inline fltx4 IsPointInBoundsX4( const Vector point, fltx4 boundsMin[3], fltx4 boundsMax[3] ) { fltx4 pointX = ReplicateX4( point.x ); fltx4 pointY = ReplicateX4( point.y ); fltx4 pointZ = ReplicateX4( point.z ); return AndSIMD ( AndSIMD ( AndSIMD ( CmpGeSIMD( pointX, boundsMin[0] ), CmpLeSIMD( pointX, boundsMax[0] ) ), AndSIMD ( CmpGeSIMD( pointY, boundsMin[1] ), CmpLeSIMD( pointY, boundsMax[1] ) ) ), AndSIMD ( CmpGeSIMD( pointZ, boundsMin[2] ), CmpLeSIMD( pointZ, boundsMax[2] ) ) ); }
void RayTracingEnvironment::Trace4Rays(const FourRays &rays, fltx4 TMin, fltx4 TMax, int DirectionSignMask, RayTracingResult *rslt_out, int32 skip_id, ITransparentTriangleCallback *pCallback) { rays.Check(); memset(rslt_out->HitIds,0xff,sizeof(rslt_out->HitIds)); rslt_out->HitDistance=ReplicateX4(1.0e23); rslt_out->surface_normal.DuplicateVector(Vector(0.,0.,0.)); FourVectors OneOverRayDir=rays.direction; OneOverRayDir.MakeReciprocalSaturate(); // now, clip rays against bounding box for(int c=0;c<3;c++) { fltx4 isect_min_t= MulSIMD(SubSIMD(ReplicateX4(m_MinBound[c]),rays.origin[c]),OneOverRayDir[c]); fltx4 isect_max_t= MulSIMD(SubSIMD(ReplicateX4(m_MaxBound[c]),rays.origin[c]),OneOverRayDir[c]); TMin=MaxSIMD(TMin,MinSIMD(isect_min_t,isect_max_t)); TMax=MinSIMD(TMax,MaxSIMD(isect_min_t,isect_max_t)); } fltx4 active=CmpLeSIMD(TMin,TMax); // mask of which rays are active if (! IsAnyNegative(active) ) return; // missed bounding box int32 mailboxids[MAILBOX_HASH_SIZE]; // used to avoid redundant triangle tests memset(mailboxids,0xff,sizeof(mailboxids)); // !!speed!! keep around? int front_idx[3],back_idx[3]; // based on ray direction, whether to // visit left or right node first if (DirectionSignMask & 1) { back_idx[0]=0; front_idx[0]=1; } else { back_idx[0]=1; front_idx[0]=0; } if (DirectionSignMask & 2) { back_idx[1]=0; front_idx[1]=1; } else { back_idx[1]=1; front_idx[1]=0; } if (DirectionSignMask & 4) { back_idx[2]=0; front_idx[2]=1; } else { back_idx[2]=1; front_idx[2]=0; } NodeToVisit NodeQueue[MAX_NODE_STACK_LEN]; CacheOptimizedKDNode const *CurNode=&(OptimizedKDTree[0]); NodeToVisit *stack_ptr=&NodeQueue[MAX_NODE_STACK_LEN]; while(1) { while (CurNode->NodeType() != KDNODE_STATE_LEAF) // traverse until next leaf { int split_plane_number=CurNode->NodeType(); CacheOptimizedKDNode const *FrontChild=&(OptimizedKDTree[CurNode->LeftChild()]); fltx4 dist_to_sep_plane= // dist=(split-org)/dir MulSIMD( SubSIMD(ReplicateX4(CurNode->SplittingPlaneValue), rays.origin[split_plane_number]),OneOverRayDir[split_plane_number]); fltx4 active=CmpLeSIMD(TMin,TMax); // mask of which rays are active // now, decide how to traverse children. can either do front,back, or do front and push // back. fltx4 hits_front=AndSIMD(active,CmpGeSIMD(dist_to_sep_plane,TMin)); if (! IsAnyNegative(hits_front)) { // missed the front. only traverse back //printf("only visit back %d\n",CurNode->LeftChild()+back_idx[split_plane_number]); CurNode=FrontChild+back_idx[split_plane_number]; TMin=MaxSIMD(TMin, dist_to_sep_plane); } else { fltx4 hits_back=AndSIMD(active,CmpLeSIMD(dist_to_sep_plane,TMax)); if (! IsAnyNegative(hits_back) ) { // missed the back - only need to traverse front node //printf("only visit front %d\n",CurNode->LeftChild()+front_idx[split_plane_number]); CurNode=FrontChild+front_idx[split_plane_number]; TMax=MinSIMD(TMax, dist_to_sep_plane); } else { // at least some rays hit both nodes. // must push far, traverse near //printf("visit %d,%d\n",CurNode->LeftChild()+front_idx[split_plane_number], // CurNode->LeftChild()+back_idx[split_plane_number]); assert(stack_ptr>NodeQueue); --stack_ptr; stack_ptr->node=FrontChild+back_idx[split_plane_number]; stack_ptr->TMin=MaxSIMD(TMin,dist_to_sep_plane); stack_ptr->TMax=TMax; CurNode=FrontChild+front_idx[split_plane_number]; TMax=MinSIMD(TMax,dist_to_sep_plane); } } } // hit a leaf! must do intersection check int ntris=CurNode->NumberOfTrianglesInLeaf(); if (ntris) { int32 const *tlist=&(TriangleIndexList[CurNode->TriangleIndexStart()]); do { int tnum=*(tlist++); //printf("try tri %d\n",tnum); // check mailbox int mbox_slot=tnum & (MAILBOX_HASH_SIZE-1); TriIntersectData_t const *tri = &( OptimizedTriangleList[tnum].m_Data.m_IntersectData ); if ( ( mailboxids[mbox_slot] != tnum ) && ( tri->m_nTriangleID != skip_id ) ) { n_intersection_calculations++; mailboxids[mbox_slot] = tnum; // compute plane intersection FourVectors N; N.x = ReplicateX4( tri->m_flNx ); N.y = ReplicateX4( tri->m_flNy ); N.z = ReplicateX4( tri->m_flNz ); fltx4 DDotN = rays.direction * N; // mask off zero or near zero (ray parallel to surface) fltx4 did_hit = OrSIMD( CmpGtSIMD( DDotN,FourEpsilons ), CmpLtSIMD( DDotN, FourNegativeEpsilons ) ); fltx4 numerator=SubSIMD( ReplicateX4( tri->m_flD ), rays.origin * N ); fltx4 isect_t=DivSIMD( numerator,DDotN ); // now, we have the distance to the plane. lets update our mask did_hit = AndSIMD( did_hit, CmpGtSIMD( isect_t, FourZeros ) ); //did_hit=AndSIMD(did_hit,CmpLtSIMD(isect_t,TMax)); did_hit = AndSIMD( did_hit, CmpLtSIMD( isect_t, rslt_out->HitDistance ) ); if ( ! IsAnyNegative( did_hit ) ) continue; // now, check 3 edges fltx4 hitc1 = AddSIMD( rays.origin[tri->m_nCoordSelect0], MulSIMD( isect_t, rays.direction[ tri->m_nCoordSelect0] ) ); fltx4 hitc2 = AddSIMD( rays.origin[tri->m_nCoordSelect1], MulSIMD( isect_t, rays.direction[tri->m_nCoordSelect1] ) ); // do barycentric coordinate check fltx4 B0 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[0] ), hitc1 ); B0 = AddSIMD( B0, MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[1] ), hitc2 ) ); B0 = AddSIMD( B0, ReplicateX4( tri->m_ProjectedEdgeEquations[2] ) ); did_hit = AndSIMD( did_hit, CmpGeSIMD( B0, FourZeros ) ); fltx4 B1 = MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[3] ), hitc1 ); B1 = AddSIMD( B1, MulSIMD( ReplicateX4( tri->m_ProjectedEdgeEquations[4]), hitc2 ) ); B1 = AddSIMD( B1, ReplicateX4( tri->m_ProjectedEdgeEquations[5] ) ); did_hit = AndSIMD( did_hit, CmpGeSIMD( B1, FourZeros ) ); fltx4 B2 = AddSIMD( B1, B0 ); did_hit = AndSIMD( did_hit, CmpLeSIMD( B2, Four_Ones ) ); if ( ! IsAnyNegative( did_hit ) ) continue; // if the triangle is transparent if ( tri->m_nFlags & FCACHETRI_TRANSPARENT ) { if ( pCallback ) { // assuming a triangle indexed as v0, v1, v2 // the projected edge equations are set up such that the vert opposite the first // equation is v2, and the vert opposite the second equation is v0 // Therefore we pass them back in 1, 2, 0 order // Also B2 is currently B1 + B0 and needs to be 1 - (B1+B0) in order to be a real // barycentric coordinate. Compute that now and pass it to the callback fltx4 b2 = SubSIMD( Four_Ones, B2 ); if ( pCallback->VisitTriangle_ShouldContinue( *tri, rays, &did_hit, &B1, &b2, &B0, tnum ) ) { did_hit = Four_Zeros; } } } // now, set the hit_id and closest_hit fields for any enabled rays fltx4 replicated_n = ReplicateIX4(tnum); StoreAlignedSIMD((float *) rslt_out->HitIds, OrSIMD(AndSIMD(replicated_n,did_hit), AndNotSIMD(did_hit,LoadAlignedSIMD( (float *) rslt_out->HitIds)))); rslt_out->HitDistance=OrSIMD(AndSIMD(isect_t,did_hit), AndNotSIMD(did_hit,rslt_out->HitDistance)); rslt_out->surface_normal.x=OrSIMD( AndSIMD(N.x,did_hit), AndNotSIMD(did_hit,rslt_out->surface_normal.x)); rslt_out->surface_normal.y=OrSIMD( AndSIMD(N.y,did_hit), AndNotSIMD(did_hit,rslt_out->surface_normal.y)); rslt_out->surface_normal.z=OrSIMD( AndSIMD(N.z,did_hit), AndNotSIMD(did_hit,rslt_out->surface_normal.z)); } } while (--ntris); // now, check if all rays have terminated fltx4 raydone=CmpLeSIMD(TMax,rslt_out->HitDistance); if (! IsAnyNegative(raydone)) { return; } } if (stack_ptr==&NodeQueue[MAX_NODE_STACK_LEN]) { return; } // pop stack! CurNode=stack_ptr->node; TMin=stack_ptr->TMin; TMax=stack_ptr->TMax; stack_ptr++; } }