Exemple #1
0
void cpu_print_freq(unsigned cpu)
{
        u64_t freq;

        freq = cpu_get_freq(cpu);
        DEBUGBASIC(("CPU %d freq %lu MHz\n", cpu, (unsigned long)(freq / 1000000)));
}
/*===========================================================================*
 *				do_irqctl				     *
 *===========================================================================*/
int do_irqctl(struct proc * caller, message * m_ptr)
{
  /* Dismember the request message. */
  int irq_vec;
  int irq_hook_id;
  int notify_id;
  int r = OK;
  int i;
  irq_hook_t *hook_ptr;
  struct priv *privp;

  /* Hook identifiers start at 1 and end at NR_IRQ_HOOKS. */
  irq_hook_id = m_ptr->m_lsys_krn_sys_irqctl.hook_id - 1;
  irq_vec = m_ptr->m_lsys_krn_sys_irqctl.vector;

  /* See what is requested and take needed actions. */
  switch(m_ptr->m_lsys_krn_sys_irqctl.request) {

  /* Enable or disable IRQs. This is straightforward. */
  case IRQ_ENABLE:           
  case IRQ_DISABLE: 
      if (irq_hook_id >= NR_IRQ_HOOKS || irq_hook_id < 0 ||
          irq_hooks[irq_hook_id].proc_nr_e == NONE) return(EINVAL);
      if (irq_hooks[irq_hook_id].proc_nr_e != caller->p_endpoint) return(EPERM);
      if (m_ptr->m_lsys_krn_sys_irqctl.request == IRQ_ENABLE) {
          enable_irq(&irq_hooks[irq_hook_id]);	
      }
      else 
          disable_irq(&irq_hooks[irq_hook_id]);	
      break;

  /* Control IRQ policies. Set a policy and needed details in the IRQ table.
   * This policy is used by a generic function to handle hardware interrupts. 
   */
  case IRQ_SETPOLICY:  

      /* Check if IRQ line is acceptable. */
      if (irq_vec < 0 || irq_vec >= NR_IRQ_VECTORS) return(EINVAL);

      privp= priv(caller);
      if (!privp)
      {
	printf("do_irqctl: no priv structure!\n");
	return EPERM;
      }
      if (privp->s_flags & CHECK_IRQ)
      {
	for (i= 0; i<privp->s_nr_irq; i++)
	{
		if (irq_vec == privp->s_irq_tab[i])
			break;
	}
	if (i >= privp->s_nr_irq)
	{
		printf(
		"do_irqctl: IRQ check failed for proc %d, IRQ %d\n",
			caller->p_endpoint, irq_vec);
		return EPERM;
	}
    }

      /* When setting a policy, the caller must provide an identifier that
       * is returned on the notification message if a interrupt occurs.
       */
      notify_id = m_ptr->m_lsys_krn_sys_irqctl.hook_id;
      if (notify_id > CHAR_BIT * sizeof(irq_id_t) - 1) return(EINVAL);

      /* Try to find an existing mapping to override. */
      hook_ptr = NULL;
      for (i=0; !hook_ptr && i<NR_IRQ_HOOKS; i++) {
          if (irq_hooks[i].proc_nr_e == caller->p_endpoint
              && irq_hooks[i].notify_id == notify_id) {
              irq_hook_id = i;
              hook_ptr = &irq_hooks[irq_hook_id];	/* existing hook */
              rm_irq_handler(&irq_hooks[irq_hook_id]);
          }
      }

      /* If there is nothing to override, find a free hook for this mapping. */
      for (i=0; !hook_ptr && i<NR_IRQ_HOOKS; i++) {
          if (irq_hooks[i].proc_nr_e == NONE) {
              irq_hook_id = i;
              hook_ptr = &irq_hooks[irq_hook_id];	/* free hook */
          }
      }
      if (hook_ptr == NULL) return(ENOSPC);

      /* Install the handler. */
      hook_ptr->proc_nr_e = caller->p_endpoint;	/* process to notify */
      hook_ptr->notify_id = notify_id;		/* identifier to pass */   	
      hook_ptr->policy = m_ptr->m_lsys_krn_sys_irqctl.policy;	/* policy for interrupts */
      put_irq_handler(hook_ptr, irq_vec, generic_handler);
      DEBUGBASIC(("IRQ %d handler registered by %s / %d\n",
			      irq_vec, caller->p_name, caller->p_endpoint));

      /* Return index of the IRQ hook in use. */
      m_ptr->m_krn_lsys_sys_irqctl.hook_id = irq_hook_id + 1;
      break;

  case IRQ_RMPOLICY:
      if (irq_hook_id < 0 || irq_hook_id >= NR_IRQ_HOOKS ||
               irq_hooks[irq_hook_id].proc_nr_e == NONE) {
           return(EINVAL);
      } else if (caller->p_endpoint != irq_hooks[irq_hook_id].proc_nr_e) {
           return(EPERM);
      }
      /* Remove the handler and return. */
      rm_irq_handler(&irq_hooks[irq_hook_id]);
      irq_hooks[irq_hook_id].proc_nr_e = NONE;
      break;

  default:
      r = EINVAL;				/* invalid IRQ REQUEST */
  }
  return(r);
}
Exemple #3
0
static void acpi_init_poweroff(void)
{
	u8_t *ptr = NULL;
	u8_t *start = NULL;
	u8_t *end = NULL;
	struct acpi_fadt_header *fadt_header = NULL;
	struct acpi_rsdt * dsdt_header = NULL;
	char *msg = NULL;

	/* Everything used here existed since ACPI spec 1.0 */
	/* So we can safely use them */
	fadt_header = (struct acpi_fadt_header *)
		acpi_phys2vir(acpi_get_table_base("FACP"));
	if (fadt_header == NULL) {
		msg = "Could not load FACP";
		goto exit;
	}

	dsdt_header = (struct acpi_rsdt *)
		acpi_phys2vir((phys_bytes) fadt_header->dsdt);
	if (dsdt_header == NULL) {
		msg = "Could not load DSDT";
		goto exit;
	}

	pm1a_cnt_blk = fadt_header->pm1a_cnt_blk;
	pm1b_cnt_blk = fadt_header->pm1b_cnt_blk;

	ptr = start = (u8_t *) dsdt_header->data;
	end = start + dsdt_header->hdr.length - 4;

	/* See http://forum.osdev.org/viewtopic.php?t=16990 */
	/* for layout of \_S5 */
	while (ptr < end && memcmp(ptr, "_S5_", 4) != 0)
		ptr++;

	msg = "Could not read S5 data. Use default SLP_TYPa and SLP_TYPb";
	if (ptr >= end || ptr == start)
		goto exit;

	/* validate AML structure */
	if (*(ptr + AMI_S5_PACKAGE_OP_OFFSET) != AMI_PACKAGE_OP_CODE)
		goto exit;

	if ((ptr < start + (-AMI_S5_NAME_OP_OFFSET_2) ||
		(*(ptr + AMI_S5_NAME_OP_OFFSET_2) != AMI_NAME_OP_CODE ||
		 *(ptr + AMI_S5_NAME_OP_OFFSET_2 + 1) != '\\')) &&
		*(ptr + AMI_S5_NAME_OP_OFFSET_1) != AMI_NAME_OP_CODE)
		goto exit;

	ptr += AMI_S5_PACKET_LENGTH_OFFSET;
	if (ptr >= end)
		goto exit;

	/* package length */
	ptr += ((*ptr & AMI_PACKAGE_LENGTH_ENCODING_BITS_MASK) >>
		AMI_PACKAGE_LENGTH_ENCODING_BITS_SHIFT) +
		AMI_MIN_PACKAGE_LENGTH + AMI_NUM_ELEMENTS_LENGTH;
	if (ptr >= end)
		goto exit;

	if (*ptr == AMI_BYTE_PREFIX_CODE)
		ptr++; /* skip byte prefix */

	slp_typa = (*ptr) << AMI_SLP_TYPA_SHIFT;

	ptr++; /* move to SLP_TYPb */
	if (*ptr == AMI_BYTE_PREFIX_CODE)
		ptr++; /* skip byte prefix */

	slp_typb = (*ptr) << AMI_SLP_TYPB_SHIFT;

	msg = "poweroff initialized";

exit:
	if (msg) {
		DEBUGBASIC(("acpi: %s\n", msg));
	}
}
Exemple #4
0
/*===========================================================================*
 *			kmain 	                             		*
 *===========================================================================*/
void kmain(kinfo_t *local_cbi)
{
/* Start the ball rolling. */
  struct boot_image *ip;	/* boot image pointer */
  register struct proc *rp;	/* process pointer */
  register int i, j;
  static int bss_test;

  /* bss sanity check */
  assert(bss_test == 0);
  bss_test = 1;

  /* save a global copy of the boot parameters */
  memcpy(&kinfo, local_cbi, sizeof(kinfo));
  memcpy(&kmess, kinfo.kmess, sizeof(kmess));

   /* We have done this exercise in pre_init so we expect this code
      to simply work! */
   machine.board_id = get_board_id_by_name(env_get(BOARDVARNAME));
#ifdef __arm__
  /* We want to initialize serial before we do any output */
  arch_ser_init();
#endif
  /* We can talk now */
  DEBUGBASIC(("MINIX booting\n"));

  /* Kernel may use bits of main memory before VM is started */
  kernel_may_alloc = 1;

  assert(sizeof(kinfo.boot_procs) == sizeof(image));
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

  cstart();

  BKL_LOCK();
 
   DEBUGEXTRA(("main()\n"));

   proc_init();

   if(NR_BOOT_MODULES != kinfo.mbi.mi_mods_count)
   	panic("expecting %d boot processes/modules, found %d",
		NR_BOOT_MODULES, kinfo.mbi.mi_mods_count);

  /* Set up proc table entries for processes in boot image. */
  for (i=0; i < NR_BOOT_PROCS; ++i) {
	int schedulable_proc;
	proc_nr_t proc_nr;
	int ipc_to_m, kcalls;
	sys_map_t map;

	ip = &image[i];				/* process' attributes */
	DEBUGEXTRA(("initializing %s... ", ip->proc_name));
	rp = proc_addr(ip->proc_nr);		/* get process pointer */
	ip->endpoint = rp->p_endpoint;		/* ipc endpoint */
	rp->p_cpu_time_left = 0;
	if(i < NR_TASKS)			/* name (tasks only) */
		strlcpy(rp->p_name, ip->proc_name, sizeof(rp->p_name));

	if(i >= NR_TASKS) {
		/* Remember this so it can be passed to VM */
		multiboot_module_t *mb_mod = &kinfo.module_list[i - NR_TASKS];
		ip->start_addr = mb_mod->mod_start;
		ip->len = mb_mod->mod_end - mb_mod->mod_start;
	}
	
	reset_proc_accounting(rp);

	/* See if this process is immediately schedulable.
	 * In that case, set its privileges now and allow it to run.
	 * Only kernel tasks and the root system process get to run immediately.
	 * All the other system processes are inhibited from running by the
	 * RTS_NO_PRIV flag. They can only be scheduled once the root system
	 * process has set their privileges.
	 */
	proc_nr = proc_nr(rp);
	schedulable_proc = (iskerneln(proc_nr) || isrootsysn(proc_nr) ||
		proc_nr == VM_PROC_NR);
	if(schedulable_proc) {
	    /* Assign privilege structure. Force a static privilege id. */
            (void) get_priv(rp, static_priv_id(proc_nr));

            /* Privileges for kernel tasks. */
	    if(proc_nr == VM_PROC_NR) {
                priv(rp)->s_flags = VM_F;
                priv(rp)->s_trap_mask = SRV_T;
		ipc_to_m = SRV_M;
		kcalls = SRV_KC;
                priv(rp)->s_sig_mgr = SELF;
                rp->p_priority = SRV_Q;
                rp->p_quantum_size_ms = SRV_QT;
	    }
	    else if(iskerneln(proc_nr)) {
                /* Privilege flags. */
                priv(rp)->s_flags = (proc_nr == IDLE ? IDL_F : TSK_F);
                /* Allowed traps. */
                priv(rp)->s_trap_mask = (proc_nr == CLOCK 
                    || proc_nr == SYSTEM  ? CSK_T : TSK_T);
                ipc_to_m = TSK_M;                  /* allowed targets */
                kcalls = TSK_KC;                   /* allowed kernel calls */
            }
            /* Privileges for the root system process. */
            else {
	    	assert(isrootsysn(proc_nr));
                priv(rp)->s_flags= RSYS_F;        /* privilege flags */
                priv(rp)->s_trap_mask= SRV_T;     /* allowed traps */
                ipc_to_m = SRV_M;                 /* allowed targets */
                kcalls = SRV_KC;                  /* allowed kernel calls */
                priv(rp)->s_sig_mgr = SRV_SM;     /* signal manager */
                rp->p_priority = SRV_Q;	          /* priority queue */
                rp->p_quantum_size_ms = SRV_QT;   /* quantum size */
            }

            /* Fill in target mask. */
            memset(&map, 0, sizeof(map));

            if (ipc_to_m == ALL_M) {
                for(j = 0; j < NR_SYS_PROCS; j++)
                    set_sys_bit(map, j);
            }

            fill_sendto_mask(rp, &map);

            /* Fill in kernel call mask. */
            for(j = 0; j < SYS_CALL_MASK_SIZE; j++) {
                priv(rp)->s_k_call_mask[j] = (kcalls == NO_C ? 0 : (~0));
            }
	}
	else {
	    /* Don't let the process run for now. */
            RTS_SET(rp, RTS_NO_PRIV | RTS_NO_QUANTUM);
	}

	/* Arch-specific state initialization. */
	arch_boot_proc(ip, rp);

	/* scheduling functions depend on proc_ptr pointing somewhere. */
	if(!get_cpulocal_var(proc_ptr))
		get_cpulocal_var(proc_ptr) = rp;

	/* Process isn't scheduled until VM has set up a pagetable for it. */
	if(rp->p_nr != VM_PROC_NR && rp->p_nr >= 0) {
		rp->p_rts_flags |= RTS_VMINHIBIT;
		rp->p_rts_flags |= RTS_BOOTINHIBIT;
	}

	rp->p_rts_flags |= RTS_PROC_STOP;
	rp->p_rts_flags &= ~RTS_SLOT_FREE;
	DEBUGEXTRA(("done\n"));
  }

  /* update boot procs info for VM */
  memcpy(kinfo.boot_procs, image, sizeof(kinfo.boot_procs));

#define IPCNAME(n) { \
	assert((n) >= 0 && (n) <= IPCNO_HIGHEST); \
	assert(!ipc_call_names[n]);	\
	ipc_call_names[n] = #n; \
}

  arch_post_init();

  IPCNAME(SEND);
  IPCNAME(RECEIVE);
  IPCNAME(SENDREC);
  IPCNAME(NOTIFY);
  IPCNAME(SENDNB);
  IPCNAME(SENDA);

  /* System and processes initialization */
  memory_init();
  DEBUGEXTRA(("system_init()... "));
  system_init();
  DEBUGEXTRA(("done\n"));

  /* The bootstrap phase is over, so we can add the physical
   * memory used for it to the free list.
   */
  add_memmap(&kinfo, kinfo.bootstrap_start, kinfo.bootstrap_len);

#ifdef CONFIG_SMP
  if (config_no_apic) {
	  DEBUGBASIC(("APIC disabled, disables SMP, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else if (config_no_smp) {
	  DEBUGBASIC(("SMP disabled, using legacy PIC\n"));
	  smp_single_cpu_fallback();
  } else {
	  smp_init();
	  /*
	   * if smp_init() returns it means that it failed and we try to finish
	   * single CPU booting
	   */
	  bsp_finish_booting();
  }
#else
  /* 
   * if configured for a single CPU, we are already on the kernel stack which we
   * are going to use everytime we execute kernel code. We finish booting and we
   * never return here
   */
  bsp_finish_booting();
#endif

  NOT_REACHABLE;
}
void exec_image(char *image)
/* Get a Minix image into core, patch it up and execute. */
{
	int i;
	struct image_header hdr;
	char *buf;
	u32_t vsec, addr, limit, aout, n, totalmem = 0;
	struct process *procp;		/* Process under construction. */
	long a_text, a_data, a_bss, a_stack;
	int banner= 0;
	long processor= a2l(b_value("processor"));
	u16_t kmagic, mode;
	char *console;
	char params[SECTOR_SIZE];
	extern char *sbrk(int);
	char *verb;

	/* The stack is pretty deep here, so check if heap and stack collide. */
	(void) sbrk(0);

	if ((verb= b_value(VERBOSEBOOTVARNAME)) != nil)
		verboseboot = a2l(verb);

	printf("\nLoading ");
	pretty_image(image);
	printf(".\n");

	vsec= 0;			/* Load this sector from image next. */
	addr= mem[0].base;		/* Into this memory block. */
	limit= mem[0].base + mem[0].size;
	if (limit > caddr) limit= caddr;

	/* Allocate and clear the area where the headers will be placed. */
	aout = (limit -= PROCESS_MAX * A_MINHDR);

	/* Clear the area where the headers will be placed. */
	raw_clear(aout, PROCESS_MAX * A_MINHDR);

	/* Read the many different processes: */
	for (i= 0; vsec < image_size; i++) {
		u32_t startaddr;
		startaddr = addr;
		if (i == PROCESS_MAX) {
			printf("There are more then %d programs in %s\n",
				PROCESS_MAX, image);
			errno= 0;
			return;
		}
		procp= &process[i];

		/* Read header. */
		DEBUGEXTRA(("Reading header... "));
		for (;;) {
			if ((buf= get_sector(vsec++)) == nil) return;

			memcpy(&hdr, buf, sizeof(hdr));

			if (BADMAG(hdr.process)) { errno= ENOEXEC; return; }

			/* Check the optional label on the process. */
			if (selected(hdr.name)) break;

			/* Bad label, skip this process. */
			vsec+= proc_size(&hdr);
		}
		DEBUGEXTRA(("done\n"));

		/* Sanity check: an 8086 can't run a 386 kernel. */
		if (hdr.process.a_cpu == A_I80386 && processor < 386) {
			printf("You can't run a 386 kernel on this 80%ld\n",
				processor);
			errno= 0;
			return;
		}

		/* Get the click shift from the kernel text segment. */
		if (i == KERNEL_IDX) {
			if (!get_clickshift(vsec, &hdr)) return;
			addr= align(addr, click_size);

			/* big kernels must be loaded into extended memory */
			if (k_flags & K_KHIGH) {
				addr= mem[1].base;
				limit= mem[1].base + mem[1].size;
			}
		}

		/* Save a copy of the header for the kernel, with a_syms
		 * misused as the address where the process is loaded at.
		 */
		DEBUGEXTRA(("raw_copy(0x%x, 0x%lx, 0x%x)... ", 
			aout + i * A_MINHDR, mon2abs(&hdr.process), A_MINHDR));
		hdr.process.a_syms= addr;
		raw_copy(aout + i * A_MINHDR, mon2abs(&hdr.process), A_MINHDR);
		DEBUGEXTRA(("done\n"));

		if (!banner) {
			DEBUGBASIC(("     cs       ds     text     data      bss"));
			if (k_flags & K_CHMEM) DEBUGBASIC(("    stack"));
			DEBUGBASIC(("\n"));
			banner= 1;
		}

		/* Segment sizes. */
		DEBUGEXTRA(("a_text=0x%lx; a_data=0x%lx; a_bss=0x%lx; a_flags=0x%x)\n",
			hdr.process.a_text, hdr.process.a_data, 
			hdr.process.a_bss, hdr.process.a_flags));

		a_text= hdr.process.a_text;
		a_data= hdr.process.a_data;
		a_bss= hdr.process.a_bss;
		if (k_flags & K_CHMEM) {
			a_stack= hdr.process.a_total - a_data - a_bss;
			if (!(hdr.process.a_flags & A_SEP)) a_stack-= a_text;
		} else {
			a_stack= 0;
		}

		/* Collect info about the process to be. */
		procp->cs= addr;

		/* Process may be page aligned so that the text segment contains
		 * the header, or have an unmapped zero page against vaxisms.
		 */
		procp->entry= hdr.process.a_entry;
		if (hdr.process.a_flags & A_PAL) a_text+= hdr.process.a_hdrlen;
		if (hdr.process.a_flags & A_UZP) procp->cs-= click_size;

		/* Separate I&D: two segments.  Common I&D: only one. */
		if (hdr.process.a_flags & A_SEP) {
			/* Read the text segment. */
			DEBUGEXTRA(("get_segment(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
				vsec, a_text, addr, limit));
			if (!get_segment(&vsec, &a_text, &addr, limit)) return;
			DEBUGEXTRA(("get_segment done vsec=0x%lx a_text=0x%lx "
				"addr=0x%lx\n", 
				vsec, a_text, addr));

			/* The data segment follows. */
			procp->ds= addr;
			if (hdr.process.a_flags & A_UZP) procp->ds-= click_size;
			procp->data= addr;
		} else {
			/* Add text to data to form one segment. */
			procp->data= addr + a_text;
			procp->ds= procp->cs;
			a_data+= a_text;
		}

		/* Read the data segment. */
		DEBUGEXTRA(("get_segment(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n", 
			vsec, a_data, addr, limit));
		if (!get_segment(&vsec, &a_data, &addr, limit)) return;
		DEBUGEXTRA(("get_segment done vsec=0x%lx a_data=0x%lx "
			"addr=0x%lx\n", 
			vsec, a_data, addr));

		/* Make space for bss and stack unless... */
		if (i != KERNEL_IDX && (k_flags & K_CLAIM)) a_bss= a_stack= 0;

		DEBUGBASIC(("%07lx  %07lx %8ld %8ld %8ld",
			procp->cs, procp->ds, hdr.process.a_text,
			hdr.process.a_data, hdr.process.a_bss));
		if (k_flags & K_CHMEM) DEBUGBASIC((" %8ld", a_stack));

		/* Note that a_data may be negative now, but we can look at it
		 * as -a_data bss bytes.
		 */

		/* Compute the number of bss clicks left. */
		a_bss+= a_data;
		n= align(a_bss, click_size);
		a_bss-= n;

		/* Zero out bss. */
		DEBUGEXTRA(("\nraw_clear(0x%lx, 0x%lx); limit=0x%lx... ", addr, n, limit));
		if (addr + n > limit) { errno= ENOMEM; return; }
		raw_clear(addr, n);
		DEBUGEXTRA(("done\n"));
		addr+= n;

		/* And the number of stack clicks. */
		a_stack+= a_bss;
		n= align(a_stack, click_size);
		a_stack-= n;

		/* Add space for the stack. */
		addr+= n;

		/* Process endpoint. */
		procp->end= addr;

		if (verboseboot >= VERBOSEBOOT_BASIC)
			printf("  %s\n", hdr.name);
		else {
			u32_t mem;
			mem = addr-startaddr;
			printf("%s ", hdr.name);
			totalmem += mem;
		}

		if (i == 0 && (k_flags & (K_HIGH | K_KHIGH)) == K_HIGH) {
			/* Load the rest in extended memory. */
			addr= mem[1].base;
			limit= mem[1].base + mem[1].size;
		}
	}

	if (verboseboot < VERBOSEBOOT_BASIC)
		printf("(%dk)\n", totalmem/1024);

	if ((n_procs= i) == 0) {
		printf("There are no programs in %s\n", image);
		errno= 0;
		return;
	}

	/* Check the kernel magic number. */
	raw_copy(mon2abs(&kmagic), 
		process[KERNEL_IDX].data + MAGIC_OFF, sizeof(kmagic));
	if (kmagic != KERNEL_D_MAGIC) {
		printf("Kernel magic number is incorrect (0x%x@0x%lx)\n", 
			kmagic, process[KERNEL_IDX].data + MAGIC_OFF);
		errno= 0;
		return;
	}

	/* Patch sizes, etc. into kernel data. */
	DEBUGEXTRA(("patch_sizes()... "));
	patch_sizes();
	DEBUGEXTRA(("done\n"));

#if !DOS
	if (!(k_flags & K_MEML)) {
		/* Copy the a.out headers to the old place. */
		raw_copy(HEADERPOS, aout, PROCESS_MAX * A_MINHDR);
	}
#endif

	/* Run the trailer function just before starting Minix. */
	DEBUGEXTRA(("run_trailer()... "));
	if (!run_trailer()) { errno= 0; return; }
	DEBUGEXTRA(("done\n"));

	/* Translate the boot parameters to what Minix likes best. */
	DEBUGEXTRA(("params2params(0x%x, 0x%x)... ", params, sizeof(params)));
	if (!params2params(params, sizeof(params))) { errno= 0; return; }
	DEBUGEXTRA(("done\n"));

	/* Set the video to the required mode. */
	if ((console= b_value("console")) == nil || (mode= a2x(console)) == 0) {
		mode= strcmp(b_value("chrome"), "color") == 0 ? COLOR_MODE :
								MONO_MODE;
	}
	DEBUGEXTRA(("set_mode(%d)... ", mode));
	set_mode(mode);
	DEBUGEXTRA(("done\n"));

	/* Close the disk. */
	DEBUGEXTRA(("dev_close()... "));
	(void) dev_close();
	DEBUGEXTRA(("done\n"));

	/* Minix. */
	DEBUGEXTRA(("minix(0x%lx, 0x%lx, 0x%lx, 0x%x, 0x%x, 0x%lx)\n", 
		process[KERNEL_IDX].entry, process[KERNEL_IDX].cs,
		process[KERNEL_IDX].ds, params, sizeof(params), aout));
	minix(process[KERNEL_IDX].entry, process[KERNEL_IDX].cs,
			process[KERNEL_IDX].ds, params, sizeof(params), aout);

	if (!(k_flags & K_BRET)) {
		extern u32_t reboot_code;
		raw_copy(mon2abs(params), reboot_code, sizeof(params));
	}
	parse_code(params);

	/* Return from Minix.  Things may have changed, so assume nothing. */
	fsok= -1;
	errno= 0;

	/* Read leftover character, if any. */
	scan_keyboard();

	/* Restore screen contents. */
	restore_screen();
}