/* Run one forward FFT test in test mode */
float RunOneForwardTest(int fft_log_size, int signal_type, float signal_value,
                        struct SnrResult* snr) {
  OMX_F32* x;
  OMX_FC32* y;
  struct AlignedPtr* x_aligned;
  struct AlignedPtr* y_aligned;

  OMX_FC32* y_true;

  OMX_INT n;
  OMX_INT fft_spec_buffer_size;
  OMXResult status;
  OMXFFTSpec_R_F32 * fft_fwd_spec = NULL;
  int fft_size;

  fft_size = 1 << fft_log_size;

  status = omxSP_FFTGetBufSize_R_F32(fft_log_size, &fft_spec_buffer_size);
  if (verbose > 63) {
    printf("fft_spec_buffer_size = %d\n", fft_spec_buffer_size);
  }

  fft_fwd_spec = (OMXFFTSpec_R_F32*) malloc(fft_spec_buffer_size);
  status = omxSP_FFTInit_R_F32(fft_fwd_spec, fft_log_size);
  if (status) {
    fprintf(stderr, "Failed to init forward FFT:  status = %d\n", status);
    exit(1);
  }

  x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
  y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
  x = x_aligned->aligned_pointer_;
  y = y_aligned->aligned_pointer_;
  y_true = (OMX_FC32*) malloc(sizeof(*y_true) * (fft_size / 2 + 1));

  GenerateSignal(x, y_true, fft_size, signal_type, signal_value);

  if (verbose > 255) {
    printf("input  = %p - %p\n", x, x + fft_size);
    printf("output = %p - %p\n", y, y + fft_size / 2 + 1);
    DumpFFTSpec(fft_fwd_spec);
  }

  if (verbose > 63) {
    printf("Signal\n");
    DumpArrayFloat("x", fft_size, x);

    printf("Expected FFT output\n");
    DumpArrayComplexFloat("y", 1 + fft_size / 2, y_true);
  }

  status = ForwardRFFT(x, (OMX_F32*) y, fft_fwd_spec);
  if (status) {
    fprintf(stderr, "Forward FFT failed: status = %d\n", status);
    exit(1);
  }

  if (verbose > 63) {
    printf("FFT Output\n");
    DumpArrayComplexFloat("y", 1 + fft_size / 2, y);
  }

  CompareComplexFloat(snr, y, y_true, fft_size / 2 + 1);

  FreeAlignedPointer(x_aligned);
  FreeAlignedPointer(y_aligned);
  free(y_true);
  free(fft_fwd_spec);

  return snr->complex_snr_;
}
Exemple #2
0
void TimeOneNE10RFFT(int count, int fft_log_size, float signal_value,
                     int signal_type) {
    OMX_F32* x;                   /* Source */
    OMX_FC32* y;                  /* Transform */
    OMX_F32* z;                   /* Inverse transform */
    OMX_F32* temp;

    OMX_F32* y_true;              /* True FFT */

    struct AlignedPtr* x_aligned;
    struct AlignedPtr* y_aligned;
    struct AlignedPtr* z_aligned;

    int n;
    ne10_result_t status;
    ne10_fft_r2c_cfg_float32_t fft_fwd_spec;

    int fft_size;
    struct timeval start_time;
    struct timeval end_time;
    double elapsed_time;
    struct SnrResult snr_forward;
    struct SnrResult snr_inverse;

    fft_size = 1 << fft_log_size;

    x_aligned = AllocAlignedPointer(32, sizeof(*x) * 4 * fft_size);
    /* The transformed value is in CCS format and is has fft_size + 2 values */
    y_aligned = AllocAlignedPointer(32, sizeof(*y) * (4 * fft_size + 2));
    z_aligned = AllocAlignedPointer(32, sizeof(*z) * 4 * fft_size);

    x = x_aligned->aligned_pointer_;
    y = y_aligned->aligned_pointer_;
    z = z_aligned->aligned_pointer_;

    y_true = (OMX_F32*) malloc(sizeof(*y_true) * (fft_size + 2));

    GenerateRealFloatSignal(x, (struct ComplexFloat*) y_true, fft_size, signal_type,
                            signal_value);

    fft_fwd_spec = ne10_fft_alloc_r2c_float32(fft_size);

    if (!fft_fwd_spec) {
        fprintf(stderr, "NE10 RFFT: Cannot initialize FFT structure for order %d\n", fft_log_size);
        return;
    }

    if (do_forward_test) {
        GetUserTime(&start_time);
        for (n = 0; n < count; ++n) {
            ne10_fft_r2c_1d_float32_neon((ne10_fft_cpx_float32_t *) y,
                                         x,
                                         fft_fwd_spec);
        }
        GetUserTime(&end_time);

        elapsed_time = TimeDifference(&start_time, &end_time);

        CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size / 2 + 1);

        PrintResult("Forward NE10 RFFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);

        if (verbose >= 255) {
            printf("FFT Actual:\n");
            DumpArrayComplexFloat("y", fft_size / 2 + 1, y);
            printf("FFT Expected:\n");
            DumpArrayComplexFloat("true", fft_size / 2 + 1, (OMX_FC32*) y_true);
        }
    }

    if (do_inverse_test) {
        // Ne10 FFTs destroy the input.

        GetUserTime(&start_time);
        for (n = 0; n < count; ++n) {
            //memcpy(y, y_true, (fft_size >> 1) * sizeof(*y));
            // The inverse appears not to be working.
            ne10_fft_c2r_1d_float32_neon(z,
                                         (ne10_fft_cpx_float32_t *) y_true,
                                         fft_fwd_spec);
        }
        GetUserTime(&end_time);

        elapsed_time = TimeDifference(&start_time, &end_time);

        CompareFloat(&snr_inverse, (OMX_F32*) z, (OMX_F32*) x, fft_size);

        PrintResult("Inverse NE10 RFFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);

        if (verbose >= 255) {
            printf("IFFT Actual:\n");
            DumpArrayFloat("z", fft_size, z);
            printf("IFFT Expected:\n");
            DumpArrayFloat("x", fft_size, x);
        }
    }

    ne10_fft_destroy_r2c_float32(fft_fwd_spec);
    FreeAlignedPointer(x_aligned);
    FreeAlignedPointer(y_aligned);
    FreeAlignedPointer(z_aligned);
}
Exemple #3
0
void TimeOneNE10FFT(int count, int fft_log_size, float signal_value,
                    int signal_type) {
    struct AlignedPtr* x_aligned;
    struct AlignedPtr* y_aligned;
    struct AlignedPtr* z_aligned;

    struct ComplexFloat* x;
    struct ComplexFloat* y;
    OMX_FC32* z;

    struct ComplexFloat* y_true;

    int n;
    ne10_result_t status;
    ne10_fft_cfg_float32_t fft_fwd_spec;
    int fft_size;
    struct timeval start_time;
    struct timeval end_time;
    double elapsed_time;
    struct SnrResult snr_forward;
    struct SnrResult snr_inverse;

    fft_size = 1 << fft_log_size;

    x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
    y_aligned = AllocAlignedPointer(32, sizeof(*y) * 2 * fft_size);
    z_aligned = AllocAlignedPointer(32, sizeof(*z) * 2 * fft_size);

    y_true = (struct ComplexFloat*) malloc(sizeof(*y_true) * fft_size);

    x = x_aligned->aligned_pointer_;
    y = y_aligned->aligned_pointer_;
    z = z_aligned->aligned_pointer_;

    GenerateTestSignalAndFFT(x, y_true, fft_size, signal_type, signal_value, 0);

    fft_fwd_spec = ne10_fft_alloc_c2c_float32(fft_size);
    if (!fft_fwd_spec) {
        fprintf(stderr, "NE10 FFT: Cannot initialize FFT structure for order %d\n", fft_log_size);
        return;
    }

    if (do_forward_test) {
        GetUserTime(&start_time);
        for (n = 0; n < count; ++n) {
            ne10_fft_c2c_1d_float32_neon((ne10_fft_cpx_float32_t *) y,
                                         (ne10_fft_cpx_float32_t *) x,
                                         fft_fwd_spec,
                                         0);
        }
        GetUserTime(&end_time);

        elapsed_time = TimeDifference(&start_time, &end_time);

        CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size);

        PrintResult("Forward NE10 FFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);

        if (verbose >= 255) {
            printf("Input data:\n");
            DumpArrayComplexFloat("x", fft_size, (OMX_FC32*) x);
            printf("FFT Actual:\n");
            DumpArrayComplexFloat("y", fft_size, (OMX_FC32*) y);
            printf("FFT Expected:\n");
            DumpArrayComplexFloat("true", fft_size, (OMX_FC32*) y_true);
        }
    }

    if (do_inverse_test) {
        GetUserTime(&start_time);
        for (n = 0; n < count; ++n) {
            ne10_fft_c2c_1d_float32_neon((ne10_fft_cpx_float32_t *) z,
                                         (ne10_fft_cpx_float32_t *) y_true,
                                         fft_fwd_spec,
                                         1);
        }
        GetUserTime(&end_time);

        elapsed_time = TimeDifference(&start_time, &end_time);

        CompareComplexFloat(&snr_inverse, (OMX_FC32*) z, (OMX_FC32*) x, fft_size);

        PrintResult("Inverse NE10 FFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);

        if (verbose >= 255) {
            printf("Input data:\n");
            DumpArrayComplexFloat("y", fft_size, (OMX_FC32*) y_true);
            printf("IFFT Actual:\n");
            DumpArrayComplexFloat("z", fft_size, z);
            printf("IFFT Expected:\n");
            DumpArrayComplexFloat("x", fft_size, (OMX_FC32*) x);
        }
    }

    ne10_fft_destroy_c2c_float32(fft_fwd_spec);
    FreeAlignedPointer(x_aligned);
    FreeAlignedPointer(y_aligned);
    FreeAlignedPointer(z_aligned);
    free(y_true);
}
Exemple #4
0
float RunOneInverseTest(int fft_log_size, int signal_type, float signal_value,
                        struct SnrResult* snr) {
    OMX_FC32* x;
    OMX_FC32* y;
    OMX_FC32* z;

    struct AlignedPtr* x_aligned;
    struct AlignedPtr* y_aligned;
    struct AlignedPtr* z_aligned;

    OMX_INT n, fft_spec_buffer_size;
    OMXResult status;
    OMXFFTSpec_C_FC32 * fft_fwd_spec = NULL;
    OMXFFTSpec_C_FC32 * fft_inv_spec = NULL;
    int fft_size;

    fft_size = 1 << fft_log_size;

    status = omxSP_FFTGetBufSize_C_FC32(fft_log_size, &fft_spec_buffer_size);
    if (verbose > 3) {
        printf("fft_spec_buffer_size = %d\n", fft_spec_buffer_size);
    }

    fft_inv_spec = (OMXFFTSpec_C_FC32*)malloc(fft_spec_buffer_size);
    status = omxSP_FFTInit_C_FC32(fft_inv_spec, fft_log_size);
    if (status) {
        fprintf(stderr, "Failed to init backward FFT:  status = %d, order %d\n",
                status, fft_log_size);
        exit(1);
    }

    x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
    y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
    z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
    x = x_aligned->aligned_pointer_;
    y = y_aligned->aligned_pointer_;
    z = z_aligned->aligned_pointer_;

    GenerateSignal(x, y, fft_size, signal_type, signal_value);

    if (verbose > 63) {
        printf("Inverse FFT Input Signal\n");
        DumpArrayComplexFloat("x", fft_size, y);

        printf("Expected Inverse FFT output\n");
        DumpArrayComplexFloat("x", fft_size, x);
    }

    status = InverseFFT(y, z, fft_inv_spec);

    if (status) {
        fprintf(stderr, "Inverse FFT failed: status = %d\n", status);
        exit(1);
    }

    if (verbose > 63) {
        printf("Actual Inverse FFT Output\n");
        DumpArrayComplexFloat("z", fft_size, z);
    }

    CompareComplexFloat(snr, z, x, fft_size);

    FreeAlignedPointer(x_aligned);
    FreeAlignedPointer(y_aligned);
    FreeAlignedPointer(z_aligned);
    free(fft_inv_spec);

    return snr->complex_snr_;
}
void TimeOneFloatFFT(int count, int fft_log_size, float signal_value,
                     int signal_type) {
  struct AlignedPtr* x_aligned;
  struct AlignedPtr* y_aligned;
  struct AlignedPtr* z_aligned;
  struct AlignedPtr* y_true_aligned;

  struct ComplexFloat* x;
  struct ComplexFloat* y;
  OMX_FC32* z;

  struct ComplexFloat* y_true;

  OMX_INT n, fft_spec_buffer_size;
  OMXFFTSpec_C_FC32 * fft_fwd_spec = NULL;
  OMXFFTSpec_C_FC32 * fft_inv_spec = NULL;
  int fft_size;
  struct timeval start_time;
  struct timeval end_time;
  double elapsed_time;
  struct SnrResult snr_forward;
  struct SnrResult snr_inverse;

  fft_size = 1 << fft_log_size;

  x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
  y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
  z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
  y_true_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);

  x = x_aligned->aligned_pointer_;
  y = y_aligned->aligned_pointer_;
  z = z_aligned->aligned_pointer_;
  y_true = y_true_aligned->aligned_pointer_;

  GenerateTestSignalAndFFT(x, y_true, fft_size, signal_type, signal_value, 0);

  omxSP_FFTGetBufSize_C_FC32(fft_log_size, &fft_spec_buffer_size);

  fft_fwd_spec = (OMXFFTSpec_C_FC32*) malloc(fft_spec_buffer_size);
  fft_inv_spec = (OMXFFTSpec_C_FC32*) malloc(fft_spec_buffer_size);
  omxSP_FFTInit_C_FC32(fft_fwd_spec, fft_log_size);
  omxSP_FFTInit_C_FC32(fft_inv_spec, fft_log_size);

  if (do_forward_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      FORWARD_FLOAT_FFT((OMX_FC32*) x, (OMX_FC32*) y, fft_fwd_spec);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size);

    PrintResult("Forward Float FFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);
  }

  if (do_inverse_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      INVERSE_FLOAT_FFT((OMX_FC32*) y_true, z, fft_inv_spec);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_inverse, (OMX_FC32*) z, (OMX_FC32*) x, fft_size);

    PrintResult("Inverse Float FFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);
  }

  FreeAlignedPointer(x_aligned);
  FreeAlignedPointer(y_aligned);
  FreeAlignedPointer(z_aligned);
  FreeAlignedPointer(y_true_aligned);
  free(fft_fwd_spec);
  free(fft_inv_spec);
}
void TimeOneFloatRFFT(int count, int fft_log_size, float signal_value,
                      int signal_type) {
  OMX_F32* x;                   /* Source */
  OMX_F32* y;                   /* Transform */
  OMX_F32* z;                   /* Inverse transform */

  OMX_F32* y_true;              /* True FFT */

  struct AlignedPtr* x_aligned;
  struct AlignedPtr* y_aligned;
  struct AlignedPtr* z_aligned;
  struct AlignedPtr* y_true_aligned;


  OMX_INT n, fft_spec_buffer_size;
  OMXResult status;
  OMXFFTSpec_R_F32 * fft_fwd_spec = NULL;
  OMXFFTSpec_R_F32 * fft_inv_spec = NULL;
  int fft_size;
  struct timeval start_time;
  struct timeval end_time;
  double elapsed_time;
  struct SnrResult snr_forward;
  struct SnrResult snr_inverse;

  fft_size = 1 << fft_log_size;

  x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
  /* The transformed value is in CCS format and is has fft_size + 2 values */
  y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
  z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
  y_true_aligned = AllocAlignedPointer(32, sizeof(*z) * (fft_size + 2));

  x = x_aligned->aligned_pointer_;
  y = y_aligned->aligned_pointer_;
  z = z_aligned->aligned_pointer_;
  y_true = y_true_aligned->aligned_pointer_;

  GenerateRealFloatSignal(x, (OMX_FC32*) y_true, fft_size, signal_type,
                          signal_value);

  status = omxSP_FFTGetBufSize_R_F32(fft_log_size, &fft_spec_buffer_size);

  fft_fwd_spec = (OMXFFTSpec_R_F32*) malloc(fft_spec_buffer_size);
  fft_inv_spec = (OMXFFTSpec_R_F32*) malloc(fft_spec_buffer_size);
  status = omxSP_FFTInit_R_F32(fft_fwd_spec, fft_log_size);

  status = omxSP_FFTInit_R_F32(fft_inv_spec, fft_log_size);

  if (do_forward_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      FORWARD_FLOAT_RFFT(x, y, fft_fwd_spec);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size / 2 + 1);

    PrintResult("Forward Float RFFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);
  }

  if (do_inverse_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      INVERSE_FLOAT_RFFT(y_true, z, fft_inv_spec);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareFloat(&snr_inverse, (OMX_F32*) z, (OMX_F32*) x, fft_size);

    PrintResult("Inverse Float RFFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);
  }

  FreeAlignedPointer(x_aligned);
  FreeAlignedPointer(y_aligned);
  FreeAlignedPointer(z_aligned);
  free(fft_fwd_spec);
  free(fft_inv_spec);
}
Exemple #7
0
void TimeOnePfFFT(int count, int fft_log_size, float signal_value,
                     int signal_type) {
  struct AlignedPtr* x_aligned;
  struct AlignedPtr* y_aligned;
  struct AlignedPtr* z_aligned;
  struct AlignedPtr* y_true_aligned;

  struct ComplexFloat* x;
  struct ComplexFloat* y;
  OMX_FC32* z;

  struct ComplexFloat* y_true;

  int n;
  int fft_size;
  struct timeval start_time;
  struct timeval end_time;
  double elapsed_time;
  PFFFT_Setup *s;
  struct SnrResult snr_forward;
  struct SnrResult snr_inverse;
  
  fft_size = 1 << fft_log_size;

  x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
  y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
  z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
  y_true_aligned = AllocAlignedPointer(32, sizeof(*y_true) * fft_size);

  x = x_aligned->aligned_pointer_;
  y = y_aligned->aligned_pointer_;
  z = z_aligned->aligned_pointer_;
  y_true = y_true_aligned->aligned_pointer_;

  s = pffft_new_setup(fft_size, PFFFT_COMPLEX);
  if (!s) {
    fprintf(stderr, "TimeOnePfFFT: Could not initialize structure for order %d\n",
            fft_log_size);
  }

  GenerateTestSignalAndFFT(x, y_true, fft_size, signal_type, signal_value, 0);

  if (do_forward_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      pffft_transform_ordered(s, (float*)x, (float*)y, NULL, PFFFT_FORWARD);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size);

    PrintResult("Forward PFFFT FFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);

    if (verbose >= 255) {
      printf("FFT Actual:\n");
      DumpArrayComplexFloat("y", fft_size, (OMX_FC32*) y);
      printf("FFT Expected:\n");
      DumpArrayComplexFloat("true", fft_size, (OMX_FC32*) y_true);
    }
  }

  if (do_inverse_test) {
    float scale = 1.0 / fft_size;

    memcpy(y, y_true, sizeof(*y) * (fft_size + 2));
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      int m;
      
      pffft_transform_ordered(s, (float*)y_true, (float*)z, NULL, PFFFT_BACKWARD);
      /*
       * Need to include cost of scaling the inverse
       */
      ScaleVector((OMX_F32*) z, 2 * fft_size, fft_size);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareComplexFloat(&snr_inverse, (OMX_FC32*) z, (OMX_FC32*) x, fft_size);

    PrintResult("Inverse PFFFT FFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);

    if (verbose >= 255) {
      printf("IFFT Actual:\n");
      DumpArrayComplexFloat("z", fft_size, z);
      printf("IFFT Expected:\n");
      DumpArrayComplexFloat("x", fft_size, (OMX_FC32*) x);
    }
  }

  FreeAlignedPointer(x_aligned);
  FreeAlignedPointer(y_aligned);
  FreeAlignedPointer(z_aligned);
  FreeAlignedPointer(y_true_aligned);
  pffft_destroy_setup(s);
}
Exemple #8
0
void TimeOnePfRFFT(int count, int fft_log_size, float signal_value,
                     int signal_type) {
  struct AlignedPtr* x_aligned;
  struct AlignedPtr* y_aligned;
  struct AlignedPtr* z_aligned;
  struct AlignedPtr* y_tmp_aligned;

  float* x;
  struct ComplexFloat* y;
  OMX_F32* z;

  float* y_true;
  float* y_tmp;

  int n;
  int fft_size;
  struct timeval start_time;
  struct timeval end_time;
  double elapsed_time;
  PFFFT_Setup *s;
  struct SnrResult snr_forward;
  struct SnrResult snr_inverse;
  
  fft_size = 1 << fft_log_size;

  x_aligned = AllocAlignedPointer(32, sizeof(*x) * fft_size);
  y_aligned = AllocAlignedPointer(32, sizeof(*y) * (fft_size + 2));
  z_aligned = AllocAlignedPointer(32, sizeof(*z) * fft_size);
  y_tmp_aligned = AllocAlignedPointer(32, sizeof(*y_tmp) * (fft_size + 2));

  y_true = (float*) malloc(sizeof(*y_true) * 2 * fft_size);

  x = x_aligned->aligned_pointer_;
  y = y_aligned->aligned_pointer_;
  z = z_aligned->aligned_pointer_;
  y_tmp = y_tmp_aligned->aligned_pointer_;

  s = pffft_new_setup(fft_size, PFFFT_REAL);
  if (!s) {
    fprintf(stderr, "TimeOnePfRFFT: Could not initialize structure for order %d\n",
            fft_log_size);
  }

  GenerateRealFloatSignal(x, (struct ComplexFloat*) y_true, fft_size, signal_type, signal_value);

  if (do_forward_test) {
    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      pffft_transform_ordered(s, (float*)x, (float*)y, NULL, PFFFT_FORWARD);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    /*
     * Arrange the output of the FFT to match the expected output.
     */
    y[fft_size / 2].Re = y[0].Im;
    y[fft_size / 2].Im = 0;
    y[0].Im = 0;

    CompareComplexFloat(&snr_forward, (OMX_FC32*) y, (OMX_FC32*) y_true, fft_size / 2 + 1);

    PrintResult("Forward PFFFT RFFT", fft_log_size, elapsed_time, count, snr_forward.complex_snr_);

    if (verbose >= 255) {
      printf("FFT Actual:\n");
      DumpArrayComplexFloat("y", fft_size / 2 + 1, (OMX_FC32*) y);
      printf("FFT Expected:\n");
      DumpArrayComplexFloat("true", fft_size / 2 + 1, (OMX_FC32*) y_true);
    }
  }

  if (do_inverse_test) {
    float scale = 1.0 / fft_size;

    /* Copy y_true to true, but arrange the values according to what rdft wants. */

    memcpy(y_tmp, y_true, sizeof(y_tmp[0]) * fft_size);
    y_tmp[1] = y_true[fft_size / 2];

    GetUserTime(&start_time);
    for (n = 0; n < count; ++n) {
      int m;
      
      pffft_transform_ordered(s, (float*)y_tmp, (float*)z, NULL, PFFFT_BACKWARD);
      /*
       * Need to include cost of scaling the inverse
       */
      ScaleVector(z, fft_size, fft_size);
    }
    GetUserTime(&end_time);

    elapsed_time = TimeDifference(&start_time, &end_time);

    CompareFloat(&snr_inverse, (OMX_F32*) z, (OMX_F32*) x, fft_size);

    PrintResult("Inverse PFFFT RFFT", fft_log_size, elapsed_time, count, snr_inverse.complex_snr_);

    if (verbose >= 255) {
      printf("IFFT Actual:\n");
      DumpArrayFloat("z", fft_size, z);
      printf("IFFT Expected:\n");
      DumpArrayFloat("x", fft_size, x);
    }
  }

  FreeAlignedPointer(x_aligned);
  FreeAlignedPointer(y_aligned);
  FreeAlignedPointer(z_aligned);
  FreeAlignedPointer(y_tmp_aligned);
  pffft_destroy_setup(s);
  free(y_true);
}