BOOLEAN
SpotTone (SpotToneGen st)
{
  int i, n = st->size;

  ComplexOSC (st->osc.gen);

  for (i = 0; i < n; i++)
    {

      // in an envelope stage?

      if (st->stage == SpotTone_RISE)
	{

	  // still going?
	  if (st->rise.have++ < st->rise.want)
	    {
	      st->curr += st->rise.incr;
	      st->mul = (REAL) (st->scl * sin (st->curr * M_PI / 2.0));
	    }
	  else
	    {
	      // no, assert steady-state, force level
	      st->curr = 1.0;
	      st->mul = st->scl;
	      st->stage = SpotTone_STDY;
	      // won't come back into envelopes
	      // until FALL asserted from outside
	    }

	}
      else if (st->stage == SpotTone_FALL)
	{

	  // still going?
	  if (st->fall.have++ < st->fall.want)
	    {
	      st->curr -= st->fall.incr;
	      st->mul = (REAL) (st->scl * sin (st->curr * M_PI / 2.0));
	    }
	  else
	    {
	      // no, assert trailing, force level
	      st->curr = 0.0;
	      st->mul = 0.0;
	      st->stage = SpotTone_HOLD;
	      // won't come back into envelopes hereafter
	    }
	}
      // apply envelope
      // (same base as osc.gen internal buf)
      CXBdata (st->buf, i) = Cscl (CXBdata (st->buf, i), st->mul);
    }

  // indicate whether it's turned itself off
  // sometime during this pass

  return st->stage != SpotTone_HOLD;
}
Exemple #2
0
void
AMDemod (AMD am)
{
	int i;
	REAL demout;
	switch (am->mode)
	{
		case SAMdet:
			for (i = 0; i < am->size; i++)
			{
				pll (am, CXBdata (am->ibuf, i));
				demout = dem (am);
				CXBdata (am->obuf, i) = Cmplx (demout, demout);
			}
			break;
		case AMdet:
			for (i = 0; i < am->size; i++)
			{
				am->lock.curr = Cmag (CXBdata (am->ibuf, i));
				am->dc = 0.9999f * am->dc + 0.0001f * am->lock.curr;
				am->smooth = 0.5f * am->smooth + 0.5f * (am->lock.curr /*- am->dc*/);
				/* demout = am->smooth; */
				CXBdata (am->obuf, i) = Cmplx (am->smooth, am->smooth);
			}
			break;
	}
}
void
correctIQ (CXB sigbuf, IQ iq, BOOLEAN isTX, int subchan)
{
	int i;
	REAL doit;
	if (IQdoit == 0) return;
	if (subchan == 0) doit = iq->mu;
	else doit = 0;
	if(!isTX)
	{
		// if (subchan == 0) // removed so that sub rx's will get IQ correction
		for (i = 0; i < CXBhave (sigbuf); i++)
		{
			iq->del[iq->index] = CXBdata(sigbuf,i);
			iq->y[iq->index] = Cadd(iq->del[iq->index],Cmul(iq->w[0],Conjg(iq->del[iq->index])));
			iq->y[iq->index] = Cadd(iq->y[iq->index],Cmul(iq->w[1],Conjg(iq->y[iq->index])));
			iq->w[1] = Csub(iq->w[1], Cscl(Cmul(iq->y[iq->index],iq->y[iq->index]), doit));  // this is where the adaption happens

			CXBdata(sigbuf,i)=iq->y[iq->index];
			iq->index = (iq->index+iq->MASK)&iq->MASK;
		}
		//fprintf(stderr, "w1 real: %g, w1 imag: %g\n", iq->w[1].re, iq->w[1].im); fflush(stderr); 
	}
	else
	{
		for (i = 0; i < CXBhave (sigbuf); i++)
		{
			CXBimag (sigbuf, i) += iq->phase * CXBreal (sigbuf, i);
			CXBreal (sigbuf, i) *= iq->gain;
		}
	}

}
Exemple #4
0
// snapshot -> frequency domain
void
compute_spectrum (SpecBlock * sb)
{
	int i, j, half = sb->size / 2;


	// assume timebuf has windowed current snapshot

	fftwf_execute (sb->plan);

	if (sb->scale == SPEC_MAG)
	{
		for (i = 0, j = half; i < half; i++, j++)
		{
			sb->output[i] = (float) Cmag (CXBdata (sb->freqbuf, j));
			sb->output[j] = (float) Cmag (CXBdata (sb->freqbuf, i));
		}
	}
	else
	{				// SPEC_PWR
		for (i = 0, j = half; i < half; i++, j++)
		{
			sb->output[i] =
				(float) (10.0 *
				log10 (Csqrmag (CXBdata (sb->freqbuf, j)) + 1e-60));
			sb->output[j] =
				(float) (10.0 *
				log10 (Csqrmag (CXBdata (sb->freqbuf, i)) + 1e-60));
		}
	}
}
BOOLEAN
CWTone (CWToneGen cwt)
{
	int i, n = cwt->size;

	ComplexOSC (cwt->osc.gen);

	for (i = 0; i < n; i++)
	{
		// in an envelope stage?
		if (cwt->stage == CWTone_RISE)
		{
			// still going?
			if (cwt->rise.have++ < cwt->rise.want)
			{
				cwt->curr += cwt->rise.incr;
				cwt->mul = cwt->scl * (REAL) CWSIN (cwt->curr * M_PI / 2.0);
			}
			else
			{
				// no, assert steady-state, force level
				cwt->curr = 1.0;
				cwt->mul = cwt->scl;
				cwt->stage = CWTone_STDY;
				// won't come back into envelopes
				// until FALL asserted from outside
			}
		}
		else if (cwt->stage == CWTone_FALL)
		{
            // still going?
			if (cwt->fall.have++ < cwt->fall.want)
			{
				cwt->curr -= cwt->fall.incr;
				cwt->mul = cwt->scl * (REAL) CWSIN (cwt->curr * M_PI / 2.0);
			}
			else
			{
				// no, assert trailing, force level
				cwt->curr = 0.0;
				cwt->mul = 0.0;
				cwt->stage = CWTone_HOLD;
				// won't come back into envelopes hereafter
			}
		}
		// apply envelope
		// (same base as osc.gen internal buf)
		CXBdata (cwt->buf, i) = Cscl (CXBdata (cwt->buf, i), cwt->mul);
	}
	CXBhave(cwt->buf) = n; /* kd5tfd added - set have field of buf so correctIQ works */ 

	// indicate whether it's turned itself off
	// sometime during this pass
	return cwt->stage != CWTone_HOLD;
}
Exemple #6
0
void CSSBDemod::demodulate()
{
	if (m_ibuf == m_obuf)
		return;

	unsigned int n = CXBhave(m_ibuf);

	for (unsigned int i = 0; i < n; i++)
		CXBdata(m_obuf, i) = CXBdata(m_ibuf, i);

	CXBhave(m_obuf) = n;
}
void
SDROMnoiseblanker (NB nb)
{
  int i;
  for (i = 0; i < CXBsize (nb->sigbuf); i++)
    {
      REAL cmag = Cmag (CXBdata (nb->sigbuf, i));
      nb->average_sig = Cadd (Cscl (nb->average_sig, 0.75),
			      Cscl (CXBdata (nb->sigbuf, i), 0.25));
      nb->average_mag = (REAL) (0.999 * (nb->average_mag) + 0.001 * cmag);
      if (cmag > (nb->threshold * nb->average_mag))
	CXBdata (nb->sigbuf, i) = nb->average_sig;
    }
}
Exemple #8
0
void
compute_complex_spectrum(SpecBlock * sb)
{
	int i, j, half = sb->size / 2;

	// assume timebuf has windowed current snapshot

	fftwf_execute (sb->plan);

	for (i = 0, j = half; i < half; i++, j++) {
		sb->coutput[i] = CXBdata (sb->freqbuf, j);
		sb->coutput[j] = CXBdata (sb->freqbuf, i);
	}	
}
Exemple #9
0
void
WSCompand (WSCompander wsc)
{
	int i, n = CXBsize (wsc->buff);

	//if (wsc->fac != 0.0) 
	{
		for (i = 0; i < n ; i++)
		{
			COMPLEX val = CXBdata (wsc->buff, i);
			REAL mag = Cmag (val), scl = WSCLookup (wsc, mag);
			CXBdata (wsc->buff, i) = Cscl (val,scl);
		}
	}
}
Exemple #10
0
void
snap_scope (SpecBlock * sb, int label)
{
	int i, j;

	// where most recent signal started
	j = sb->fill;

	// copy starting from there in circular fashion
	for (i = 0; i < sb->size; i++)
	{
		CXBdata (sb->timebuf, i) = CXBdata (sb->accum, j);
		j = (++j & sb->mask);
	}

	sb->label = label;
}
void
blms_adapt (BLMS blms)
{
  int sigsize = CXBhave (blms->signal);
  int sigidx = 0;

 // fputs("Inside\n",stderr),fflush(stderr);
  do {
      int j;
      memcpy (blms->delay_line, &blms->delay_line[128], sizeof (COMPLEX) * 128);	// do overlap move
      memcpy (&blms->delay_line[128], &CXBdata (blms->signal, sigidx), sizeof (COMPLEX) * 128);	// copy in new data
      fftwf_execute (blms->Xplan);	// compute transform of input data
      for (j = 0; j < 256; j++) {
          blms->Yhat[j] = Cmul (blms->What[j], blms->Xhat[j]);	// Filter new signal in freq. domain
		  blms->Xhat[j] = Conjg (blms->Xhat[j]);	// take input data's complex conjugate
	  }
      fftwf_execute (blms->Yplan);	//compute output signal transform
      for (j = 128; j < 256; j++)
		  blms->y[j] = Cscl (blms->y[j], BLKSCL);
      memset (blms->y, 0, 128 * sizeof (COMPLEX));
      for (j = 128; j < 256; j++)
		  blms->error[j] = Csub (blms->delay_line[j], blms->y[j]);	// compute error signal

      if (blms->filter_type)
		  memcpy (&CXBdata (blms->signal, sigidx), &blms->y[128], 128 * sizeof (COMPLEX));	// if noise filter, output y
      else
		  memcpy (&CXBdata (blms->signal, sigidx), &blms->error[128], 128 * sizeof (COMPLEX));	// if notch filter, output error

      fftwf_execute (blms->Errhatplan);	// compute transform of the error signal
      for (j = 0; j < 256; j++)
		  blms->Errhat[j] = Cmul (blms->Errhat[j], blms->Xhat[j]);	// compute cross correlation transform
      fftwf_execute (blms->UPDplan);	// compute inverse transform of cross correlation transform
      for (j = 0; j < 128; j++)
		  blms->update[j] = Cscl (blms->update[j], BLKSCL);
      memset (&blms->update[128], 0, sizeof (COMPLEX) * 128);	// zero the last block of the update, so we get
      // filter coefficients only at front of buffer
      fftwf_execute (blms->Wplan);
      for (j = 0; j < 256; j++)
	  {
		blms->What[j] = Cadd (Cscl (blms->What[j], blms->leak_rate),	// leak the W away
				Cscl (blms->Update[j], blms->adaptation_rate));	// update at adaptation rate
	  }
      sigidx += 128;		// move to next block in the signal buffer
  }	while (sigidx < sigsize);	// done?
}
Exemple #12
0
/* ---------------------------------------------------------------------------- */
void
FMDemod(FMD fm) {
  int i;
  for (i = 0; i < CXBhave(fm->ibuf); i++) {
    pll(fm, CXBdata(fm->ibuf, i));
    fm->afc = (REAL) (0.9999 * fm->afc + 0.0001 * fm->pll.freq.f);
    CXBreal(fm->obuf, i) =
      CXBimag(fm->obuf, i) = (fm->pll.freq.f - fm->afc) * fm->cvt;
  }
}
Exemple #13
0
// snapshot of current signal
void
snap_spectrum (SpecBlock * sb, int label)
{
	int i, j;

	// where most recent signal started
	j = sb->fill;

	// copy starting from there in circular fashion,
	// applying window as we go
	if (!sb->polyphase)
	{
		for (i = 0; i < sb->size; i++)
		{
			CXBdata (sb->timebuf, i) =
				Cscl (CXBdata (sb->accum, j), sb->window[i]);
			j = (++j & sb->mask);
		}
	}
	else
	{
		int k;
		for (i = 0; i < sb->size; i++)
		{
			CXBreal (sb->timebuf, i) = CXBreal (sb->accum, j) * sb->window[i];
			CXBimag (sb->timebuf, i) = CXBimag (sb->accum, j) * sb->window[i];
			for (k = 1; k < 8; k++)
			{
				int accumidx = (j + k * sb->size) & sb->mask;
				int winidx = i + k * sb->size;
				CXBreal (sb->timebuf, i) +=
					CXBreal (sb->accum, accumidx) * sb->window[winidx];
				CXBimag (sb->timebuf, i) +=
					CXBimag (sb->accum, accumidx) * sb->window[winidx];
			}
			j = (++j & sb->mask);
		}

	}
	sb->label = label;
}
void
noiseblanker (NB nb)
{
  int i;
  for (i = 0; i < CXBsize (nb->sigbuf); i++)
    {
      REAL cmag = Cmag (CXBdata (nb->sigbuf, i));
      nb->delay[nb->sigindex] = CXBdata (nb->sigbuf, i);
      nb->average_mag = (REAL) (0.999 * (nb->average_mag) + 0.001 * cmag);
      if ((nb->hangtime == 0) && (cmag > (nb->threshold * nb->average_mag)))
	nb->hangtime = 7;
      if (nb->hangtime > 0)
	{
	  CXBdata (nb->sigbuf, i) = Cmplx (0.0, 0.0);
	  nb->hangtime--;
	}
      else
	CXBdata (nb->sigbuf, i) = nb->delay[nb->delayindex];
      nb->sigindex = (nb->sigindex + 7) & 7;
      nb->delayindex = (nb->delayindex + 7) & 7;
    }
}
void CFMDemod::demodulate()
{
	unsigned int n = CXBhave(m_ibuf);

	for (unsigned int i = 0; i < n; i++) {
		pll(CXBdata(m_ibuf, i));

		m_afc = float(0.9999 * m_afc + 0.0001F * m_pllFreqF);

		CXBreal(m_obuf, i) = CXBimag(m_obuf, i) = (m_pllFreqF - m_afc) * m_cvt;
	}

	CXBhave(m_obuf) = n;
}
void CDCBlock::block()
{
	unsigned int n = CXBhave(m_buf);

	for (unsigned int i = 0; i < n; i++) {
		float x = CXBreal(m_buf, i);
		float y = x - m_xm1 + 0.995F * m_ym1;

		m_xm1 = x;
		m_ym1 = y;

		CXBdata(m_buf, i) = Cmplx(y, 0.0F);
	}
}
Exemple #17
0
static void
lmsr_adapt_i (LMSR lms)
{
  int i, j, k;
  REAL sum_sq, scl1, scl2;
  COMPLEX accum, error;

  scl1 = (REAL) (1.0 - rate * leak);

  for (i = 0; i < ssiz; i++)
    {

      dlay (dptr) = CXBdata (lms->signal, i);
      accum = cxzero;
      sum_sq = 0;

      for (j = 0; j < asiz; j+=2)
		{
			k = wrap (j);
			sum_sq += Csqrmag (dlay (k));
			accum.re += afil (j).re * dlay (k).re;
			accum.im += afil (j).im * dlay (k).im;

			k = wrap (j+1);
			sum_sq += Csqrmag (dlay (k));
			accum.re += afil (j+1).re * dlay (k).re;
			accum.im += afil (j+1).im * dlay (k).im;
		}

      error = Csub(cssig(i),accum);
	  cssig(i) = error;
//     ssig_i (i) = error.im;
//	  ssig (i) = error.re;

      scl2 = (REAL) (rate / (sum_sq + 1.19e-7));
      error = Cscl(error,scl2);
      for (j = 0; j < asiz; j+=2)
		{
			k = wrap (j);
			afil (j).re = afil (j).re * scl1 + error.re * dlay (k).re;
			afil (j).im = afil (j).im * scl1 + error.im * dlay (k).im;

			k = wrap (j+1);
			afil (j+1).re = afil (j+1).re * scl1 + error.re * dlay (k).re;
			afil (j+1).im = afil (j+1).im * scl1 + error.im * dlay (k).im;
		}

      dptr = bump (dptr);
    }
}
void
DttSPAgc (DTTSPAGC a, int tick)
{
	int i;
	int hangtime = (int) (uni[0].samplerate * a->hangtime);
	int fasthangtime = (int) (uni[0].samplerate * a->fasthangtime);

	REAL hangthresh;

	if (a->hangthresh > 0)
		hangthresh =
			a->gain.top * a->hangthresh + a->gain.bottom * (REAL) (1.0 -
			a->hangthresh);
	else
		hangthresh = 0.;

	if (a->mode == 0)
	{
		for (i = 0; i < CXBsize (a->buff); i++)
			CXBdata (a->buff, i) = Cscl (CXBdata (a->buff, i), a->gain.fix);
		return;
	}

	for (i = 0; i < CXBsize (a->buff); i++)
	{
		REAL tmp;
		a->circ[a->indx] = CXBdata (a->buff, i);	/* Drop sample into circular buffer */
		tmp = Cmag (a->circ[a->indx]);
		if (tmp > 0.00000005f)
			tmp = a->gain.limit / tmp;	// if not zero sample, calculate gain
		else
			tmp = a->gain.now;	// update. If zero, then use old gain
		if (tmp < hangthresh)
			a->hangindex = hangtime;
		if (tmp >= a->gain.now)
		{
			//a->gain.raw = a->one_m_decay * a->gain.now + a->decay * tmp;
			if (a->hangindex++ > hangtime)
			{
				a->gain.now =
					a->one_m_decay * a->gain.now +
					a->decay * min (a->gain.top, tmp);
			}
		}
		else
		{
			a->hangindex = 0;
			//a->gain.raw = a->one_m_attack * a->gain.now + a->attack * tmp;
			a->gain.now =
				a->one_m_attack * a->gain.now + a->attack * max (tmp,
				a->gain.bottom);
		}
		tmp = Cmag (a->circ[a->fastindx]);
		if (tmp > 0.00000005f)
			tmp = a->gain.limit / tmp;
		else
			tmp = a->gain.fastnow;
		if (tmp > a->gain.fastnow)
		{
			if (a->fasthang++ > fasthangtime)
			{
				a->gain.fastnow =
					min (a->one_m_fastdecay * a->gain.fastnow +
					a->fastdecay * min (a->gain.top, tmp), a->gain.top);
			}
		}
		else
		{
			a->fasthang = 0;
			a->gain.fastnow =
				max (a->one_m_fastattack * a->gain.fastnow +
				a->fastattack * max (tmp, a->gain.bottom), a->gain.bottom);
		}
		a->gain.fastnow =
			max (min (a->gain.fastnow, a->gain.top), a->gain.bottom);
		a->gain.now = max (min (a->gain.now, a->gain.top), a->gain.bottom);
		CXBdata (a->buff, i) =
			Cscl (a->circ[a->sndx],
			min (a->gain.fastnow,
			min (a->slope * a->gain.now, a->gain.top)));

		a->indx = (a->indx + a->mask) & a->mask;
		a->sndx = (a->sndx + a->mask) & a->mask;
		a->fastindx = (a->fastindx + a->mask) & a->mask;
	}
}
Exemple #19
0
void
DttSPAgc (DTTSPAGC a, int tick)
{
	int i;
	int hangtime = (int) (uni[0].samplerate * a->hangtime); // hangtime in samples
	int fasthangtime = (int) (uni[0].samplerate * a->fasthangtime); // fast track hangtime in samples

	REAL hangthresh; // gate for whether to hang or not

//	if (a->hangthresh > 0)
		hangthresh =
			a->gain.top * a->hangthresh + a->gain.bottom * (REAL) (1.0 - a->hangthresh);
//	else
//		hangthresh = 0.;

	if (a->mode == 0)
	{
		for (i = 0; i < CXBsize (a->buff); i++)
			CXBdata (a->buff, i) = Cscl (CXBdata (a->buff, i), a->gain.fix);
		return;
	}

	for (i = 0; i < CXBsize (a->buff); i++)
	{
		REAL tmp;
		a->circ[a->slowindx] = CXBdata (a->buff, i);	/* Drop sample into circular buffer */

		// first, calculate slow gain
		tmp = Cmag (a->circ[a->slowindx]);
		if (tmp > 0.0f)
			tmp = a->gain.target / tmp;	// if mag(sample) not too small, calculate putative gain
										// all the rest of the code which follows is running this
										// signal through the control laws.
		else
			tmp = a->gain.now;	// sample too small, just use old gain
		if (tmp < hangthresh)
			a->hangindex = hangtime;  // If the gain is less than the current hang threshold, then stop hanging.

		if (tmp >= a->gain.now)     // If the putative gain is greater than the current gain then we are in decay.
									// That is, we need to "decay the ALC voltage", or increase the gain.
		{
			//a->gain.raw = a->one_m_decay * a->gain.now + a->decay * tmp;
			if (a->hangindex++ > hangtime)  // Have we HUNG around long enough?
			{
				a->gain.now =  // Compute the applicable slow channel gain through the decay control law.
					a->one_m_decay * a->gain.now +
					a->decay * min (a->gain.top, tmp);
			}
		}
		else // if the putative gain is greater than the current gain,  we are in attack mode and need to decrease gain 
		{
			a->hangindex = 0;  // We don't need to hang, we need to attack so we reset the hang index to zero
			//a->gain.raw = a->one_m_attack * a->gain.now + a->attack * tmp;
			a->gain.now =      // Compute the applicable slow channel gain through the attack control law.
				a->one_m_attack * a->gain.now + a->attack * max (tmp,
				a->gain.bottom); 
		}

		// then, calculate fast gain
		// Fast channel to handle short duration events and not capture the slow channel decay
		tmp = Cmag (a->circ[a->fastindx]);
		if (tmp > 0.0f)
			tmp = a->gain.target / tmp; // if mag(sample) not too small, calculate putative gain
										// all the rest of the code which follows is running this
										// signal through the control laws.
		else
			tmp = a->gain.fastnow;      // too small, just use old gain
		if (tmp > a->gain.fastnow)		// If the putative gain is greater than the current gain then we are in decay.
										// That is, we need to "decay the ALC voltage", or increase the gain.
		{
			if (a->fasthang++ > fasthangtime) // Have we HUNG around long enough?
			{
				a->gain.fastnow =  // Compute the applicable fast channel gain through the decay control law.
					a->one_m_fastdecay * a->gain.fastnow +
					a->fastdecay * min (a->gain.top, tmp);
			}
		}
		else
		{
			a->fasthang = 0; // We don't need to hang, we need to attack so we reset the hang index to zero
			a->gain.fastnow = // Compute the applicable fast channel gain through the fast attack control law.
				a->one_m_fastattack * a->gain.fastnow +
				a->fastattack * max (tmp, a->gain.bottom);
		}
		// Are these two lines necessary? I don't think so.  Let's test that.  tmp is bounded in the statements
		// above to be inside the gain limits
//		a->gain.fastnow =
//			max (min (a->gain.fastnow, a->gain.top), a->gain.bottom);
//		a->gain.now = max (min (a->gain.now, a->gain.top), a->gain.bottom);
		// Always apply the lower gain.
		CXBdata (a->buff, i) =
			Cscl (a->circ[a->out_indx],
			min (a->gain.fastnow, (a->slope * a->gain.now)));

		// Move the indices to prepare for the next sample to be processed
		a->slowindx = (a->slowindx + a->mask) & a->mask; 
		a->out_indx = (a->out_indx + a->mask) & a->mask;
		a->fastindx = (a->fastindx + a->mask) & a->mask;
	}
}