/** ============================================================================
 *   @n@b Init_Cppi
 *
 *   @b Description
 *   @n This API initializes the CPPI LLD, opens the PASS CPDMA and opens up
 *      the Tx, Rx channels required for data transfers.
 *
 *   @param[in]  
 *   @n None
 * 
 *   @return    Int32
 *              -1      -   Error
 *              0       -   Success
 * =============================================================================
 */
Int32 Init_Cppi (Void)
{
    Int32                       result, i;        
    Cppi_CpDmaInitCfg           cpdmaCfg;
    UInt8                       isAllocated;        
    Cppi_TxChInitCfg            txChCfg;
    Cppi_RxChInitCfg            rxChInitCfg;

    /* Initialize CPPI LLD */
    result = Cppi_init (cppiGblCfgParams);
    if (result != CPPI_SOK)
    {
        uart_write ("Error initializing CPPI LLD, Error code : %d\n", result);
        return -1;
    }


    /* Initialize PASS CPDMA */
    memset (&cpdmaCfg, 0, sizeof (Cppi_CpDmaInitCfg));
    cpdmaCfg.dmaNum     = Cppi_CpDma_PASS_CPDMA;
    if ((gCpdmaHnd = Cppi_open (&cpdmaCfg)) == NULL)
    {
        uart_write ("Error initializing CPPI for PASS CPDMA %d \n", cpdmaCfg.dmaNum);
        return -1;
    }    
    else
    	uart_write ("Initialized CPPI for PASS CPDMA instance %d Handle %p \n",cpdmaCfg.dmaNum,gCpdmaHnd);

    /* Open all CPPI Tx Channels. These will be used to send data to PASS/CPSW */             
    for (i = 0; i < NUM_PA_TX_QUEUES; i ++)
    {
        txChCfg.channelNum      =   i;       /* CPPI channels are mapped one-one to the PA Tx queues */
        txChCfg.txEnable        =   Cppi_ChState_CHANNEL_DISABLE;  /* Disable the channel for now. */
        txChCfg.filterEPIB      =   0;
        txChCfg.filterPS        =   0;
        txChCfg.aifMonoMode     =   0;
        txChCfg.priority        =   2;
        if ((gCpdmaTxChanHnd[i] = Cppi_txChannelOpen (gCpdmaHnd, &txChCfg, &isAllocated)) == NULL)
        {
            uart_write ("Error opening Tx channel %d\n", txChCfg.channelNum);
            return -1;
        }
        else
        	uart_write ("Opened a Tx channel %d Handle %p \n", txChCfg.channelNum,gCpdmaTxChanHnd[i]);


        Cppi_channelEnable (gCpdmaTxChanHnd[i]);
    }

    /* Open all CPPI Rx channels. These will be used by PA to stream data out. */
    for (i = 0; i < NUM_PA_RX_CHANNELS; i++)
    {
        /* Open a CPPI Rx channel that will be used by PA to stream data out. */
        rxChInitCfg.channelNum  =   i; 
        rxChInitCfg.rxEnable    =   Cppi_ChState_CHANNEL_DISABLE; 
        if ((gCpdmaRxChanHnd[i] = Cppi_rxChannelOpen (gCpdmaHnd, &rxChInitCfg, &isAllocated)) == NULL)
        {
            uart_write ("Error opening Rx channel: %d \n", rxChInitCfg.channelNum);
            return -1;
        }
        else
        	uart_write ("Opened a Rx channel %d Handle %p \n", rxChInitCfg.channelNum,gCpdmaRxChanHnd[i]);

        /* Also enable Rx Channel */
        Cppi_channelEnable (gCpdmaRxChanHnd[i]);    
    }
    
    /* Clear CPPI Loobpack bit in PASS CDMA Global Emulation Control Register */
    Cppi_setCpdmaLoopback(gCpdmaHnd, 0);   

    /* CPPI Init Done. Return success */
    return 0;
}    
Exemple #2
0
/**
 * Init Queue Manager SUbSystem (QMSS)
 *  - Configure QMSS Driver
 * 	- Define Memory regions
 * 	-
 */
void init_qmss(int useMsmc){
	int i, result;
    Qmss_InitCfg 			qmss_initCfg;
	Cppi_CpDmaInitCfg 		cpdmaCfg;
	Qmss_GlobalConfigParams qmss_globalCfg;

    /* Descriptor base addresses */
    void* data_desc_base  = (void*)align((int)msmc_mem_base);
    void* ctrl_desc_base  = (void*)align((int)data_desc_base + DATA_DESC_NUM*DATA_DESC_SIZE);
    void* trace_desc_base = (void*)align((int)ctrl_desc_base + CTRL_DESC_NUM*CTRL_DESC_SIZE);
    void* fftc_desc_base  = (void*)align((int)trace_desc_base + TRACE_DESC_NUM*TRACE_DESC_SIZE);

    if(useMsmc){
    	data_mem_base = align((int)fftc_desc_base + FFTC_DESC_NUM*FFTC_DESC_SIZE);
    }else{
    	data_mem_base = align((int)ddr_mem_base);
    }

    /* Initialize QMSS Driver */
    memset (&qmss_initCfg, 0, sizeof (Qmss_InitCfg));

    /* Use internal linking RAM */
	qmss_initCfg.linkingRAM0Base  = 0;
	qmss_initCfg.linkingRAM0Size  = 0;
	qmss_initCfg.linkingRAM1Base  = 0;
	qmss_initCfg.maxDescNum       = DATA_DESC_NUM + CTRL_DESC_NUM + TRACE_DESC_NUM + FFTC_DESC_NUM;

	qmss_initCfg.pdspFirmware[0].pdspId   = Qmss_PdspId_PDSP1;
	qmss_initCfg.pdspFirmware[0].firmware = &acc48_le;
	qmss_initCfg.pdspFirmware[0].size     = sizeof (acc48_le);

    /* Bypass hardware initialization as it is done within Kernel */
    qmss_initCfg.qmssHwStatus     =   QMSS_HW_INIT_COMPLETE;

    qmss_globalCfg = qmssGblCfgParams;
    /* Convert address to Virtual address */
	for(i=0;i < (int)qmss_globalCfg.maxQueMgrGroups;i++){
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmConfigReg,       qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_configRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmDescReg,         qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_descriptor_region_configRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueMgmtReg,      qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_queue_managementRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueMgmtProxyReg, qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_queue_managementRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueStatReg,      qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_queue_status_configRegs*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmStatusRAM,       qmss_cfg_regs-CSL_QMSS_CFG_BASE,    CSL_Qm_Queue_Status*);
		TranslateAddress(qmss_globalCfg.groupRegs[i].qmQueMgmtDataReg,  qmss_cfg_regs-CSL_QMSS_DATA_BASE,   CSL_Qm_queue_managementRegs*);

		/* not supported on k2 hardware, and not used by lld */
		qmss_globalCfg.groupRegs[i].qmQueMgmtProxyDataReg = 0;
	}

	for(i=0;i < QMSS_MAX_INTD;i++)
		TranslateAddress(qmss_globalCfg.regs.qmQueIntdReg[i], qmss_cfg_regs-CSL_QMSS_CFG_BASE, CSL_Qm_intdRegs*);


	for(i=0;i < QMSS_MAX_PDSP;i++){
		TranslateAddress(qmss_globalCfg.regs.qmPdspCmdReg[i],  qmss_cfg_regs-CSL_QMSS_CFG_BASE, volatile uint32_t*);
		TranslateAddress(qmss_globalCfg.regs.qmPdspCtrlReg[i], qmss_cfg_regs-CSL_QMSS_CFG_BASE, CSL_PdspRegs*);
		TranslateAddress(qmss_globalCfg.regs.qmPdspIRamReg[i], qmss_cfg_regs-CSL_QMSS_CFG_BASE, volatile uint32_t*);
	}

	TranslateAddress(qmss_globalCfg.regs.qmLinkingRAMReg, 	qmss_cfg_regs-CSL_QMSS_CFG_BASE, volatile uint32_t*);
	TranslateAddress(qmss_globalCfg.regs.qmBaseAddr, 		qmss_cfg_regs-CSL_QMSS_CFG_BASE, void*);

	if ((result = Qmss_init (&qmss_initCfg, &qmss_globalCfg)) != QMSS_SOK){
		printf ("initQmss: Error initializing Queue Manager SubSystem, Error code : %d\n", result);
		abort();
	}

	if ((result = Qmss_start ()) != QMSS_SOK){
		printf ("initQmss: Error starting Queue Manager SubSystem, Error code : %d\n", result);
		abort();
	}

	Cppi_GlobalCPDMAConfigParams translatedCppiGblCpdmaCfgParams[Cppi_CpDma_LAST+1];
	Cppi_GlobalConfigParams translatedCppiGblCfgParams = cppiGblCfgParams;

	translatedCppiGblCfgParams.cpDmaCfgs = translatedCppiGblCpdmaCfgParams;

#define translateCpdma(reg, type) (translatedCppiGblCfgParams.reg = (type)(((int) cppiGblCfgParams.reg ) +  cppi_regs - CPPI_BASE_REG))

	Cppi_CpDma cpdma;
	for(cpdma = Cppi_CpDma_SRIO_CPDMA; cpdma <= Cppi_CpDma_LAST; cpdma++){
		translatedCppiGblCfgParams.cpDmaCfgs[cpdma] = cppiGblCfgParams.cpDmaCfgs[cpdma];
		translateCpdma(cpDmaCfgs[cpdma].gblCfgRegs,	CSL_Cppidma_global_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].txChRegs, 	CSL_Cppidma_tx_channel_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].rxChRegs, 	CSL_Cppidma_rx_channel_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].txSchedRegs,CSL_Cppidma_tx_scheduler_configRegs*);
		translateCpdma(cpDmaCfgs[cpdma].rxFlowRegs, CSL_Cppidma_rx_flow_configRegs*);
	}

    if ((result = Cppi_init (&translatedCppiGblCfgParams)) != CPPI_SOK){
        printf ("Error initializing CPPI LLD, Error code : %d\n", result);
        abort();
    }

	/* Setup memory regions */
	/* Setup DATA region */
	result = setup_region(
			data_desc_base,
			DATA_DESC_SIZE, DATA_DESC_NUM,
			0,
			DATA_REG_NUM);
	if (result) abort();

	/* Setup CTRL region */
	result = setup_region(
			ctrl_desc_base,
			CTRL_DESC_SIZE, CTRL_DESC_NUM,
			DATA_DESC_NUM,
			CTRL_REG_NUM);
	if (result) abort();

	/* Setup TRACE region */
	result = setup_region(
			trace_desc_base,
			TRACE_DESC_SIZE, TRACE_DESC_NUM,
			DATA_DESC_NUM+CTRL_DESC_NUM,
			TRACE_REG_NUM);
	if (result) abort();

	/* Setup FFTC region */
	result = setup_region(
			fftc_desc_base,
			FFTC_DESC_SIZE, FFTC_DESC_NUM,
			DATA_DESC_NUM+CTRL_DESC_NUM+TRACE_DESC_NUM,
			FFTC_REG_NUM);
	if (result) abort();

    /* Setup the driver for this FFTC peripheral instance number. */
	/* Set up the FFTC CPDMA configuration */
	memset (&cpdmaCfg, 0, sizeof (Cppi_CpDmaInitCfg));
	cpdmaCfg.dmaNum = Cppi_CpDma_FFTC_A_CPDMA;

	/* Initialize FFTC CPDMA */
	if ((hCppi[0] = Cppi_open (&cpdmaCfg)) == NULL){
		printf ("Error initializing CPPI for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	/* Disable FFTC CDMA loopback */
	if (Cppi_setCpdmaLoopback (hCppi[0], 0) != CPPI_SOK){
		printf ("Error disabling loopback for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	memset (&cpdmaCfg, 0, sizeof (Cppi_CpDmaInitCfg));
	cpdmaCfg.dmaNum = Cppi_CpDma_FFTC_B_CPDMA;
	if ((hCppi[1] = Cppi_open (&cpdmaCfg)) == NULL){
		printf ("Error initializing CPPI for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	/* Disable FFTC CDMA loopback */
	if (Cppi_setCpdmaLoopback (hCppi[1], 0) != CPPI_SOK){
		printf ("Error disabling loopback for FFTC CPDMA %d\n", cpdmaCfg.dmaNum);
		abort();
	}

	fftc_a_cfg_regs->CONFIG = 0;
	fftc_b_cfg_regs->CONFIG = 0;
//						CSL_FMK (FFTC_CONFIG_Q3_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_Q2_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_Q1_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_Q0_FLOWID_OVERWRITE, 0) |
//						CSL_FMK (FFTC_CONFIG_STARVATION_PERIOD, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_3_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_2_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_1_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_QUEUE_0_PRIORITY, 0) |
//						CSL_FMK (FFTC_CONFIG_FFT_DISABLE, 0);

	/* Emptying Queues */
	/* Tx FFTC */
    Qmss_queueEmpty(QMSS_FFTC_A_QUEUE_BASE);
    for(i=QUEUE_FIRST; i<=QUEUE_LAST; i++){
        Qmss_queueEmpty(i);
    }

    /* Populate free queues */
    for(i=0; i<DATA_DESC_NUM; i++){
    	Cppi_Desc* mono_pkt = (Cppi_Desc *) ((int)data_desc_base + i*DATA_DESC_SIZE);

    	Osal_DescBeginMemAccess(mono_pkt, DATA_DESC_SIZE);

    	Qmss_Queue freeQueue = {0, QUEUE_FREE_DATA};
    	Cppi_setDescType(							  mono_pkt, Cppi_DescType_MONOLITHIC);
    	Cppi_setDataOffset(	Cppi_DescType_MONOLITHIC,  mono_pkt, PACKET_HEADER);
    	Cppi_setPacketLen(	Cppi_DescType_MONOLITHIC, mono_pkt, DATA_DESC_SIZE);
    	Cppi_setReturnQueue(Cppi_DescType_MONOLITHIC, mono_pkt, freeQueue);

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(mono_pkt, DATA_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_DATA, mono_pkt, DATA_DESC_SIZE);
    }

    for(i=0; i<CTRL_DESC_NUM; i++){
    	Cppi_Desc* mono_pkt = (Cppi_Desc *) ((int)ctrl_desc_base + i*CTRL_DESC_SIZE);

    	Osal_DescBeginMemAccess(mono_pkt, CTRL_DESC_SIZE);

    	Qmss_Queue freeQueue = {0, QUEUE_FREE_DATA};
    	Cppi_setDescType(							  mono_pkt, Cppi_DescType_MONOLITHIC);
    	Cppi_setDataOffset(	Cppi_DescType_MONOLITHIC,  mono_pkt, PACKET_HEADER);
    	Cppi_setPacketLen(	Cppi_DescType_MONOLITHIC, mono_pkt, CTRL_DESC_SIZE);
    	Cppi_setReturnQueue(Cppi_DescType_MONOLITHIC, mono_pkt, freeQueue);

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(mono_pkt, CTRL_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_CTRL, mono_pkt, CTRL_DESC_SIZE);
    }

    for(i=0; i<TRACE_DESC_NUM; i++){
    	Cppi_Desc* mono_pkt = (Cppi_Desc *) ((int)trace_desc_base + i*TRACE_DESC_SIZE);

    	Osal_DescBeginMemAccess(mono_pkt, TRACE_DESC_SIZE);

    	Qmss_Queue freeQueue = {0, QUEUE_FREE_DATA};
    	Cppi_setDescType(							  mono_pkt, Cppi_DescType_MONOLITHIC);
    	Cppi_setDataOffset(	Cppi_DescType_MONOLITHIC, mono_pkt, PACKET_HEADER);
    	Cppi_setPacketLen(	Cppi_DescType_MONOLITHIC, mono_pkt, TRACE_DESC_SIZE);
    	Cppi_setReturnQueue(Cppi_DescType_MONOLITHIC, mono_pkt, freeQueue);

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(mono_pkt, TRACE_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_TRACE, mono_pkt, TRACE_DESC_SIZE);
    }

    for(i=0; i<FFTC_DESC_NUM; i++){
    	Cppi_Desc * host_pkt = (Cppi_Desc *) ((int)fftc_desc_base + i*FFTC_DESC_SIZE);

    	Osal_DescBeginMemAccess(host_pkt, FFTC_DESC_SIZE);
    	memset(host_pkt, 0, FFTC_DESC_SIZE);

    	Qmss_Queue queue = {0, QUEUE_FREE_FFTC};
    	Cppi_setDescType(								host_pkt, Cppi_DescType_HOST);
    	Cppi_setReturnPolicy(		Cppi_DescType_HOST, host_pkt, Cppi_ReturnPolicy_RETURN_BUFFER);
    	Cppi_setReturnPushPolicy(	Cppi_DescType_HOST, host_pkt, Qmss_Location_TAIL);
    	Cppi_setPSLocation(			Cppi_DescType_HOST, host_pkt, Cppi_PSLoc_PS_IN_DESC);
    	Cppi_setReturnQueue(		Cppi_DescType_HOST, host_pkt, queue);
    	((Cppi_HostDesc*)host_pkt)->nextBDPtr = 0;

    	/* Sync Descriptor */
    	Osal_DescEndMemAccess(host_pkt, FFTC_DESC_SIZE);

		Qmss_queuePushDescSize(QUEUE_FREE_FFTC,host_pkt,FFTC_DESC_SIZE);
    }

	configureRxFlow(0);
	configureRxFlow(1);

	configureTxChan(0);
	configureTxChan(1);

	configureRxChan(0);
	configureRxChan(1);

	/* Finally, enable the Tx channel so that we can start sending
	 * data blocks to FFTC engine.
	 */
	Cppi_channelEnable (hCppiTxChan[0]);
	Cppi_channelEnable (hCppiTxChan[1]);
	Cppi_channelEnable (hCppiRxChan[0]);
	Cppi_channelEnable (hCppiRxChan[1]);

	configureFFTRegs(fftc_a_cfg_regs);
	configureFFTRegs(fftc_b_cfg_regs);
}