/* Any time an access gets denied this callback will be called with the audit data. We then need to just copy the audit data into the msgbuf. */ static int audit_callback( void *auditdata, security_class_t cls, char *msgbuf, size_t msgbufsize) { const struct audit_info *audit = auditdata; uid_t uid = 0, login_uid = 0; gid_t gid = 0; char login_uid_buf[DECIMAL_STR_MAX(uid_t) + 1] = "n/a"; char uid_buf[DECIMAL_STR_MAX(uid_t) + 1] = "n/a"; char gid_buf[DECIMAL_STR_MAX(gid_t) + 1] = "n/a"; if (sd_bus_creds_get_audit_login_uid(audit->creds, &login_uid) >= 0) xsprintf(login_uid_buf, UID_FMT, login_uid); if (sd_bus_creds_get_euid(audit->creds, &uid) >= 0) xsprintf(uid_buf, UID_FMT, uid); if (sd_bus_creds_get_egid(audit->creds, &gid) >= 0) xsprintf(gid_buf, GID_FMT, gid); snprintf(msgbuf, msgbufsize, "auid=%s uid=%s gid=%s%s%s%s%s%s%s", login_uid_buf, uid_buf, gid_buf, audit->path ? " path=\"" : "", strempty(audit->path), audit->path ? "\"" : "", audit->cmdline ? " cmdline=\"" : "", strempty(audit->cmdline), audit->cmdline ? "\"" : ""); return 0; }
void server_forward_kmsg( Server *s, int priority, const char *identifier, const char *message, const struct ucred *ucred) { struct iovec iovec[5]; char header_priority[DECIMAL_STR_MAX(priority) + 3], header_pid[sizeof("[]: ")-1 + DECIMAL_STR_MAX(pid_t) + 1]; int n = 0; char *ident_buf = NULL; assert(s); assert(priority >= 0); assert(priority <= 999); assert(message); if (_unlikely_(LOG_PRI(priority) > s->max_level_kmsg)) return; if (_unlikely_(s->dev_kmsg_fd < 0)) return; /* Never allow messages with kernel facility to be written to * kmsg, regardless where the data comes from. */ priority = syslog_fixup_facility(priority); /* First: priority field */ xsprintf(header_priority, "<%i>", priority); IOVEC_SET_STRING(iovec[n++], header_priority); /* Second: identifier and PID */ if (ucred) { if (!identifier) { get_process_comm(ucred->pid, &ident_buf); identifier = ident_buf; } xsprintf(header_pid, "["PID_FMT"]: ", ucred->pid); if (identifier) IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], header_pid); } else if (identifier) { IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], ": "); } /* Fourth: message */ IOVEC_SET_STRING(iovec[n++], message); IOVEC_SET_STRING(iovec[n++], "\n"); if (writev(s->dev_kmsg_fd, iovec, n) < 0) log_debug_errno(errno, "Failed to write to /dev/kmsg for logging: %m"); free(ident_buf); }
static void server_process_entry_meta( const char *p, size_t l, const struct ucred *ucred, int *priority, char **identifier, char **message, pid_t *object_pid) { /* We need to determine the priority of this entry for the rate limiting logic */ if (l == 10 && startswith(p, "PRIORITY=") && p[9] >= '0' && p[9] <= '9') *priority = (*priority & LOG_FACMASK) | (p[9] - '0'); else if (l == 17 && startswith(p, "SYSLOG_FACILITY=") && p[16] >= '0' && p[16] <= '9') *priority = (*priority & LOG_PRIMASK) | ((p[16] - '0') << 3); else if (l == 18 && startswith(p, "SYSLOG_FACILITY=") && p[16] >= '0' && p[16] <= '9' && p[17] >= '0' && p[17] <= '9') *priority = (*priority & LOG_PRIMASK) | (((p[16] - '0')*10 + (p[17] - '0')) << 3); else if (l >= 19 && startswith(p, "SYSLOG_IDENTIFIER=")) { char *t; t = strndup(p + 18, l - 18); if (t) { free(*identifier); *identifier = t; } } else if (l >= 8 && startswith(p, "MESSAGE=")) { char *t; t = strndup(p + 8, l - 8); if (t) { free(*message); *message = t; } } else if (l > STRLEN("OBJECT_PID=") && l < STRLEN("OBJECT_PID=") + DECIMAL_STR_MAX(pid_t) && startswith(p, "OBJECT_PID=") && allow_object_pid(ucred)) { char buf[DECIMAL_STR_MAX(pid_t)]; memcpy(buf, p + STRLEN("OBJECT_PID="), l - STRLEN("OBJECT_PID=")); buf[l-STRLEN("OBJECT_PID=")] = '\0'; (void) parse_pid(buf, object_pid); } }
static int write_to_kmsg( int level, int error, const char *file, int line, const char *func, const char *object_field, const char *object, const char *buffer) { char header_priority[2 + DECIMAL_STR_MAX(int) + 1], header_pid[4 + DECIMAL_STR_MAX(pid_t) + 1]; struct iovec iovec[5] = {}; if (kmsg_fd < 0) return 0; xsprintf(header_priority, "<%i>", level); xsprintf(header_pid, "["PID_FMT"]: ", getpid()); IOVEC_SET_STRING(iovec[0], header_priority); IOVEC_SET_STRING(iovec[1], program_invocation_short_name); IOVEC_SET_STRING(iovec[2], header_pid); IOVEC_SET_STRING(iovec[3], buffer); IOVEC_SET_STRING(iovec[4], "\n"); if (writev(kmsg_fd, iovec, ELEMENTSOF(iovec)) < 0) return -errno; return 1; }
static int write_to_syslog( int level, int error, const char *file, int line, const char *func, const char *buffer) { char header_priority[2 + DECIMAL_STR_MAX(int) + 1], header_time[64], header_pid[4 + DECIMAL_STR_MAX(pid_t) + 1]; struct iovec iovec[5] = {}; struct msghdr msghdr = { .msg_iov = iovec, .msg_iovlen = ELEMENTSOF(iovec), }; time_t t; struct tm *tm; if (syslog_fd < 0) return 0; xsprintf(header_priority, "<%i>", level); t = (time_t) (now(CLOCK_REALTIME) / USEC_PER_SEC); tm = localtime(&t); if (!tm) return -EINVAL; if (strftime(header_time, sizeof(header_time), "%h %e %T ", tm) <= 0) return -EINVAL; xsprintf(header_pid, "["PID_FMT"]: ", getpid()); IOVEC_SET_STRING(iovec[0], header_priority); IOVEC_SET_STRING(iovec[1], header_time); IOVEC_SET_STRING(iovec[2], program_invocation_short_name); IOVEC_SET_STRING(iovec[3], header_pid); IOVEC_SET_STRING(iovec[4], buffer); /* When using syslog via SOCK_STREAM separate the messages by NUL chars */ if (syslog_is_stream) iovec[4].iov_len++; for (;;) { ssize_t n; n = sendmsg(syslog_fd, &msghdr, MSG_NOSIGNAL); if (n < 0) return -errno; if (!syslog_is_stream || (size_t) n >= IOVEC_TOTAL_SIZE(iovec, ELEMENTSOF(iovec))) break; IOVEC_INCREMENT(iovec, ELEMENTSOF(iovec), n); } return 1; }
static int network_link_get_strv(int ifindex, const char *key, char ***ret) { char path[STRLEN("/run/systemd/netif/links/") + DECIMAL_STR_MAX(ifindex) + 1]; _cleanup_strv_free_ char **a = NULL; _cleanup_free_ char *s = NULL; int r; assert_return(ifindex > 0, -EINVAL); assert_return(ret, -EINVAL); xsprintf(path, "/run/systemd/netif/links/%i", ifindex); r = parse_env_file(path, NEWLINE, key, &s, NULL); if (r == -ENOENT) return -ENODATA; if (r < 0) return r; if (isempty(s)) { *ret = NULL; return 0; } a = strv_split(s, " "); if (!a) return -ENOMEM; strv_uniq(a); r = strv_length(a); *ret = TAKE_PTR(a); return r; }
static void test_get_process_comm(pid_t pid) { struct stat st; _cleanup_free_ char *a = NULL, *c = NULL, *d = NULL, *f = NULL, *i = NULL; _cleanup_free_ char *env = NULL; char path[strlen("/proc//comm") + DECIMAL_STR_MAX(pid_t)]; pid_t e; uid_t u; gid_t g; dev_t h; int r; xsprintf(path, "/proc/"PID_FMT"/comm", pid); if (stat(path, &st) == 0) { assert_se(get_process_comm(pid, &a) >= 0); log_info("PID"PID_FMT" comm: '%s'", pid, a); } else log_warning("%s not exist.", path); assert_se(get_process_cmdline(pid, 0, true, &c) >= 0); log_info("PID"PID_FMT" cmdline: '%s'", pid, c); assert_se(get_process_cmdline(pid, 8, false, &d) >= 0); log_info("PID"PID_FMT" cmdline truncated to 8: '%s'", pid, d); free(d); assert_se(get_process_cmdline(pid, 1, false, &d) >= 0); log_info("PID"PID_FMT" cmdline truncated to 1: '%s'", pid, d); assert_se(get_process_ppid(pid, &e) >= 0); log_info("PID"PID_FMT" PPID: "PID_FMT, pid, e); assert_se(pid == 1 ? e == 0 : e > 0); assert_se(is_kernel_thread(pid) == 0 || pid != 1); r = get_process_exe(pid, &f); assert_se(r >= 0 || r == -EACCES); log_info("PID"PID_FMT" exe: '%s'", pid, strna(f)); assert_se(get_process_uid(pid, &u) == 0); log_info("PID"PID_FMT" UID: "UID_FMT, pid, u); assert_se(u == 0 || pid != 1); assert_se(get_process_gid(pid, &g) == 0); log_info("PID"PID_FMT" GID: "GID_FMT, pid, g); assert_se(g == 0 || pid != 1); r = get_process_environ(pid, &env); assert_se(r >= 0 || r == -EACCES); log_info("PID"PID_FMT" strlen(environ): %zi", pid, env ? (ssize_t)strlen(env) : (ssize_t)-errno); if (!detect_container()) assert_se(get_ctty_devnr(pid, &h) == -ENXIO || pid != 1); getenv_for_pid(pid, "PATH", &i); log_info("PID"PID_FMT" $PATH: '%s'", pid, strna(i)); }
int sync_cgroup(pid_t pid, CGroupUnified unified_requested) { _cleanup_free_ char *cgroup = NULL; char tree[] = "/tmp/unifiedXXXXXX", pid_string[DECIMAL_STR_MAX(pid) + 1]; bool undo_mount = false; const char *fn; int unified, r; unified = cg_unified(SYSTEMD_CGROUP_CONTROLLER); if (unified < 0) return log_error_errno(unified, "Failed to determine whether the unified hierarchy is used: %m"); if ((unified > 0) == (unified_requested >= CGROUP_UNIFIED_SYSTEMD)) return 0; /* When the host uses the legacy cgroup setup, but the * container shall use the unified hierarchy, let's make sure * we copy the path from the name=systemd hierarchy into the * unified hierarchy. Similar for the reverse situation. */ r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup); if (r < 0) return log_error_errno(r, "Failed to get control group of " PID_FMT ": %m", pid); /* In order to access the unified hierarchy we need to mount it */ if (!mkdtemp(tree)) return log_error_errno(errno, "Failed to generate temporary mount point for unified hierarchy: %m"); if (unified) r = mount("cgroup", tree, "cgroup", MS_NOSUID|MS_NOEXEC|MS_NODEV, "none,name=systemd,xattr"); else r = mount("cgroup", tree, "cgroup2", MS_NOSUID|MS_NOEXEC|MS_NODEV, NULL); if (r < 0) { r = log_error_errno(errno, "Failed to mount unified hierarchy: %m"); goto finish; } undo_mount = true; fn = strjoina(tree, cgroup, "/cgroup.procs"); (void) mkdir_parents(fn, 0755); sprintf(pid_string, PID_FMT, pid); r = write_string_file(fn, pid_string, 0); if (r < 0) log_error_errno(r, "Failed to move process: %m"); finish: if (undo_mount) (void) umount(tree); (void) rmdir(tree); return r; }
static int network_link_get_ifindexes(int ifindex, const char *key, int **ret) { char path[strlen("/run/systemd/netif/links/") + DECIMAL_STR_MAX(ifindex) + 1]; _cleanup_free_ int *ifis = NULL; _cleanup_free_ char *s = NULL; size_t allocated = 0, c = 0; const char *x; int r; assert_return(ifindex > 0, -EINVAL); assert_return(ret, -EINVAL); xsprintf(path, "/run/systemd/netif/links/%i", ifindex); r = parse_env_file(path, NEWLINE, key, &s, NULL); if (r == -ENOENT) return -ENODATA; if (r < 0) return r; if (isempty(s)) { *ret = NULL; return 0; } x = s; for (;;) { _cleanup_free_ char *word = NULL; r = extract_first_word(&x, &word, NULL, 0); if (r < 0) return r; if (r == 0) break; r = parse_ifindex(word, &ifindex); if (r < 0) return r; if (!GREEDY_REALLOC(ifis, allocated, c + 1)) return -ENOMEM; ifis[c++] = ifindex; } if (!GREEDY_REALLOC(ifis, allocated, c + 1)) return -ENOMEM; ifis[c] = 0; /* Let's add a 0 ifindex to the end, to be nice*/ *ret = ifis; ifis = NULL; return c; }
int device_ensure_usec_initialized(sd_device *device, sd_device *device_old) { char num[DECIMAL_STR_MAX(usec_t)]; usec_t usec_initialized; int r; assert(device); if (device_old && device_old->usec_initialized > 0) usec_initialized = device_old->usec_initialized; else usec_initialized = now(CLOCK_MONOTONIC); r = snprintf(num, sizeof(num), USEC_FMT, usec_initialized); if (r < 0) return -errno; r = device_set_usec_initialized(device, num); if (r < 0) return r; return 0; }
static int network_link_get_string(int ifindex, const char *field, char **ret) { char path[STRLEN("/run/systemd/netif/links/") + DECIMAL_STR_MAX(ifindex) + 1]; _cleanup_free_ char *s = NULL; int r; assert_return(ifindex > 0, -EINVAL); assert_return(ret, -EINVAL); xsprintf(path, "/run/systemd/netif/links/%i", ifindex); r = parse_env_file(path, NEWLINE, field, &s, NULL); if (r == -ENOENT) return -ENODATA; if (r < 0) return r; if (isempty(s)) return -ENODATA; *ret = TAKE_PTR(s); return 0; }
static int make_uid_symlinks(uid_t uid, const char *name, bool b) { char path1[STRLEN("/run/systemd/dynamic-uid/direct:") + DECIMAL_STR_MAX(uid_t) + 1]; const char *path2; int r = 0, k; /* Add direct additional symlinks for direct lookups of dynamic UIDs and their names by userspace code. The * only reason we have this is because dbus-daemon cannot use D-Bus for resolving users and groups (since it * would be its own client then). We hence keep these world-readable symlinks in place, so that the * unprivileged dbus user can read the mappings when it needs them via these symlinks instead of having to go * via the bus. Ideally, we'd use the lock files we keep for this anyway, but we can't since we use BSD locks * on them and as those may be taken by any user with read access we can't make them world-readable. */ xsprintf(path1, "/run/systemd/dynamic-uid/direct:" UID_FMT, uid); if (unlink(path1) < 0 && errno != ENOENT) r = -errno; if (b && symlink(name, path1) < 0) { k = log_warning_errno(errno, "Failed to symlink \"%s\": %m", path1); if (r == 0) r = k; } path2 = strjoina("/run/systemd/dynamic-uid/direct:", name); if (unlink(path2) < 0 && errno != ENOENT) { k = -errno; if (r == 0) r = k; } if (b && symlink(path1 + STRLEN("/run/systemd/dynamic-uid/direct:"), path2) < 0) { k = log_warning_errno(errno, "Failed to symlink \"%s\": %m", path2); if (r == 0) r = k; } return r; }
void server_process_native_message( Server *s, const void *buffer, size_t buffer_size, const struct ucred *ucred, const struct timeval *tv, const char *label, size_t label_len) { struct iovec *iovec = NULL; unsigned n = 0, j, tn = (unsigned) -1; const char *p; size_t remaining, m = 0, entry_size = 0; int priority = LOG_INFO; char *identifier = NULL, *message = NULL; pid_t object_pid = 0; assert(s); assert(buffer || buffer_size == 0); p = buffer; remaining = buffer_size; while (remaining > 0) { const char *e, *q; e = memchr(p, '\n', remaining); if (!e) { /* Trailing noise, let's ignore it, and flush what we collected */ log_debug("Received message with trailing noise, ignoring."); break; } if (e == p) { /* Entry separator */ if (entry_size + n + 1 > ENTRY_SIZE_MAX) { /* data + separators + trailer */ log_debug("Entry is too big with %u properties and %zu bytes, ignoring.", n, entry_size); continue; } server_dispatch_message(s, iovec, n, m, ucred, tv, label, label_len, NULL, priority, object_pid); n = 0; priority = LOG_INFO; entry_size = 0; p++; remaining--; continue; } if (*p == '.' || *p == '#') { /* Ignore control commands for now, and * comments too. */ remaining -= (e - p) + 1; p = e + 1; continue; } /* A property follows */ /* n existing properties, 1 new, +1 for _TRANSPORT */ if (!GREEDY_REALLOC(iovec, m, n + 2 + N_IOVEC_META_FIELDS + N_IOVEC_OBJECT_FIELDS)) { log_oom(); break; } q = memchr(p, '=', e - p); if (q) { if (valid_user_field(p, q - p, false)) { size_t l; l = e - p; /* If the field name starts with an * underscore, skip the variable, * since that indidates a trusted * field */ iovec[n].iov_base = (char*) p; iovec[n].iov_len = l; entry_size += iovec[n].iov_len; n++; /* We need to determine the priority * of this entry for the rate limiting * logic */ if (l == 10 && startswith(p, "PRIORITY=") && p[9] >= '0' && p[9] <= '9') priority = (priority & LOG_FACMASK) | (p[9] - '0'); else if (l == 17 && startswith(p, "SYSLOG_FACILITY=") && p[16] >= '0' && p[16] <= '9') priority = (priority & LOG_PRIMASK) | ((p[16] - '0') << 3); else if (l == 18 && startswith(p, "SYSLOG_FACILITY=") && p[16] >= '0' && p[16] <= '9' && p[17] >= '0' && p[17] <= '9') priority = (priority & LOG_PRIMASK) | (((p[16] - '0')*10 + (p[17] - '0')) << 3); else if (l >= 19 && startswith(p, "SYSLOG_IDENTIFIER=")) { char *t; t = strndup(p + 18, l - 18); if (t) { free(identifier); identifier = t; } } else if (l >= 8 && startswith(p, "MESSAGE=")) { char *t; t = strndup(p + 8, l - 8); if (t) { free(message); message = t; } } else if (l > strlen("OBJECT_PID=") && l < strlen("OBJECT_PID=") + DECIMAL_STR_MAX(pid_t) && startswith(p, "OBJECT_PID=") && allow_object_pid(ucred)) { char buf[DECIMAL_STR_MAX(pid_t)]; memcpy(buf, p + strlen("OBJECT_PID="), l - strlen("OBJECT_PID=")); buf[l-strlen("OBJECT_PID=")] = '\0'; /* ignore error */ parse_pid(buf, &object_pid); } } remaining -= (e - p) + 1; p = e + 1; continue; } else { le64_t l_le; uint64_t l; char *k; if (remaining < e - p + 1 + sizeof(uint64_t) + 1) { log_debug("Failed to parse message, ignoring."); break; } memcpy(&l_le, e + 1, sizeof(uint64_t)); l = le64toh(l_le); if (l > DATA_SIZE_MAX) { log_debug("Received binary data block of %"PRIu64" bytes is too large, ignoring.", l); break; } if ((uint64_t) remaining < e - p + 1 + sizeof(uint64_t) + l + 1 || e[1+sizeof(uint64_t)+l] != '\n') { log_debug("Failed to parse message, ignoring."); break; } k = malloc((e - p) + 1 + l); if (!k) { log_oom(); break; } memcpy(k, p, e - p); k[e - p] = '='; memcpy(k + (e - p) + 1, e + 1 + sizeof(uint64_t), l); if (valid_user_field(p, e - p, false)) { iovec[n].iov_base = k; iovec[n].iov_len = (e - p) + 1 + l; entry_size += iovec[n].iov_len; n++; } else free(k); remaining -= (e - p) + 1 + sizeof(uint64_t) + l + 1; p = e + 1 + sizeof(uint64_t) + l + 1; } } if (n <= 0) goto finish; tn = n++; IOVEC_SET_STRING(iovec[tn], "_TRANSPORT=journal"); entry_size += strlen("_TRANSPORT=journal"); if (entry_size + n + 1 > ENTRY_SIZE_MAX) { /* data + separators + trailer */ log_debug("Entry is too big with %u properties and %zu bytes, ignoring.", n, entry_size); goto finish; } if (message) { if (s->forward_to_syslog) server_forward_syslog(s, priority, identifier, message, ucred, tv); if (s->forward_to_kmsg) server_forward_kmsg(s, priority, identifier, message, ucred); if (s->forward_to_console) server_forward_console(s, priority, identifier, message, ucred); if (s->forward_to_wall) server_forward_wall(s, priority, identifier, message, ucred); } server_dispatch_message(s, iovec, n, m, ucred, tv, label, label_len, NULL, priority, object_pid); finish: for (j = 0; j < n; j++) { if (j == tn) continue; if (iovec[j].iov_base < buffer || (const uint8_t*) iovec[j].iov_base >= (const uint8_t*) buffer + buffer_size) free(iovec[j].iov_base); } free(iovec); free(identifier); free(message); }
void server_forward_console( Server *s, int priority, const char *identifier, const char *message, const struct ucred *ucred) { struct iovec iovec[5]; struct timespec ts; char tbuf[sizeof("[] ")-1 + DECIMAL_STR_MAX(ts.tv_sec) + DECIMAL_STR_MAX(ts.tv_nsec)-3 + 1]; char header_pid[sizeof("[]: ")-1 + DECIMAL_STR_MAX(pid_t)]; int n = 0, fd; _cleanup_free_ char *ident_buf = NULL; const char *tty; assert(s); assert(message); if (LOG_PRI(priority) > s->max_level_console) return; /* First: timestamp */ if (prefix_timestamp()) { assert_se(clock_gettime(CLOCK_MONOTONIC, &ts) == 0); xsprintf(tbuf, "[%5"PRI_TIME".%06ld] ", ts.tv_sec, ts.tv_nsec / 1000); IOVEC_SET_STRING(iovec[n++], tbuf); } /* Second: identifier and PID */ if (ucred) { if (!identifier) { get_process_comm(ucred->pid, &ident_buf); identifier = ident_buf; } xsprintf(header_pid, "["PID_FMT"]: ", ucred->pid); if (identifier) IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], header_pid); } else if (identifier) { IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], ": "); } /* Fourth: message */ IOVEC_SET_STRING(iovec[n++], message); IOVEC_SET_STRING(iovec[n++], "\n"); tty = s->tty_path ? s->tty_path : "/dev/console"; fd = open_terminal(tty, O_WRONLY|O_NOCTTY|O_CLOEXEC); if (fd < 0) { log_debug_errno(errno, "Failed to open %s for logging: %m", tty); return; } if (writev(fd, iovec, n) < 0) log_debug_errno(errno, "Failed to write to %s for logging: %m", tty); safe_close(fd); }
static int pick_uid(char **suggested_paths, const char *name, uid_t *ret_uid) { /* Find a suitable free UID. We use the following strategy to find a suitable UID: * * 1. Initially, we try to read the UID of a number of specified paths. If any of these UIDs works, we use * them. We use in order to increase the chance of UID reuse, if StateDirectory=, CacheDirectory= or * LogsDirectory= are used, as reusing the UID these directories are owned by saves us from having to * recursively chown() them to new users. * * 2. If that didn't yield a currently unused UID, we hash the user name, and try to use that. This should be * pretty good, as the use ris by default derived from the unit name, and hence the same service and same * user should usually get the same UID as long as our hashing doesn't clash. * * 3. Finally, if that didn't work, we randomly pick UIDs, until we find one that is empty. * * Since the dynamic UID space is relatively small we'll stop trying after 100 iterations, giving up. */ enum { PHASE_SUGGESTED, /* the first phase, reusing directory ownership UIDs */ PHASE_HASHED, /* the second phase, deriving a UID from the username by hashing */ PHASE_RANDOM, /* the last phase, randomly picking UIDs */ } phase = PHASE_SUGGESTED; static const uint8_t hash_key[] = { 0x37, 0x53, 0x7e, 0x31, 0xcf, 0xce, 0x48, 0xf5, 0x8a, 0xbb, 0x39, 0x57, 0x8d, 0xd9, 0xec, 0x59 }; unsigned n_tries = 100, current_suggested = 0; int r; (void) mkdir("/run/systemd/dynamic-uid", 0755); for (;;) { char lock_path[STRLEN("/run/systemd/dynamic-uid/") + DECIMAL_STR_MAX(uid_t) + 1]; _cleanup_close_ int lock_fd = -1; uid_t candidate; ssize_t l; if (--n_tries <= 0) /* Give up retrying eventually */ return -EBUSY; switch (phase) { case PHASE_SUGGESTED: { struct stat st; if (!suggested_paths || !suggested_paths[current_suggested]) { /* We reached the end of the suggested paths list, let's try by hashing the name */ phase = PHASE_HASHED; continue; } if (stat(suggested_paths[current_suggested++], &st) < 0) continue; /* We can't read the UID of this path, but that doesn't matter, just try the next */ candidate = st.st_uid; break; } case PHASE_HASHED: /* A static user by this name does not exist yet. Let's find a free ID then, and use that. We * start with a UID generated as hash from the user name. */ candidate = UID_CLAMP_INTO_RANGE(siphash24(name, strlen(name), hash_key)); /* If this one fails, we should proceed with random tries */ phase = PHASE_RANDOM; break; case PHASE_RANDOM: /* Pick another random UID, and see if that works for us. */ random_bytes(&candidate, sizeof(candidate)); candidate = UID_CLAMP_INTO_RANGE(candidate); break; default: assert_not_reached("unknown phase"); } /* Make sure whatever we picked here actually is in the right range */ if (!uid_is_dynamic(candidate)) continue; xsprintf(lock_path, "/run/systemd/dynamic-uid/" UID_FMT, candidate); for (;;) { struct stat st; lock_fd = open(lock_path, O_CREAT|O_RDWR|O_NOFOLLOW|O_CLOEXEC|O_NOCTTY, 0600); if (lock_fd < 0) return -errno; r = flock(lock_fd, LOCK_EX|LOCK_NB); /* Try to get a BSD file lock on the UID lock file */ if (r < 0) { if (IN_SET(errno, EBUSY, EAGAIN)) goto next; /* already in use */ return -errno; } if (fstat(lock_fd, &st) < 0) return -errno; if (st.st_nlink > 0) break; /* Oh, bummer, we got the lock, but the file was unlinked between the time we opened it and * got the lock. Close it, and try again. */ lock_fd = safe_close(lock_fd); } /* Some superficial check whether this UID/GID might already be taken by some static user */ if (getpwuid(candidate) || getgrgid((gid_t) candidate) || search_ipc(candidate, (gid_t) candidate) != 0) { (void) unlink(lock_path); continue; } /* Let's store the user name in the lock file, so that we can use it for looking up the username for a UID */ l = pwritev(lock_fd, (struct iovec[2]) { IOVEC_INIT_STRING(name), IOVEC_INIT((char[1]) { '\n' }, 1), }, 2, 0);
static void automount_enter_waiting(Automount *a) { _cleanup_close_ int ioctl_fd = -1; int p[2] = { -1, -1 }; char name[sizeof("systemd-")-1 + DECIMAL_STR_MAX(pid_t) + 1]; char options[sizeof("fd=,pgrp=,minproto=5,maxproto=5,direct")-1 + DECIMAL_STR_MAX(int) + DECIMAL_STR_MAX(gid_t) + 1]; bool mounted = false; int r, dev_autofs_fd; struct stat st; assert(a); assert(a->pipe_fd < 0); assert(a->where); set_clear(a->tokens); r = unit_fail_if_symlink(UNIT(a), a->where); if (r < 0) goto fail; (void) mkdir_p_label(a->where, 0555); unit_warn_if_dir_nonempty(UNIT(a), a->where); dev_autofs_fd = open_dev_autofs(UNIT(a)->manager); if (dev_autofs_fd < 0) { r = dev_autofs_fd; goto fail; } if (pipe2(p, O_NONBLOCK|O_CLOEXEC) < 0) { r = -errno; goto fail; } xsprintf(options, "fd=%i,pgrp="PID_FMT",minproto=5,maxproto=5,direct", p[1], getpgrp()); xsprintf(name, "systemd-"PID_FMT, getpid()); if (mount(name, a->where, "autofs", 0, options) < 0) { r = -errno; goto fail; } mounted = true; p[1] = safe_close(p[1]); if (stat(a->where, &st) < 0) { r = -errno; goto fail; } ioctl_fd = open_ioctl_fd(dev_autofs_fd, a->where, st.st_dev); if (ioctl_fd < 0) { r = ioctl_fd; goto fail; } r = autofs_protocol(dev_autofs_fd, ioctl_fd); if (r < 0) goto fail; r = autofs_set_timeout(dev_autofs_fd, ioctl_fd, a->timeout_idle_usec); if (r < 0) goto fail; /* Autofs fun fact: * * Unless we close the ioctl fd here, for some weird reason * the direct mount will not receive events from the * kernel. */ r = sd_event_add_io(UNIT(a)->manager->event, &a->pipe_event_source, p[0], EPOLLIN, automount_dispatch_io, a); if (r < 0) goto fail; (void) sd_event_source_set_description(a->pipe_event_source, "automount-io"); a->pipe_fd = p[0]; a->dev_id = st.st_dev; automount_set_state(a, AUTOMOUNT_WAITING); return; fail: log_unit_error_errno(UNIT(a), r, "Failed to initialize automounter: %m"); safe_close_pair(p); if (mounted) { r = repeat_unmount(a->where, MNT_DETACH); if (r < 0) log_error_errno(r, "Failed to unmount, ignoring: %m"); } automount_enter_dead(a, AUTOMOUNT_FAILURE_RESOURCES); }
void server_forward_console( Server *s, int priority, const char *identifier, const char *message, const struct ucred *ucred) { struct iovec iovec[5]; struct timespec ts; char tbuf[sizeof("[] ")-1 + DECIMAL_STR_MAX(ts.tv_sec) + DECIMAL_STR_MAX(ts.tv_nsec)-3 + 1]; char header_pid[sizeof("[]: ")-1 + DECIMAL_STR_MAX(pid_t)]; int n = 0, fd; _cleanup_free_ char *ident_buf = NULL; const char *tty; assert(s); assert(message); if (LOG_PRI(priority) > s->max_level_console) return; /* First: timestamp */ if (prefix_timestamp()) { assert_se(clock_gettime(CLOCK_MONOTONIC, &ts) == 0); xsprintf(tbuf, "[%5"PRI_TIME".%06ld] ", ts.tv_sec, ts.tv_nsec / 1000); IOVEC_SET_STRING(iovec[n++], tbuf); } /* Second: identifier and PID */ if (ucred) { if (!identifier) { get_process_comm(ucred->pid, &ident_buf); identifier = ident_buf; } xsprintf(header_pid, "["PID_FMT"]: ", ucred->pid); if (identifier) IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], header_pid); } else if (identifier) { IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], ": "); } /* Fourth: message */ IOVEC_SET_STRING(iovec[n++], message); IOVEC_SET_STRING(iovec[n++], "\n"); tty = s->tty_path ? s->tty_path : "/dev/console"; /* Before you ask: yes, on purpose we open/close the console for each log line we write individually. This is a * good strategy to avoid journald getting killed by the kernel's SAK concept (it doesn't fix this entirely, * but minimizes the time window the kernel might end up killing journald due to SAK). It also makes things * easier for us so that we don't have to recover from hangups and suchlike triggered on the console. */ fd = open_terminal(tty, O_WRONLY|O_NOCTTY|O_CLOEXEC); if (fd < 0) { log_debug_errno(fd, "Failed to open %s for logging: %m", tty); return; } if (writev(fd, iovec, n) < 0) log_debug_errno(errno, "Failed to write to %s for logging: %m", tty); safe_close(fd); }
void server_forward_console( Server *s, int priority, const char *identifier, const char *message, struct ucred *ucred) { struct iovec iovec[5]; char header_pid[16]; struct timespec ts; char tbuf[4 + DECIMAL_STR_MAX(ts.tv_sec) + DECIMAL_STR_MAX(ts.tv_nsec)-3 + 1]; int n = 0, fd; char *ident_buf = NULL; const char *tty; assert(s); assert(message); if (LOG_PRI(priority) > s->max_level_console) return; /* First: timestamp */ if (prefix_timestamp()) { assert_se(clock_gettime(CLOCK_MONOTONIC, &ts) == 0); snprintf(tbuf, sizeof(tbuf), "[%5llu.%06llu] ", (unsigned long long) ts.tv_sec, (unsigned long long) ts.tv_nsec / 1000); IOVEC_SET_STRING(iovec[n++], tbuf); } /* Second: identifier and PID */ if (ucred) { if (!identifier) { get_process_comm(ucred->pid, &ident_buf); identifier = ident_buf; } snprintf(header_pid, sizeof(header_pid), "[%lu]: ", (unsigned long) ucred->pid); char_array_0(header_pid); if (identifier) IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], header_pid); } else if (identifier) { IOVEC_SET_STRING(iovec[n++], identifier); IOVEC_SET_STRING(iovec[n++], ": "); } /* Fourth: message */ IOVEC_SET_STRING(iovec[n++], message); IOVEC_SET_STRING(iovec[n++], "\n"); tty = s->tty_path ? s->tty_path : "/dev/console"; fd = open_terminal(tty, O_WRONLY|O_NOCTTY|O_CLOEXEC); if (fd < 0) { log_debug("Failed to open %s for logging: %s", tty, strerror(errno)); goto finish; } if (writev(fd, iovec, n) < 0) log_debug("Failed to write to %s for logging: %s", tty, strerror(errno)); safe_close(fd); finish: free(ident_buf); }
int sync_cgroup(pid_t pid, CGroupUnified unified_requested, uid_t uid_shift) { _cleanup_free_ char *cgroup = NULL; char tree[] = "/tmp/unifiedXXXXXX", pid_string[DECIMAL_STR_MAX(pid) + 1]; bool undo_mount = false; const char *fn; int r, unified_controller; unified_controller = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER); if (unified_controller < 0) return log_error_errno(unified_controller, "Failed to determine whether the systemd hierarchy is unified: %m"); if ((unified_controller > 0) == (unified_requested >= CGROUP_UNIFIED_SYSTEMD)) return 0; /* When the host uses the legacy cgroup setup, but the * container shall use the unified hierarchy, let's make sure * we copy the path from the name=systemd hierarchy into the * unified hierarchy. Similar for the reverse situation. */ r = cg_pid_get_path(SYSTEMD_CGROUP_CONTROLLER, pid, &cgroup); if (r < 0) return log_error_errno(r, "Failed to get control group of " PID_FMT ": %m", pid); /* In order to access the unified hierarchy we need to mount it */ if (!mkdtemp(tree)) return log_error_errno(errno, "Failed to generate temporary mount point for unified hierarchy: %m"); if (unified_controller > 0) r = mount_verbose(LOG_ERR, "cgroup", tree, "cgroup", MS_NOSUID|MS_NOEXEC|MS_NODEV, "none,name=systemd,xattr"); else r = mount_verbose(LOG_ERR, "cgroup", tree, "cgroup2", MS_NOSUID|MS_NOEXEC|MS_NODEV, NULL); if (r < 0) goto finish; undo_mount = true; /* If nspawn dies abruptly the cgroup hierarchy created below * its unit isn't cleaned up. So, let's remove it * https://github.com/systemd/systemd/pull/4223#issuecomment-252519810 */ fn = strjoina(tree, cgroup); (void) rm_rf(fn, REMOVE_ROOT|REMOVE_ONLY_DIRECTORIES); fn = strjoina(tree, cgroup, "/cgroup.procs"); (void) mkdir_parents(fn, 0755); sprintf(pid_string, PID_FMT, pid); r = write_string_file(fn, pid_string, 0); if (r < 0) { log_error_errno(r, "Failed to move process: %m"); goto finish; } fn = strjoina(tree, cgroup); r = chown_cgroup_path(fn, uid_shift); if (r < 0) log_error_errno(r, "Failed to chown() cgroup %s: %m", fn); finish: if (undo_mount) (void) umount_verbose(tree); (void) rmdir(tree); return r; }