void InfoTests::testGetSlotInfo() { CK_RV rv; CK_SLOT_INFO slotInfo; // Just make sure that we finalize any previous failed tests C_Finalize(NULL_PTR); rv = C_GetSlotInfo(SLOT_NO_INIT_TOKEN, &slotInfo); CPPUNIT_ASSERT(rv == CKR_CRYPTOKI_NOT_INITIALIZED); rv = C_Initialize(NULL_PTR); CPPUNIT_ASSERT(rv == CKR_OK); rv = C_GetSlotInfo(SLOT_NO_INIT_TOKEN, NULL_PTR); CPPUNIT_ASSERT(rv == CKR_ARGUMENTS_BAD); rv = C_GetSlotInfo(SLOT_INVALID, &slotInfo); CPPUNIT_ASSERT(rv == CKR_SLOT_ID_INVALID); rv = C_GetSlotInfo(SLOT_NO_INIT_TOKEN, &slotInfo); CPPUNIT_ASSERT(rv == CKR_OK); C_Finalize(NULL_PTR); }
/* * Helper functions */ static int pkcs11_init_slot(PKCS11_CTX * ctx, PKCS11_SLOT * slot, CK_SLOT_ID id) { PKCS11_SLOT_private *priv; CK_SLOT_INFO info; int rv; rv = CRYPTOKI_call(ctx, C_GetSlotInfo(id, &info)); CRYPTOKI_checkerr(PKCS11_F_PKCS11_ENUM_SLOTS, rv); priv = OPENSSL_malloc(sizeof(PKCS11_SLOT_private)); if (priv == NULL) return -1; memset(priv, 0, sizeof(PKCS11_SLOT_private)); priv->parent = ctx; priv->id = id; priv->forkid = PRIVCTX(ctx)->forkid; priv->prev_rw = 0; priv->prev_pin = NULL; priv->prev_so = 0; priv->lockid = CRYPTO_get_new_dynlockid(); slot->description = PKCS11_DUP(info.slotDescription); slot->manufacturer = PKCS11_DUP(info.manufacturerID); slot->removable = (info.flags & CKF_REMOVABLE_DEVICE) ? 1 : 0; slot->_private = priv; if ((info.flags & CKF_TOKEN_PRESENT) && pkcs11_check_token(ctx, slot)) return -1; return 0; }
static int initFunction( DEVICE_INFO *deviceInfo, const char *name, const int nameLength ) { CK_SESSION_HANDLE hSession; CK_SLOT_ID slotList[ MAX_PKCS11_SLOTS + 8 ]; CK_ULONG slotCount = MAX_PKCS11_SLOTS; CK_SLOT_INFO slotInfo; CK_TOKEN_INFO tokenInfo; CK_RV status; PKCS11_INFO *pkcs11Info = deviceInfo->devicePKCS11; const PKCS11_MECHANISM_INFO *mechanismInfoPtr; char *labelPtr; int tokenSlot = DEFAULT_SLOT, i, labelLength, mechanismInfoSize; int cryptStatus, cryptStatus2; assert( isWritePtr( deviceInfo, sizeof( DEVICE_INFO ) ) ); assert( isReadPtr( name, nameLength ) ); /* Get information on all available slots */ memset( slotList, 0, sizeof( slotList ) ); status = C_GetSlotList( TRUE, slotList, &slotCount ); if( status != CKR_OK ) return( pkcs11MapError( status, CRYPT_ERROR_OPEN ) ); if( slotCount <= 0 ) { /* There are token slots present but no tokens in the slots */ return( CRYPT_ERROR_OPEN ); } /* Check whether a token name (used to select the slot) has been specified */ for( i = 1; i < nameLength - 1; i++ ) { if( name[ i ] == ':' && name[ i + 1 ] == ':' ) break; } if( i < nameLength - 1 ) { const char *tokenName = name + i + 2; /* Skip '::' */ const int tokenNameLength = nameLength - ( i + 2 ); if( tokenNameLength <= 0 ) return( CRYPT_ARGERROR_STR1 ); /* Some tokens don't implement named slots, so we also allow them to be specified using slot counts */ if( tokenNameLength == 1 && isDigit( *tokenName ) ) { tokenSlot = *tokenName - '0'; if( tokenSlot < 0 || tokenSlot > 9 ) return( CRYPT_ARGERROR_STR1 ); if( tokenSlot > slotCount - 1 ) /* Slots numbered from zero */ return( CRYPT_ERROR_NOTFOUND ); status = C_GetTokenInfo( slotList[ tokenSlot ], &tokenInfo ); if( status != CKR_OK ) return( CRYPT_ERROR_NOTFOUND ); } else { /* Check each (named) slot for a token matching the given name */ for( tokenSlot = 0; tokenSlot < slotCount && \ tokenSlot < FAILSAFE_ITERATIONS_MED; tokenSlot++ ) { status = C_GetTokenInfo( slotList[ tokenSlot ], &tokenInfo ); if( status == CKR_OK && \ !strCompare( tokenName, tokenInfo.label, tokenNameLength ) ) break; } ENSURES( tokenSlot < FAILSAFE_ITERATIONS_MED ); if( tokenSlot >= slotCount ) return( CRYPT_ERROR_NOTFOUND ); } } pkcs11Info->slotID = slotList[ tokenSlot ]; /* Get information on device-specific capabilities */ status = C_GetSlotInfo( pkcs11Info->slotID, &slotInfo ); if( status != CKR_OK ) { shutdownFunction( deviceInfo ); return( pkcs11MapError( status, CRYPT_ERROR_OPEN ) ); } if( slotInfo.flags & CKF_REMOVABLE_DEVICE ) { /* The device is removable */ deviceInfo->flags |= DEVICE_REMOVABLE; } status = C_GetTokenInfo( pkcs11Info->slotID, &tokenInfo ); if( status != CKR_OK ) { shutdownFunction( deviceInfo ); return( pkcs11MapError( status, CRYPT_ERROR_OPEN ) ); } if( tokenInfo.flags & CKF_RNG ) { /* The device has an onboard RNG that we can use */ deviceInfo->getRandomFunction = getRandomFunction; } #if 0 /* The Spyrus driver for pre-Lynks-II cards returns the local system time (with a GMT/localtime offset), ignoring the fact that the token has an onboard clock, so having the CKF_CLOCK_ON_TOKEN not set is accurate, although having it ignore the presence of the clock isn't very valid */ if( !( tokenInfo.flags & CKF_CLOCK_ON_TOKEN ) && \ ( !strCompare( tokenInfo.label, "Lynks Token", 11 ) || \ !strCompare( tokenInfo.model, "Rosetta", 7 ) ) ) { /* Fix buggy Spyrus PKCS #11 drivers which claim that the token doesn't have a RTC even though it does (the Rosetta (smart card) form of the token is even worse, it returns garbage in the label and manufacturer fields, but the model field is OK). There is a chance that there's a genuine problem with the clock (there are batches of tokens with bad clocks) but the time check that follows below will catch those */ tokenInfo.flags |= CKF_CLOCK_ON_TOKEN; } #endif /* 0 */ if( tokenInfo.flags & CKF_CLOCK_ON_TOKEN ) { const time_t theTime = getTokenTime( &tokenInfo ); const time_t currentTime = getTime(); /* The token claims to have an onboard clock that we can use. Since this could be arbitrarily inaccurate we compare it with the system time and only rely on it if it's within +/- 1 day of the system time. There is a second check that we should make to catch drivers that claim to read the time from the token but actually use the local computer's time, but this isn't easy to do. The most obvious way is to set the system time to a bogus value and check whether this matches the returned time, but this is somewhat drastic and requires superuser privs on most systems. An alternative is to check whether the claimed token time exactly matches the system time, but this will produce false positives if (for example) the token has been recently synchronised to the system time. For now all we can do is throw an exception if it appears that the token time is faked */ if( theTime > MIN_TIME_VALUE && \ theTime >= currentTime - 86400 && \ theTime <= currentTime + 86400 ) deviceInfo->flags |= DEVICE_TIME; /* If this check is triggered then the token time may be faked since it's identical to the host system time, see the comment above for details. We make an exception for soft-tokens (if we can detect them), which will (by definition) have the same time as the system time */ if( !( pkcs11InfoTbl[ pkcs11Info->deviceNo ].name[ 0 ] && \ !strCompare( pkcs11InfoTbl[ pkcs11Info->deviceNo ].name, "Software", 8 ) ) && \ theTime == currentTime ) { DEBUG_DIAG(( "PKCS #11 token time is the same as the host " "system time, token time may be faked by the " "driver." )); assert( DEBUG_WARN ); } } if( tokenInfo.flags & CKF_WRITE_PROTECTED ) { /* The device can't have data on it changed */ deviceInfo->flags |= DEVICE_READONLY; } if( ( tokenInfo.flags & CKF_LOGIN_REQUIRED ) || \ !( tokenInfo.flags & CKF_USER_PIN_INITIALIZED ) ) { /* The user needs to log in before using various device functions. We check for the absence of CKF_USER_PIN_INITIALIZED as well as the more obvious CKF_LOGIN_REQUIRED because if we've got an uninitialised device there's no PIN set so some devices will report that there's no login required (or at least none is possible). We need to introduce some sort of pipeline stall if this is the case because otherwise the user could successfully perform some functions that don't require a login (where the exact details of what's allowed without a login are device- specific) before running into mysterious failures when they get to functions that do require a login. To avoid this, we make an uninitialised device look like a login-required device, so the user gets an invalid-PIN error if they try and proceed */ deviceInfo->flags |= DEVICE_NEEDSLOGIN; } if( ( pkcs11Info->minPinSize = ( int ) tokenInfo.ulMinPinLen ) < 4 ) { /* Some devices report silly PIN sizes */ DEBUG_DIAG(( "Driver reports suspicious minimum PIN size %lu, " "using 4", tokenInfo.ulMinPinLen )); pkcs11Info->minPinSize = 4; } if( ( pkcs11Info->maxPinSize = ( int ) tokenInfo.ulMaxPinLen ) < 4 ) { /* Some devices report silly PIN sizes (setting this to ULONG_MAX or 4GB, which becomes -1 as an int, counts as silly). Since we can't differentiate between 0xFFFFFFFF = bogus value and 0xFFFFFFFF = ULONG_MAX we play it safe and set the limit to 8 bytes, which most devices should be able to handle */ DEBUG_DIAG(( "Driver reports suspicious maximum PIN size %lu, " "using 8", tokenInfo.ulMinPinLen )); pkcs11Info->maxPinSize = 8; } labelPtr = ( char * ) tokenInfo.label; for( labelLength = 32; labelLength > 0 && \ ( labelPtr[ labelLength - 1 ] == ' ' || \ !labelPtr[ labelLength - 1 ] ); labelLength-- ); /* Strip trailing blanks/nulls */ while( labelLength > 0 && *labelPtr == ' ' ) { /* Strip leading blanks */ labelPtr++; labelLength--; } if( labelLength > 0 ) { memcpy( pkcs11Info->label, labelPtr, labelLength ); pkcs11Info->labelLen = labelLength; sanitiseString( pkcs11Info->label, CRYPT_MAX_TEXTSIZE, labelLength ); } else { /* There's no label for the token, use the device label instead */ if( pkcs11InfoTbl[ pkcs11Info->deviceNo ].name[ 0 ] ) { labelLength = \ min( strlen( pkcs11InfoTbl[ pkcs11Info->deviceNo ].name ), CRYPT_MAX_TEXTSIZE ); memcpy( pkcs11Info->label, pkcs11InfoTbl[ pkcs11Info->deviceNo ].name, labelLength ); } } pkcs11Info->hActiveSignObject = CK_OBJECT_NONE; deviceInfo->label = pkcs11Info->label; deviceInfo->labelLen = pkcs11Info->labelLen; /* Open a session with the device. This gets a bit awkward because we can't tell whether a R/W session is OK without opening a session, but we can't open a session unless we know whether a R/W session is OK, so we first try for a RW session and if that fails we go for a read- only session */ status = C_OpenSession( pkcs11Info->slotID, CKF_RW_SESSION | CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &hSession ); if( status == CKR_TOKEN_WRITE_PROTECTED ) { status = C_OpenSession( pkcs11Info->slotID, CKF_SERIAL_SESSION, NULL_PTR, NULL_PTR, &hSession ); } if( status != CKR_OK ) { cryptStatus = pkcs11MapError( status, CRYPT_ERROR_OPEN ); if( cryptStatus == CRYPT_ERROR_OPEN && \ !( tokenInfo.flags & CKF_USER_PIN_INITIALIZED ) ) { /* We couldn't do much with the error code, it could be that the token hasn't been initialised yet but unfortunately PKCS #11 doesn't define an error code for this condition. In addition many tokens will allow a session to be opened and then fail with a "PIN not set" error at a later point (which allows for more accurate error reporting), however a small number won't allow a session to be opened and return some odd-looking error because there's nothing useful available. The best way to report this in a meaningful manner to the caller is to check whether the user PIN has been initialised, if it hasn't then it's likely that the token as a whole hasn't been initialised so we return a not initialised error */ cryptStatus = CRYPT_ERROR_NOTINITED; } return( cryptStatus ); } ENSURES( hSession != CK_OBJECT_NONE ); pkcs11Info->hSession = hSession; deviceInfo->flags |= DEVICE_ACTIVE; /* Set up the capability information for this device. Since there can be devices that have one set of capabilities but not the other (e.g. a smart card that only performs RSA ops), we allow one of the two sets of mechanism information setups to fail, but not both */ mechanismInfoPtr = getMechanismInfoPKC( &mechanismInfoSize ); cryptStatus = getCapabilities( deviceInfo, mechanismInfoPtr, mechanismInfoSize ); mechanismInfoPtr = getMechanismInfoConv( &mechanismInfoSize ); cryptStatus2 = getCapabilities( deviceInfo, mechanismInfoPtr, mechanismInfoSize ); if( cryptStatusError( cryptStatus ) && cryptStatusError( cryptStatus2 ) ) { shutdownFunction( deviceInfo ); return( ( cryptStatus == CRYPT_ERROR ) ? \ CRYPT_ERROR_OPEN : ( int ) cryptStatus ); } return( CRYPT_OK ); }
int main (int argc, char *argv[]) { CK_RV err; bool token = false; CK_SLOT_ID_PTR slots; CK_ULONG slots_count; unsigned int i; (void) argv; if (argc > 1) token = true; init_cryptoki (); err = C_GetSlotList (token, NULL, &slots_count); fail_if_err (err); printf ("Number of slots%s: %lu\n", token ? " (with tokens)" : "", slots_count); slots = malloc (sizeof (CK_SLOT_ID) * slots_count); if (!slots) fail_if_err (CKR_HOST_MEMORY); err = C_GetSlotList (token, slots, &slots_count); fail_if_err (err); // while (1) { for (i = 0; i < slots_count; i++) { CK_SLOT_INFO info; err = C_GetSlotInfo (slots[i], &info); fail_if_err (err); printf ("%2i. Slot ID %lu\n", i, slots[i]); printf (" %.64s\n", info.slotDescription); printf (" Manufacturer ID: %.32s\n", info.manufacturerID); printf (" Flags: %#lx", info.flags); if (info.flags) { bool any = false; CK_FLAGS xflags; xflags = info.flags & ~(CKF_TOKEN_PRESENT | CKF_REMOVABLE_DEVICE | CKF_HW_SLOT); printf (" == "); if (info.flags & CKF_TOKEN_PRESENT) { printf ("TOKEN_PRESENT"); any = true; } if (info.flags & CKF_REMOVABLE_DEVICE) { printf ("%sREMOVABLE_DEVICE", any ? " | " : ""); any = true; } if (info.flags & CKF_HW_SLOT) { printf ("%sHW_SLOT", any ? " | " : ""); any = true; } if (xflags) printf ("%s%#lx", any ? " | " : "", xflags); } printf ("\n"); printf (" Hardware version: %i.%i\n", info.hardwareVersion.major, info.hardwareVersion.minor); printf (" Firmware version: %i.%i\n", info.firmwareVersion.major, info.firmwareVersion.minor); } #ifdef WIN32 _sleep (2); #else sleep (2); #endif } return 0; }