Exemple #1
0
static YAP_Bool bdd_to_add(void) {
  YAP_Term arg1, arg2, out;
  DdNode *node1, *node2;

  arg1 = YAP_ARG1;
  arg2 = YAP_ARG2;
  node1 = (DdNode *)YAP_IntOfTerm(arg1);
  node2 = Cudd_BddToAdd(mgr_ex[ex], node1);
  out = YAP_MkIntTerm((YAP_Int)node2);
  return (YAP_Unify(out, arg2));
}
Exemple #2
0
/**Function********************************************************************

  Synopsis    [Computes the Hamming distance ADD.]

  Description [Computes the Hamming distance ADD. Returns an ADD that
  gives the Hamming distance between its two arguments if successful;
  NULL otherwise. The two vectors xVars and yVars identify the variables
  that form the two arguments.]

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
DdNode *
Cudd_addHamming(
  DdManager * dd,
  DdNode ** xVars,
  DdNode ** yVars,
  int  nVars)
{
    DdNode  *result,*tempBdd;
    DdNode  *tempAdd,*temp;
    int     i;

    result = DD_ZERO(dd);
    cuddRef(result);

    for (i = 0; i < nVars; i++) {
	tempBdd = Cudd_bddIte(dd,xVars[i],Cudd_Not(yVars[i]),yVars[i]);
	if (tempBdd == NULL) {
	    Cudd_RecursiveDeref(dd,result);
	    return(NULL);
	}
	cuddRef(tempBdd);
	tempAdd = Cudd_BddToAdd(dd,tempBdd);
	if (tempAdd == NULL) {
	    Cudd_RecursiveDeref(dd,tempBdd);
	    Cudd_RecursiveDeref(dd,result);
	    return(NULL);
	}
	cuddRef(tempAdd);
	Cudd_RecursiveDeref(dd,tempBdd);
	temp = Cudd_addApply(dd,Cudd_addPlus,tempAdd,result);
	if (temp == NULL) {
	    Cudd_RecursiveDeref(dd,tempAdd);
	    Cudd_RecursiveDeref(dd,result);
	    return(NULL);
	}
	cuddRef(temp);
	Cudd_RecursiveDeref(dd,tempAdd);
	Cudd_RecursiveDeref(dd,result);
	result = temp;
    }

    cuddDeref(result);
    return(result);

} /* end of Cudd_addHamming */
Exemple #3
0
/**Function********************************************************************

  Synopsis    [Main function for testcudd.]

  Description []

  SideEffects [None]

  SeeAlso     []

******************************************************************************/
int
main(int argc, char **argv)
{
    FILE *fp;           /* pointer to input file */
    char *file = (char *) "";	/* input file name */
    FILE *dfp = NULL;	/* pointer to dump file */
    char *dfile;	/* file for DD dump */
    DdNode *dfunc[2];	/* addresses of the functions to be dumped */
    DdManager *dd;	/* pointer to DD manager */
    DdNode *_true;	/* fast access to constant function */
    DdNode *M;
    DdNode **x;		/* pointers to variables */
    DdNode **y;		/* pointers to variables */
    DdNode **xn;       	/* complements of row variables */
    DdNode **yn_;      	/* complements of column variables */
    DdNode **xvars;
    DdNode **yvars;
    DdNode *C;		/* result of converting from ADD to BDD */
    DdNode *ess;	/* cube of essential variables */
    DdNode *shortP;	/* BDD cube of shortest path */
    DdNode *largest;	/* BDD of largest cube */
    DdNode *shortA;	/* ADD cube of shortest path */
    DdNode *constN;	/* value returned by evaluation of ADD */
    DdNode *ycube;	/* cube of the negated y vars for c-proj */
    DdNode *CP;		/* C-Projection of C */
    DdNode *CPr;	/* C-Selection of C */
    int    length;	/* length of the shortest path */
    int    nx;			/* number of variables */
    int    ny;
    int    maxnx;
    int    maxny;
    int    m;
    int    n;
    int    N;
    int    cmu;			/* use CMU multiplication */
    int    pr;			/* verbose printout level */
    int    harwell;
    int    multiple;		/* read multiple matrices */
    int    ok;
    int    c;			/* variable to read in options */
    int    approach;		/* reordering approach */
    int    autodyn;		/* automatic reordering */
    int    groupcheck;		/* option for group sifting */
    int    profile;		/* print heap profile if != 0 */
    int    keepperm;		/* keep track of permutation */
    int    clearcache;		/* clear the cache after each matrix */
    int    blifOrDot;		/* dump format: 0 -> dot, 1 -> blif, ... */
    int    retval;		/* return value */
    int    i;			/* loop index */
    long   startTime;		/* initial time */
    long   lapTime;
    int    size;
    unsigned int cacheSize, maxMemory;
    unsigned int nvars,nslots;

    startTime = util_cpu_time();

    approach = CUDD_REORDER_NONE;
    autodyn = 0;
    pr = 0;
    harwell = 0;
    multiple = 0;
    profile = 0;
    keepperm = 0;
    cmu = 0;
    N = 4;
    nvars = 4;
    cacheSize = 127;
    maxMemory = 0;
    nslots = CUDD_UNIQUE_SLOTS;
    clearcache = 0;
    groupcheck = CUDD_GROUP_CHECK7;
    dfile = NULL;
    blifOrDot = 0; /* dot format */

    /* Parse command line. */
    while ((c = util_getopt(argc, argv, (char *) "CDHMPS:a:bcd:g:hkmn:p:v:x:X:"))
	   != EOF) {
	switch(c) {
	case 'C':
	    cmu = 1;
	    break;
	case 'D':
	    autodyn = 1;
	    break;
	case 'H':
	    harwell = 1;
	    break;
	case 'M':
#ifdef MNEMOSYNE
	    (void) mnem_setrecording(0);
#endif
	    break;
	case 'P':
	    profile = 1;
	    break;
	case 'S':
	    nslots = atoi(util_optarg);
	    break;
	case 'X':
	    maxMemory = atoi(util_optarg);
	    break;
	case 'a':
	    approach = atoi(util_optarg);
	    break;
	case 'b':
	    blifOrDot = 1; /* blif format */
	    break;
	case 'c':
	    clearcache = 1;
	    break;
	case 'd':
	    dfile = util_optarg;
	    break;
	case 'g':
	    groupcheck = atoi(util_optarg);
	    break;
	case 'k':
	    keepperm = 1;
	    break;
	case 'm':
	    multiple = 1;
	    break;
	case 'n':
	    N = atoi(util_optarg);
	    break;
	case 'p':
	    pr = atoi(util_optarg);
	    break;
	case 'v':
	    nvars = atoi(util_optarg);
	    break;
	case 'x':
	    cacheSize = atoi(util_optarg);
	    break;
	case 'h':
	default:
	    usage(argv[0]);
	    break;
	}
    }

    if (argc - util_optind == 0) {
	file = (char *) "-";
    } else if (argc - util_optind == 1) {
	file = argv[util_optind];
    } else {
	usage(argv[0]);
    }
    if ((approach<0) || (approach>17)) {
	(void) fprintf(stderr,"Invalid approach: %d \n",approach);
	usage(argv[0]);
    }

    if (pr >= 0) {
	(void) printf("# %s\n", TESTCUDD_VERSION);
	/* Echo command line and arguments. */
	(void) printf("#");
	for (i = 0; i < argc; i++) {
	    (void) printf(" %s", argv[i]);
	}
	(void) printf("\n");
	(void) fflush(stdout);
    }

    /* Initialize manager and provide easy reference to terminals. */
    dd = Cudd_Init(nvars,0,nslots,cacheSize,maxMemory);
    _true = DD_TRUE(dd);
    dd->groupcheck = (Cudd_AggregationType) groupcheck;
    if (autodyn) Cudd_AutodynEnable(dd,CUDD_REORDER_SAME);

    /* Open input file. */
    fp = open_file(file, "r");

    /* Open dump file if requested */
    if (dfile != NULL) {
	dfp = open_file(dfile, "w");
    }

    x = y = xn = yn_ = NULL;
    do {
	/* We want to start anew for every matrix. */
	maxnx = maxny = 0;
	nx = maxnx; ny = maxny;
	if (pr>0) lapTime = util_cpu_time();
	if (harwell) {
	    if (pr >= 0) (void) printf(":name: ");
	    ok = Cudd_addHarwell(fp, dd, &M, &x, &y, &xn, &yn_, &nx, &ny,
	    &m, &n, 0, 2, 1, 2, pr);
	} else {
	    ok = Cudd_addRead(fp, dd, &M, &x, &y, &xn, &yn_, &nx, &ny,
	    &m, &n, 0, 2, 1, 2);
	    if (pr >= 0)
		(void) printf(":name: %s: %d rows %d columns\n", file, m, n);
	}
	if (!ok) {
	    (void) fprintf(stderr, "Error reading matrix\n");
	    exit(1);
	}

	if (nx > maxnx) maxnx = nx;
	if (ny > maxny) maxny = ny;

	/* Build cube of negated y's. */
	ycube = DD_TRUE(dd);
	Cudd_Ref(ycube);
	for (i = maxny - 1; i >= 0; i--) {
	    DdNode *tmpp;
	    tmpp = Cudd_bddAnd(dd,Cudd_Not(dd->vars[y[i]->index]),ycube);
	    if (tmpp == NULL) exit(2);
	    Cudd_Ref(tmpp);
	    Cudd_RecursiveDeref(dd,ycube);
	    ycube = tmpp;
	}
	/* Initialize vectors of BDD variables used by priority func. */
	xvars = ALLOC(DdNode *, nx);
	if (xvars == NULL) exit(2);
	for (i = 0; i < nx; i++) {
	    xvars[i] = dd->vars[x[i]->index];
	}
	yvars = ALLOC(DdNode *, ny);
	if (yvars == NULL) exit(2);
	for (i = 0; i < ny; i++) {
	    yvars[i] = dd->vars[y[i]->index];
	}

	/* Clean up */
	for (i=0; i < maxnx; i++) {
	    Cudd_RecursiveDeref(dd, x[i]);
	    Cudd_RecursiveDeref(dd, xn[i]);
	}
	FREE(x);
	FREE(xn);
	for (i=0; i < maxny; i++) {
	    Cudd_RecursiveDeref(dd, y[i]);
	    Cudd_RecursiveDeref(dd, yn_[i]);
	}
	FREE(y);
	FREE(yn_);

	if (pr>0) {(void) printf(":1: M"); Cudd_PrintDebug(dd,M,nx+ny,pr);}

	if (pr>0) (void) printf(":2: time to read the matrix = %s\n",
		    util_print_time(util_cpu_time() - lapTime));

	C = Cudd_addBddPattern(dd, M);
	if (C == 0) exit(2);
	Cudd_Ref(C);
	if (pr>0) {(void) printf(":3: C"); Cudd_PrintDebug(dd,C,nx+ny,pr);}

	/* Test iterators. */
	retval = testIterators(dd,M,C,pr);
	if (retval == 0) exit(2);

	cuddCacheProfile(dd,stdout);

	/* Test XOR */
	retval = testXor(dd,C,pr,nx+ny);
	if (retval == 0) exit(2);

	/* Test Hamming distance functions. */
	retval = testHamming(dd,C,pr);
	if (retval == 0) exit(2);

	/* Test selection functions. */
	CP = Cudd_CProjection(dd,C,ycube);
	if (CP == NULL) exit(2);
	Cudd_Ref(CP);
	if (pr>0) {(void) printf("ycube"); Cudd_PrintDebug(dd,ycube,nx+ny,pr);}
	if (pr>0) {(void) printf("CP"); Cudd_PrintDebug(dd,CP,nx+ny,pr);}

	if (nx == ny) {
	    CPr = Cudd_PrioritySelect(dd,C,xvars,yvars,(DdNode **)NULL,
		(DdNode *)NULL,ny,Cudd_Xgty);
	    if (CPr == NULL) exit(2);
	    Cudd_Ref(CPr);
	    if (pr>0) {(void) printf(":4: CPr"); Cudd_PrintDebug(dd,CPr,nx+ny,pr);}
	    if (CP != CPr) {
		(void) printf("CP != CPr!\n");
	    }
	    Cudd_RecursiveDeref(dd, CPr);
	}
	FREE(xvars); FREE(yvars);

	Cudd_RecursiveDeref(dd, CP);
	Cudd_RecursiveDeref(dd, ycube);

	/* Test functions for essential variables. */
	ess = Cudd_FindEssential(dd,C);
	if (ess == NULL) exit(2);
	Cudd_Ref(ess);
	if (pr>0) {(void) printf(":4: ess"); Cudd_PrintDebug(dd,ess,nx+ny,pr);}
	Cudd_RecursiveDeref(dd, ess);

	/* Test functions for shortest paths. */
	shortP = Cudd_ShortestPath(dd, M, NULL, NULL, &length);
	if (shortP == NULL) exit(2);
	Cudd_Ref(shortP);
	if (pr>0) {
	    (void) printf(":5: shortP"); Cudd_PrintDebug(dd,shortP,nx+ny,pr);
	}
	/* Test functions for largest cubes. */
	largest = Cudd_LargestCube(dd, Cudd_Not(C), &length);
	if (largest == NULL) exit(2);
	Cudd_Ref(largest);
	if (pr>0) {
	    (void) printf(":5b: largest");
	    Cudd_PrintDebug(dd,largest,nx+ny,pr);
	}
	Cudd_RecursiveDeref(dd, largest);

	/* Test Cudd_addEvalConst and Cudd_addIteConstant. */
	shortA = Cudd_BddToAdd(dd,shortP);
	if (shortA == NULL) exit(2);
	Cudd_Ref(shortA);
	Cudd_RecursiveDeref(dd, shortP);
	constN = Cudd_addEvalConst(dd,shortA,M);
	if (constN == DD_NON_CONSTANT) exit(2);
	if (Cudd_addIteConstant(dd,shortA,M,constN) != constN) exit(2);
	if (pr>0) {(void) printf("The value of M along the chosen shortest path is %g\n", cuddV(constN));}
	Cudd_RecursiveDeref(dd, shortA);

	shortP = Cudd_ShortestPath(dd, C, NULL, NULL, &length);
	if (shortP == NULL) exit(2);
	Cudd_Ref(shortP);
	if (pr>0) {
	    (void) printf(":6: shortP"); Cudd_PrintDebug(dd,shortP,nx+ny,pr);
	}

	/* Test Cudd_bddIteConstant and Cudd_bddLeq. */
	if (!Cudd_bddLeq(dd,shortP,C)) exit(2);
	if (Cudd_bddIteConstant(dd,Cudd_Not(shortP),_true,C) != _true) exit(2);
	Cudd_RecursiveDeref(dd, shortP);

	if (profile) {
	    retval = cuddHeapProfile(dd);
	}

	size = dd->size;

	if (pr>0) {
	    (void) printf("Average distance: %g\n", Cudd_AverageDistance(dd));
	}

	/* Reorder if so requested. */
        if (approach != CUDD_REORDER_NONE) {
#ifndef DD_STATS
	    retval = Cudd_EnableReorderingReporting(dd);
	    if (retval == 0) {
		(void) fprintf(stderr,"Error reported by Cudd_EnableReorderingReporting\n");
		exit(3);
	    }
#endif
#ifdef DD_DEBUG
	    retval = Cudd_DebugCheck(dd);
	    if (retval != 0) {
		(void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n");
		exit(3);
	    }
	    retval = Cudd_CheckKeys(dd);
	    if (retval != 0) {
		(void) fprintf(stderr,"Error reported by Cudd_CheckKeys\n");
		exit(3);
	    }
#endif
	    retval = Cudd_ReduceHeap(dd,(Cudd_ReorderingType)approach,5);
	    if (retval == 0) {
		(void) fprintf(stderr,"Error reported by Cudd_ReduceHeap\n");
		exit(3);
	    }
#ifndef DD_STATS
	    retval = Cudd_DisableReorderingReporting(dd);
	    if (retval == 0) {
		(void) fprintf(stderr,"Error reported by Cudd_DisableReorderingReporting\n");
		exit(3);
	    }
#endif
#ifdef DD_DEBUG
	    retval = Cudd_DebugCheck(dd);
	    if (retval != 0) {
		(void) fprintf(stderr,"Error reported by Cudd_DebugCheck\n");
		exit(3);
	    }
	    retval = Cudd_CheckKeys(dd);
	    if (retval != 0) {
		(void) fprintf(stderr,"Error reported by Cudd_CheckKeys\n");
		exit(3);
	    }
#endif
	    if (approach == CUDD_REORDER_SYMM_SIFT ||
	    approach == CUDD_REORDER_SYMM_SIFT_CONV) {
		Cudd_SymmProfile(dd,0,dd->size-1);
	    }

	    if (pr>0) {
		(void) printf("Average distance: %g\n", Cudd_AverageDistance(dd));
	    }

	    if (keepperm) {
		/* Print variable permutation. */
		(void) printf("Variable Permutation:");
		for (i=0; i<size; i++) {
		    if (i%20 == 0) (void) printf("\n");
		    (void) printf("%d ", dd->invperm[i]);
		}
		(void) printf("\n");
		(void) printf("Inverse Permutation:");
		for (i=0; i<size; i++) {
		    if (i%20 == 0) (void) printf("\n");
		    (void) printf("%d ", dd->perm[i]);
		}
		(void) printf("\n");
	    }

	    if (pr>0) {(void) printf("M"); Cudd_PrintDebug(dd,M,nx+ny,pr);}

	    if (profile) {
		retval = cuddHeapProfile(dd);
	    }

	}

	/* Dump DDs of C and M if so requested. */
	if (dfile != NULL) {
	    dfunc[0] = C;
	    dfunc[1] = M;
	    if (blifOrDot == 1) {
		/* Only dump C because blif cannot handle ADDs */
		retval = Cudd_DumpBlif(dd,1,dfunc,NULL,(char **)onames,
				       NULL,dfp);
	    } else {
		retval = Cudd_DumpDot(dd,2,dfunc,NULL,(char **)onames,dfp);
	    }
	    if (retval != 1) {
		(void) fprintf(stderr,"abnormal termination\n");
		exit(2);
	    }
	}

	Cudd_RecursiveDeref(dd, C);
	Cudd_RecursiveDeref(dd, M);

	if (clearcache) {
	    if (pr>0) {(void) printf("Clearing the cache... ");}
	    for (i = dd->cacheSlots - 1; i>=0; i--) {
		dd->cache[i].data = NIL(DdNode);
	    }
	    if (pr>0) {(void) printf("done\n");}
	}
	if (pr>0) {
	    (void) printf("Number of variables = %6d\t",dd->size);
	    (void) printf("Number of slots     = %6d\n",dd->slots);
	    (void) printf("Number of keys      = %6d\t",dd->keys);
	    (void) printf("Number of min dead  = %6d\n",dd->minDead);
	}

    } while (multiple && !feof(fp));

    fclose(fp);
    if (dfile != NULL) {
	fclose(dfp);
    }

    /* Second phase: experiment with Walsh matrices. */
    if (!testWalsh(dd,N,cmu,approach,pr)) {
	exit(2);
    }

    /* Check variable destruction. */
    assert(cuddDestroySubtables(dd,3));
    assert(Cudd_DebugCheck(dd) == 0);
    assert(Cudd_CheckKeys(dd) == 0);

    retval = Cudd_CheckZeroRef(dd);
    ok = retval != 0;  /* ok == 0 means O.K. */
    if (retval != 0) {
	(void) fprintf(stderr,
	    "%d non-zero DD reference counts after dereferencing\n", retval);
    }

    if (pr >= 0) {
	(void) Cudd_PrintInfo(dd,stdout);
    }

    Cudd_Quit(dd);

#ifdef MNEMOSYNE
    mnem_writestats();
#endif

    if (pr>0) (void) printf("total time = %s\n",
		util_print_time(util_cpu_time() - startTime));

    if (pr >= 0) util_print_cpu_stats(stdout);
    exit(ok);
    /* NOTREACHED */

} /* end of main */
Exemple #4
0
/**Function********************************************************************

  Synopsis    [Computes shortest paths in a state graph.]

  Description [Computes shortest paths in the state transition graph of
  a network.  Three methods are availabe:
  <ul>
  <li> Bellman-Ford algorithm for single-source shortest paths; the
  algorithm computes the distance (number of transitions) from the initial
  states to all states.
  <li> Floyd-Warshall algorithm for all-pair shortest paths.
  <li> Repeated squaring algorithm for all-pair shortest paths.
  </ul>
  The function returns 1 in case of success; 0 otherwise.
  ]

  SideEffects [ADD variables are created in the manager.]

  SeeAlso     []

******************************************************************************/
int
Ntr_ShortestPaths(
  DdManager * dd,
  BnetNetwork * net,
  NtrOptions * option)
{
    NtrPartTR *TR;
    DdNode *edges, *source, *res, *r, *q, *bddSource;
    DdNode **xadd, **yadd, **zadd;
    int i;
    int pr = option->verb;
    int algorithm = option->shortPath;
    int selectiveTrace = option->selectiveTrace;
    int nvars = net->nlatches;

    /* Set background to infinity for shortest paths. */
    Cudd_SetBackground(dd,Cudd_ReadPlusInfinity(dd));

    /* Build the monolithic TR. */
    TR = Ntr_buildTR(dd,net,option,NTR_IMAGE_MONO);

    /* Build the ADD variable vectors for x and y. */
    xadd = ALLOC(DdNode *, nvars);
    yadd = ALLOC(DdNode *, nvars);
    for(i = 0; i < nvars; i++) {
	q = Cudd_addIthVar(dd,TR->x[i]->index);
	Cudd_Ref(q);
	xadd[i] = q;
	q = Cudd_addIthVar(dd,TR->y[i]->index);
	Cudd_Ref(q);
	yadd[i] = q;
    }

    /* Convert the transition relation BDD into an ADD... */
    q = Cudd_BddToAdd(dd,TR->part[0]);
    Cudd_Ref(q);
    /* ...replacing zeroes with infinities... */
    r = Cudd_addIte(dd,q,Cudd_ReadOne(dd),Cudd_ReadPlusInfinity(dd));
    Cudd_Ref(r);
    Cudd_RecursiveDeref(dd,q);
    /* ...and zeroing the diagonal. */
    q = Cudd_addXeqy(dd,nvars,xadd,yadd);
    Cudd_Ref(q);
    edges = Cudd_addIte(dd,q,Cudd_ReadZero(dd),r);
    Cudd_Ref(edges);
    Cudd_RecursiveDeref(dd,r);
    Cudd_RecursiveDeref(dd,q);

    switch(algorithm) {
    case NTR_SHORT_BELLMAN:
	bddSource = Ntr_initState(dd,net,option);
	source = Cudd_BddToAdd(dd,bddSource);
	Cudd_Ref(source);
	res = ntrBellman(dd,edges,source,xadd,yadd,nvars,pr);
	if (res == NULL) return(0);
	Cudd_Ref(res);
	Cudd_RecursiveDeref(dd,source);
	Cudd_RecursiveDeref(dd,bddSource);
	if (pr >= 0) {
	    (void) fprintf(stdout,"Distance Matrix");
	    Cudd_PrintDebug(dd,res,nvars,pr);
	}
	break;
    case NTR_SHORT_FLOYD:
	res = ntrWarshall(dd,edges,xadd,yadd,nvars,pr);
	if (res == NULL) return(0);
	Cudd_Ref(res);
	if (pr >= 0) {
	    (void) fprintf(stdout,"Distance Matrix");
	    Cudd_PrintDebug(dd,res,2*nvars,pr);
	}
	break;
    case NTR_SHORT_SQUARE:
	/* Create a third set of ADD variables. */
	zadd = ALLOC(DdNode *, nvars);
	for(i = 0; i < nvars; i++) {
	    int level;
	    level = Cudd_ReadIndex(dd,TR->x[i]->index);
	    q = Cudd_addNewVarAtLevel(dd,level);
	    Cudd_Ref(q);
	    zadd[i] = q;
	}
	/* Compute the shortest paths. */
	res = ntrSquare(dd,edges,zadd,yadd,xadd,nvars,pr,selectiveTrace);
	if (res == NULL) return(0);
	Cudd_Ref(res);
	/* Dispose of the extra variables. */
	for(i = 0; i < nvars; i++) {
	    Cudd_RecursiveDeref(dd,zadd[i]);
	}
	FREE(zadd);
	if (pr >= 0) {
	    (void) fprintf(stdout,"Distance Matrix");
	    Cudd_PrintDebug(dd,res,2*nvars,pr);
	}
	break;
    default:
	(void) printf("Unrecognized method. Try again.\n");
	return(0);
    }

    /* Here we should compute the paths. */

    /* Clean up. */
    Ntr_freeTR(dd,TR);
    Cudd_RecursiveDeref(dd,edges);
    Cudd_RecursiveDeref(dd,res);
    for(i = 0; i < nvars; i++) {
	Cudd_RecursiveDeref(dd,xadd[i]);
	Cudd_RecursiveDeref(dd,yadd[i]);
    }
    FREE(xadd);
    FREE(yadd);

    if (option->autoDyn & 1) {
	(void) printf("Order after short path computation\n");
	if (!Bnet_PrintOrder(net,dd)) return(0);
    }

    return(1);

} /* end of Ntr_ShortestPaths */
Exemple #5
0
/* Convert function to ADD.  This should only be done after all BDD variables have been declared */
static DdNode *aconvert(shadow_mgr mgr, DdNode *n) {
    DdNode *an = Cudd_BddToAdd(mgr->bdd_manager, n);
    reference_dd(mgr, an);
    return an;
}
Exemple #6
0
static int compute_prob(void)
/* this is the function that implements the compute_prob predicate used in pp.pl
*/
{
	YAP_Term out,arg1,arg2,arg3,arg4;
	array_t * variables,* expression, * bVar2mVar;
	DdNode * function, * add;
	DdManager * mgr;
	int nBVar,i,j,intBits,create_dot;
        FILE * file;
        DdNode * array[1];
        char * onames[1];
        char inames[1000][20];
	char * names[1000];
	GHashTable  * nodes; /* hash table that associates nodes with their probability if already 
				computed, it is defined in glib */
	Cudd_ReorderingType order;
	arg1=YAP_ARG1;
	arg2=YAP_ARG2;
	arg3=YAP_ARG3;
	arg4=YAP_ARG4;

  	mgr=Cudd_Init(0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0);
	variables=array_alloc(variable,0);
	bVar2mVar=array_alloc(int,0);
	create_dot=YAP_IntOfTerm(arg4);
	createVars(variables,arg1,mgr,bVar2mVar,create_dot,inames);
        //Cudd_PrintInfo(mgr,stderr);

	/* automatic variable reordering, default method CUDD_REORDER_SIFT used */
	//printf("status %d\n",Cudd_ReorderingStatus(mgr,&order));
	//printf("order %d\n",order);

	Cudd_AutodynEnable(mgr,CUDD_REORDER_SAME); 
/*	 Cudd_AutodynEnable(mgr, CUDD_REORDER_RANDOM_PIVOT);
	printf("status %d\n",Cudd_ReorderingStatus(mgr,&order));
        printf("order %d\n",order);
	printf("%d",CUDD_REORDER_RANDOM_PIVOT);
*/


	expression=array_alloc(array_t *,0);
	createExpression(expression,arg2);	

	function=retFunction(mgr,expression,variables);
	/* the BDD build by retFunction is converted to an ADD (algebraic decision diagram)
	because it is easier to interpret and to print */
	add=Cudd_BddToAdd(mgr,function);
	//Cudd_PrintInfo(mgr,stderr);

	if (create_dot)
	/* if specified by the user, a dot file for the BDD is written to cpl.dot */
	{	
		nBVar=array_n(bVar2mVar);
		for(i=0;i<nBVar;i++)
		   names[i]=inames[i];
	  	array[0]=add;
		onames[0]="Out";
		file = open_file("cpl.dot", "w");
		Cudd_DumpDot(mgr,1,array,names,onames,file);
  		fclose(file);
	}
	
	nodes=g_hash_table_new(my_hash,my_equal);
	intBits=sizeof(unsigned int)*8;
	/* dividend is a global variable used by my_hash 
	   it is equal to an unsigned int with binary representation 11..1 */ 
	dividend=1;
	for(j=1;j<intBits;j++)
	{
		dividend=(dividend<<1)+1;
	}
	out=YAP_MkFloatTerm(Prob(add,variables,bVar2mVar,nodes));
	g_hash_table_foreach (nodes,dealloc,NULL);
	g_hash_table_destroy(nodes);
	Cudd_Quit(mgr);
	array_free(variables);
 	array_free(bVar2mVar);
	array_free(expression);
    	return(YAP_Unify(out,arg3));
}