_int();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: conf_modules_free_int()\n");
    conf_modules_free_int();
#ifndef OPENSSL_NO_ENGINE
    OSSL_TRACE(INIT, "OPENSSL_cleanup: engine_cleanup_int()\n");
    engine_cleanup_int();
#endif
    OSSL_TRACE(INIT, "OPENSSL_cleanup: ossl_store_cleanup_int()\n");
    ossl_store_cleanup_int();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: crypto_cleanup_all_ex_data_int()\n");
    crypto_cleanup_all_ex_data_int();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: bio_cleanup()\n");
    bio_cleanup();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: evp_cleanup_int()\n");
    evp_cleanup_int();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: obj_cleanup_int()\n");
    obj_cleanup_int();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: err_int()\n");
    err_cleanup();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: CRYPTO_secure_malloc_done()\n");
    CRYPTO_secure_malloc_done();

    OSSL_TRACE(INIT, "OPENSSL_cleanup: ossl_trace_cleanup()\n");
    ossl_trace_cleanup();

    base_inited = 0;
}