Exemple #1
0
void Builder::addText( const DL_TextData &data )
{
  if ( !convertText )
    return;

  textObjects << DL_TextData(
    data.ipx, data.ipy, data.ipz,
    data.apx, data.apy, data.apz,
    data.height, data.xScaleFactor, data.textGenerationFlags,
    data.hJustification, data.vJustification,
    data.text, data.style, data.angle
  );

  QgsDebugMsg( QString( "text: %1" ).arg( data.text.c_str() ) );
}
Exemple #2
0
bool DxfProfilesExporter::SaveVerticalProfiles(	const QSharedPointer<DistanceMapGenerationTool::Map>& map,
												ccPolyline* profile,
												QString filename,
												unsigned angularStepCount,
												double heightStep,
												const Parameters& params,
												ccMainAppInterface* app/*=0*/)
{
#ifdef CC_DXF_SUPPORT
	assert(c_pageMargin_mm < c_profileMargin_mm);
	assert(2.0*c_profileMargin_mm < std::min(c_pageWidth_mm,c_pageHeight_mm));

	if (!map || !profile || angularStepCount == 0 || heightStep <= 0)
	{
		//invalid parameters
		return false;
	}

	//Theoretical profile bounding box
	PointCoordinateType profileBBMin[3],profileBBMax[3];
	profile->getAssociatedCloud()->getBoundingBox(profileBBMin,profileBBMax);
	//Mix with the map's boundaries along 'Y'
	double yMin = std::max(map->yMin,static_cast<double>(profileBBMin[1]));
	double yMax = std::min(map->yMin + static_cast<double>(map->ySteps) * map->yStep, static_cast<double>(profileBBMax[1]));
	const double ySpan = yMax - yMin;
	//For the 'X' dimension, it's easier to stick with the th. profile
	const double xMin = profileBBMin[0];
//	const double xMax = profileBBMax[0];
	const double xSpan = profileBBMax[0] - profileBBMin[0];

	if (xSpan == 0.0 || ySpan == 0.0)
	{
		if (app)
			app->dispToConsole(QString("Internal error: null profile?!"),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}

	DL_Dxf dxf;
	DL_WriterA* dw = dxf.out(qPrintable(filename), DL_VERSION_R12);
	if (!dw)
	{
		if (app)
			app->dispToConsole(QString("Failed to open '%1' file for writing!").arg(filename),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}

	//write header
	dxf.writeHeader(*dw);

	//add dimensions
	dw->dxfString(9, "$INSBASE");
	dw->dxfReal(10,0.0);
	dw->dxfReal(20,0.0);
	dw->dxfReal(30,0.0);
	dw->dxfString(9, "$EXTMIN");
	dw->dxfReal(10,0.0);
	dw->dxfReal(20,0.0);
	dw->dxfReal(30,0.0);
	dw->dxfString(9, "$EXTMAX");
	dw->dxfReal(10,c_pageWidth_mm);
	dw->dxfReal(20,c_pageHeight_mm);
	dw->dxfReal(30,0.0);
	dw->dxfString(9, "$LIMMIN");
	dw->dxfReal(10,0.0);
	dw->dxfReal(20,0.0);
	dw->dxfString(9, "$LIMMAX");
	dw->dxfReal(10,c_pageWidth_mm);
	dw->dxfReal(20,c_pageHeight_mm);

	//close header
	dw->sectionEnd();

	//Opening the Tables Section
	dw->sectionTables();
	//Writing the Viewports
	dxf.writeVPort(*dw);

	//Writing the Linetypes (all by default)
	{
		dw->tableLineTypes(25);
		dxf.writeLineType(*dw, DL_LineTypeData("BYBLOCK", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BYLAYER", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CONTINUOUS", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO02W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO03W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO04W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO05W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BORDER", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BORDER2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BORDERX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CENTER", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CENTER2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CENTERX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHDOTX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHED", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHED2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHEDX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DIVIDEX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DOT", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DOT2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DOTX2", 0));
		dw->tableEnd();
	}

	//Writing the Layers
	dw->tableLayers(angularStepCount+3);
	QStringList profileNames;
	{
		//default layer
		dxf.writeLayer(*dw, 
			DL_LayerData("0", 0), 
			DL_Attributes(
			std::string(""),      // leave empty
			DL_Codes::black,      // default color
			100,                  // default width (in 1/100 mm)
			"CONTINUOUS"));       // default line style

		//theoretical profile layer
		dxf.writeLayer(*dw, 
			DL_LayerData(PROFILE_LAYER, 0), 
			DL_Attributes(
			std::string(""),
			DL_Codes::red,
			s_lineWidth,
			"CONTINUOUS"));

		//legend layer
		dxf.writeLayer(*dw, 
			DL_LayerData(LEGEND_LAYER, 0), 
			DL_Attributes(
			std::string(""),
			DL_Codes::black,
			s_lineWidth,
			"CONTINUOUS"));

		//vert. profile layers
		for (unsigned i=0; i<angularStepCount; ++i)
		{
			//default layer name
			QString layerName = QString(VERT_PROFILE_LAYER).arg(i+1,3,10,QChar('0'));
			//but we use the profile title if we have one!
			//DGM: nope, as it may be longer than 31 characters (R14 limit)
			//if (params.profileTitles.size() >= static_cast<int>(angularStepCount))
			//{
			//	layerName = params.profileTitles[i];
			//	layerName.replace(QChar(' '),QChar('_'));
			//}

			profileNames << layerName;
			dxf.writeLayer(*dw, 
				DL_LayerData(layerName.toStdString(), 0), 
				DL_Attributes(
				std::string(""),
				i == 0 ? DL_Codes::green : -DL_Codes::green, //invisible if negative!
				s_lineWidth,
				"CONTINUOUS"));
		}
	}
	dw->tableEnd();

	//Writing Various Other Tables
	//dxf.writeStyle(*dw); //DXFLIB V2.5
	dxf.writeStyle(*dw,DL_StyleData("Standard",0,0.0,0.75,0.0,0,2.5,"txt","")); //DXFLIB V3.3
	dxf.writeView(*dw);
	dxf.writeUcs(*dw);

	dw->tableAppid(1);
	dw->tableAppidEntry(0x12);
	dw->dxfString(2, "ACAD");
	dw->dxfInt(70, 0);
	dw->tableEnd();

	//Writing Dimension Styles
	dxf.writeDimStyle(	*dw, 
						/*arrowSize*/1, 
						/*extensionLineExtension*/1,
						/*extensionLineOffset*/1,
						/*dimensionGap*/1,
						/*dimensionTextSize*/1);
	
	//Writing Block Records
	dxf.writeBlockRecord(*dw);
	//dxf.writeBlockRecord(*dw, "myblock1");
	//dxf.writeBlockRecord(*dw, "myblock2");
	dw->tableEnd();

	//Ending the Tables Section
	dw->sectionEnd();

	//Writing the Blocks Section
	{
		dw->sectionBlocks();

		dxf.writeBlock(*dw,  DL_BlockData("*Model_Space", 0, 0.0, 0.0, 0.0));
		dxf.writeEndBlock(*dw, "*Model_Space");

		dxf.writeBlock(*dw, DL_BlockData("*Paper_Space", 0, 0.0, 0.0, 0.0));
		dxf.writeEndBlock(*dw, "*Paper_Space");

		dxf.writeBlock(*dw, DL_BlockData("*Paper_Space0", 0, 0.0, 0.0, 0.0));
		dxf.writeEndBlock(*dw, "*Paper_Space0");

		dw->sectionEnd();
	}

	//Writing the Entities Section
	{
		dw->sectionEntities();

		//we make the profile fit in the middle of the page (21.0 x 29.7 cm)
		double scale = std::min((c_pageWidth_mm - 2.0 * c_profileMargin_mm)/xSpan,
								(c_pageHeight_mm - 2.0 * c_profileMargin_mm)/ySpan);

		//min corner of profile area
		const double x0 = (c_pageWidth_mm - xSpan*scale) / 2.0;
		const double y0 = (c_pageHeight_mm - ySpan*scale) / 2.0;

		//write theoretical profile (polyline)
		{
			unsigned vertexCount = profile->size();
			dxf.writePolyline(	*dw,
								DL_PolylineData(static_cast<int>(vertexCount),0,0,0),
								DL_Attributes(PROFILE_LAYER, DL_Codes::bylayer, -1, "BYLAYER"));

			for (unsigned i=0; i<vertexCount; ++i)
			{
				const CCVector3* P = profile->getPoint(i);
				dxf.writeVertex(*dw, DL_VertexData(x0+(P->x-xMin)*scale,y0+(P->y-yMin)*scale,0.0));
			}

			dxf.writePolylineEnd(*dw);
		}

		//write legend
		{
			DL_Attributes DefaultLegendMaterial(LEGEND_LAYER, DL_Codes::bylayer, -1, "BYLAYER");

			//write page contour
			{
				dxf.writePolyline(	*dw,
									DL_PolylineData(4,0,0,1),
									DefaultLegendMaterial);

				dxf.writeVertex(*dw, DL_VertexData(	c_pageMargin_mm, c_pageMargin_mm, 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	c_pageWidth_mm-c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	c_pageWidth_mm-c_pageMargin_mm, c_pageMargin_mm, 0.0));

				dxf.writePolylineEnd(*dw);
			}

			double xLegend = c_pageMargin_mm + 2.0*c_textHeight_mm;
			double yLegend = c_pageMargin_mm + 2.0*c_textHeight_mm;
			const double legendWidth_mm = 20.0;
			
			//deviation magnification factor
			QString magnifyStr = QString::number(params.devMagnifyCoef);
			dxf.writeText(	*dw,
				DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation magnification factor: ")+magnifyStr).toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);

			//next line
			yLegend += c_textHeight_mm*2.0;

			//units
			QString unitsStr("mm");
			dxf.writeText(	*dw,
				DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation units: ")+unitsStr).toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);

			//next line
			yLegend += c_textHeight_mm*2.0;

			//true profile line (red)
			dxf.writeLine(	*dw,
							DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0),
							DL_Attributes(LEGEND_LAYER, DL_Codes::green, -1, "BYLAYER"));

			dxf.writeText(	*dw,
				DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendRealProfileTitle.toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);

			//next line
			yLegend += c_textHeight_mm*2.0;

			//theoretical profile line (red)
			dxf.writeLine(	*dw,
							DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0),
							DL_Attributes(LEGEND_LAYER, DL_Codes::red, -1, "BYLAYER"));

			dxf.writeText(	*dw,
				DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendTheoProfileTitle.toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);
		}

		//write vertical profiles
		for (unsigned angleStep=0; angleStep<angularStepCount; ++angleStep)
		{			
			std::vector<VertStepData> polySteps;
			try
			{
				polySteps.reserve(map->ySteps);
			}
			catch(std::bad_alloc)
			{
				//not enough memory
				dw->dxfEOF();
				dw->close();
				delete dw;
				return false;
			}

			unsigned iMap = static_cast<unsigned>(static_cast<double>(angleStep * map->xSteps) / static_cast<double>(angularStepCount));
			for (unsigned jMap=0; jMap < map->ySteps; ++jMap)
			{
				const DistanceMapGenerationTool::MapCell& cell = map->at(iMap + jMap * map->xSteps);
				
				VertStepData step;
				step.height = map->yMin + static_cast<double>(jMap) * map->yStep;

				if (step.height >= yMin && step.height <= yMax)
				{
					//find corresponding radius
					bool found = false;
					for (unsigned i=1; i<profile->size(); ++i)
					{
						const CCVector3* A = profile->getPoint(i-1);
						const CCVector3* B = profile->getPoint(i);

						double alpha = static_cast<double>((step.height - A->y)/(B->y - A->y));
						if (alpha >= 0.0 && alpha <= 1.0)
						{
							//we deduce the right radius by linear interpolation
							step.radius_th = A->x + alpha * (B->x - A->x);
							found = true;
							break;
						}
					}

					if (found)
					{
						step.deviation = cell.count ? cell.value : 0.0;
						polySteps.push_back(step);
					}
				}
			}	

			const DL_Attributes DefaultMaterial(profileNames[angleStep].toStdString(), DL_Codes::bylayer, -1, "BYLAYER");
			const DL_Attributes GrayMaterial(profileNames[angleStep].toStdString(), DL_Codes::l_gray, -1, "");

			//write layer title
			if (static_cast<int>(angleStep) < params.profileTitles.size())
			{
				const QString& title = params.profileTitles[angleStep];

				CCVector3d Ptop(c_pageWidth_mm / 2.0, y0 + ySpan * scale + c_profileMargin_mm / 2.0, 0.0);

				dxf.writeText(	*dw,
					DL_TextData(Ptop.x,Ptop.y,Ptop.z,Ptop.x,Ptop.y,Ptop.z,c_textHeight_mm,1.0,0,1,0,title.toStdString(),"STANDARD",0.0),
					GrayMaterial);

			}
			
			//write corresponding polyline
			{
				dxf.writePolyline(	*dw,
									DL_PolylineData(static_cast<int>(polySteps.size()),0,0,0),
									DefaultMaterial);

				for (size_t i=0; i<polySteps.size(); ++i)
				{
					const VertStepData& step = polySteps[i];
					dxf.writeVertex(*dw, DL_VertexData(	x0 + (step.radius_th + step.deviation * params.devMagnifyCoef - xMin) * scale,
														y0 + (step.height - yMin) * scale, 0.0));
				}

				dxf.writePolylineEnd(*dw);
			}

			//write corresponding 'deviation bars' and labels
			CCVector3d pageShift(x0 - xMin * scale, y0 - yMin * scale, 0.0);
			{
				size_t lastStep = 0;
				for (size_t i=0; i<polySteps.size(); ++i)
				{
					const VertStepData& step = polySteps[i];
					bool displayIt = (i == 0 || i+1 == polySteps.size());
					if (!displayIt)
					{
						double dh = polySteps[i].height - polySteps[lastStep].height;
						double next_dh = polySteps[i+1].height - polySteps[lastStep].height;
						if (dh >= heightStep || (next_dh > heightStep && fabs(dh - heightStep) < fabs(next_dh - heightStep)))
						{
							displayIt = true;
						}
					}

					if (displayIt)
					{
						CCVector3d Pheight(step.radius_th,step.height,0.0);
						CCVector3d Pdev(step.radius_th + step.deviation * params.devMagnifyCoef,step.height,0.0);

						//page scaling
						Pheight = pageShift + Pheight * scale;
						Pdev = pageShift + Pdev * scale;

						//deviation bar
						dxf.writeLine(*dw,
										DL_LineData(Pheight.x,Pheight.y,Pheight.z,Pdev.x,Pdev.y,Pdev.z),
										GrayMaterial);

						//labels

						//Horizontal justification: 0 = Left , 1 = Center, 2 = Right
						int hJustification = 0;
						//Vertical justification: 0 = Baseline, 1 = Bottom, 2 = Middle, 3 = Top
						int vJustification = 2;

						if (step.deviation < 0.0)
						{
							//deviation label on the left
							Pdev.x -= 2.0*c_textMargin_mm;
							//opposite for the height label
							Pheight.x += c_textMargin_mm;
							hJustification = 2; //Right
						}
						else
						{
							//deviation label on the right
							Pdev.x += 2.0*c_textMargin_mm;
							//opposite for the height label
							Pheight.x -= c_textMargin_mm;
							hJustification = 0; //Left
						}

						QString devText = QString::number(polySteps[i].deviation * params.devLabelMultCoef,'f',params.precision);
						dxf.writeText(	*dw,
							DL_TextData(Pdev.x,Pdev.y,Pdev.z,Pdev.x,Pdev.y,Pdev.z,c_textHeight_mm,1.0,0,hJustification,vJustification,devText.toStdString(),"STANDARD",0.0),
							DefaultMaterial);

						QString heightText = QString::number(polySteps[i].height,'f',params.precision);
						dxf.writeText(	*dw,
							DL_TextData(Pheight.x,Pheight.y,Pheight.z,Pheight.x,Pheight.y,Pheight.z,c_textHeight_mm,1.0,0,2-hJustification,vJustification,heightText.toStdString(),"STANDARD",0.0),
							GrayMaterial);
						
						lastStep = i;
					}
				}
			}
		}

		dw->sectionEnd();

	}

	//Writing the Objects Section
	dxf.writeObjects(*dw);
	dxf.writeObjectsEnd(*dw);

	//Ending and Closing the File
	dw->dxfEOF();
	dw->close();
	delete dw;
	dw = 0;

	return true;

#else
	return false;
#endif
}
Exemple #3
0
bool DxfProfilesExporter::SaveHorizontalProfiles(	const QSharedPointer<DistanceMapGenerationTool::Map>& map,
													ccPolyline* profile,
													QString filename,
													unsigned heightStepCount,
													double angularStep_rad,
													double radToUnitConvFactor,
													QString angleUnit,
													const Parameters& params,
													ccMainAppInterface* app/*= 0*/)
{
#ifdef CC_DXF_SUPPORT
	assert(c_pageMargin_mm < c_profileMargin_mm);
	assert(2.0*c_profileMargin_mm < std::min(c_pageWidth_mm,c_pageHeight_mm));

	if (!map || !profile || heightStepCount == 0 || angularStep_rad <= 0)
	{
		//invalid parameters
		return false;
	}

	//Theoretical profile bounding box
	PointCoordinateType profileBBMin[3],profileBBMax[3];
	profile->getAssociatedCloud()->getBoundingBox(profileBBMin,profileBBMax);
	//Mix with the map's boundaries along 'Y'
	double yMin = std::max(	map->yMin + 0.5 * map->xStep, //central height of first row
							static_cast<double>(profileBBMin[1]));
	double yMax = std::min(	map->yMin + (static_cast<double>(map->ySteps)-0.5) * map->yStep, //central height of last row
							static_cast<double>(profileBBMax[1]));
	const double ySpan = yMax - yMin;

	//For the 'X' dimension, it's easier to stick with the th. profile
//	const double xMin = profileBBMin[0];
	const double xMax = profileBBMax[0];
	const double xSpan = profileBBMax[0] - profileBBMin[0];
	//shortcut for clarity
	const double& maxRadius = xMax;

	if (xSpan == 0.0 || ySpan == 0.0)
	{
		if (app)
			app->dispToConsole(QString("Internal error: null profile?!"),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}

	DL_Dxf dxf;
	DL_WriterA* dw = dxf.out(qPrintable(filename), DL_VERSION_R12);
	if (!dw)
	{
		if (app)
			app->dispToConsole(QString("Failed to open '%1' file for writing!").arg(filename),ccMainAppInterface::ERR_CONSOLE_MESSAGE);
		return false;
	}

	//write header
	dxf.writeHeader(*dw);

	//add dimensions
	dw->dxfString(9, "$INSBASE");
	dw->dxfReal(10,0.0);
	dw->dxfReal(20,0.0);
	dw->dxfReal(30,0.0);
	dw->dxfString(9, "$EXTMIN");
	dw->dxfReal(10,0.0);
	dw->dxfReal(20,0.0);
	dw->dxfReal(30,0.0);
	dw->dxfString(9, "$EXTMAX");
	dw->dxfReal(10,c_pageWidth_mm);
	dw->dxfReal(20,c_pageHeight_mm);
	dw->dxfReal(30,0.0);
	dw->dxfString(9, "$LIMMIN");
	dw->dxfReal(10,0.0);
	dw->dxfReal(20,0.0);
	dw->dxfString(9, "$LIMMAX");
	dw->dxfReal(10,c_pageWidth_mm);
	dw->dxfReal(20,c_pageHeight_mm);

	//close header
	dw->sectionEnd();

	//Opening the Tables Section
	dw->sectionTables();
	//Writing the Viewports
	dxf.writeVPort(*dw);

	//Writing the Linetypes (all by default)
	{
		dw->tableLineTypes(25);
		dxf.writeLineType(*dw, DL_LineTypeData("BYBLOCK", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BYLAYER", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CONTINUOUS", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO02W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO03W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO04W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("ACAD_ISO05W100", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BORDER", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BORDER2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("BORDERX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CENTER", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CENTER2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("CENTERX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHDOT2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHDOTX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHED", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHED2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DASHEDX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DIVIDE2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DIVIDEX2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DOT", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DOT2", 0));
		dxf.writeLineType(*dw, DL_LineTypeData("DOTX2", 0));
		dw->tableEnd();
	}

	//Writing the Layers
	dw->tableLayers(heightStepCount+2);
	QStringList profileNames;
	{
		//default layer
		dxf.writeLayer(*dw, 
			DL_LayerData("0", 0), 
			DL_Attributes(
			std::string(""),      // leave empty
			DL_Codes::black,      // default color
			100,                  // default width (in 1/100 mm)
			"CONTINUOUS"));       // default line style

		//legend layer
		dxf.writeLayer(*dw, 
			DL_LayerData(LEGEND_LAYER, 0), 
			DL_Attributes(
			std::string(""),
			DL_Codes::black,
			s_lineWidth,
			"CONTINUOUS"));

		//horiz. profile layers
		for (unsigned i=0; i<heightStepCount; ++i)
		{
			//default profile name
			QString layerName = QString(HORIZ_PROFILE_LAYER).arg(i+1,3,10,QChar('0'));
			//but we use the profile title if we have one!
			//DGM: nope, as it may be longer than 31 characters (R14 limit)
			//if (params.profileTitles.size() == 1)
			//{
			//	//profile height
			//	double height = yMin + static_cast<double>(i) / static_cast<double>(heightStepCount-1) * ySpan;
			//	layerName = QString(params.profileTitles[0]).arg(height,0,'f',params.precision);
			//	layerName.replace(QChar(' '),QChar('_'));
			//}

			profileNames << layerName;
			dxf.writeLayer(*dw, 
				DL_LayerData(layerName.toStdString(), 0), 
				DL_Attributes(
				std::string(""),
				i == 0 ? DL_Codes::green : -DL_Codes::green, //invisible if negative!
				s_lineWidth,
				"CONTINUOUS"));
		}
	}
	dw->tableEnd();

	//Writing Various Other Tables
	//dxf.writeStyle(*dw); //DXFLIB V2.5
	dxf.writeStyle(*dw,DL_StyleData("Standard",0,0.0,0.75,0.0,0,2.5,"txt","")); //DXFLIB V3.3
	dxf.writeView(*dw);
	dxf.writeUcs(*dw);

	dw->tableAppid(1);
	dw->tableAppidEntry(0x12);
	dw->dxfString(2, "ACAD");
	dw->dxfInt(70, 0);
	dw->tableEnd();

	//Writing Dimension Styles
	dxf.writeDimStyle(	*dw, 
						/*arrowSize*/1, 
						/*extensionLineExtension*/1,
						/*extensionLineOffset*/1,
						/*dimensionGap*/1,
						/*dimensionTextSize*/1);
	
	//Writing Block Records
	dxf.writeBlockRecord(*dw);
	dw->tableEnd();

	//Ending the Tables Section
	dw->sectionEnd();

	//Writing the Blocks Section
	{
		dw->sectionBlocks();

		dxf.writeBlock(*dw,  DL_BlockData("*Model_Space", 0, 0.0, 0.0, 0.0));
		dxf.writeEndBlock(*dw, "*Model_Space");

		dxf.writeBlock(*dw, DL_BlockData("*Paper_Space", 0, 0.0, 0.0, 0.0));
		dxf.writeEndBlock(*dw, "*Paper_Space");

		dxf.writeBlock(*dw, DL_BlockData("*Paper_Space0", 0, 0.0, 0.0, 0.0));
		dxf.writeEndBlock(*dw, "*Paper_Space0");

		dw->sectionEnd();
	}

	//Writing the Entities Section
	{
		dw->sectionEntities();

		//we make the profile fit in the middle of the page (21.0 x 29.7 cm)
		double scale = std::min((c_pageWidth_mm - 2.0 * c_profileMargin_mm)/(2.0*maxRadius),
								(c_pageHeight_mm - 2.0 * c_profileMargin_mm)/(2.0*maxRadius));

		//min corner of profile area
//		const double x0 = (c_pageWidth_mm - 2.0*maxRadius*scale) / 2.0;
		const double y0 = (c_pageHeight_mm - 2.0*maxRadius*scale) / 2.0;
		//center of profile area
		const double xc = c_pageWidth_mm / 2.0;
		const double yc = c_pageHeight_mm / 2.0;

		//write legend
		{
			DL_Attributes DefaultLegendMaterial(LEGEND_LAYER, DL_Codes::bylayer, -1, "BYLAYER");

			//write page contour
			{
				dxf.writePolyline(	*dw,
									DL_PolylineData(4,0,0,1),
									DefaultLegendMaterial);

				dxf.writeVertex(*dw, DL_VertexData(	c_pageMargin_mm, c_pageMargin_mm, 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	c_pageWidth_mm-c_pageMargin_mm, c_pageHeight_mm-c_pageMargin_mm, 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	c_pageWidth_mm-c_pageMargin_mm, c_pageMargin_mm, 0.0));

				dxf.writePolylineEnd(*dw);
			}

			double xLegend = c_pageMargin_mm + 2.0*c_textHeight_mm;
			double yLegend = c_pageMargin_mm + 2.0*c_textHeight_mm;
			const double legendWidth_mm = 20.0;

			//Y axis
			double axisTip = maxRadius*scale + 5.0;
			dxf.writeLine(	*dw,
							DL_LineData(xc, yc, 0.0, xc, yc-axisTip, 0.0),
							DefaultLegendMaterial);

			//Y axis tip as triangle
			{
				double axisTipSize = 3.0;

				dxf.writePolyline(	*dw,
									DL_PolylineData(3,0,0,1), //closed polyline!
									DefaultLegendMaterial);
				dxf.writeVertex(*dw, DL_VertexData(	xc, yc-(axisTip+axisTipSize), 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	xc-axisTipSize/2.0, yc-axisTip, 0.0));
				dxf.writeVertex(*dw, DL_VertexData(	xc+axisTipSize/2.0, yc-axisTip, 0.0));
				dxf.writePolylineEnd(*dw);

				dxf.writeText(	*dw,
								DL_TextData(xc,yc-(axisTip+2.0*axisTipSize),0.0,xc,yc-(axisTip+2.0*axisTipSize),0.0,c_textHeight_mm,1.0,0,1,3,"Y","STANDARD",0.0),
								DefaultLegendMaterial);
			}
			
			//deviation magnification factor
			QString magnifyStr = QString::number(params.devMagnifyCoef);
			dxf.writeText(	*dw,
				DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation magnification factor: ")+magnifyStr).toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);

			//next line
			yLegend += c_textHeight_mm*2.0;

			//units
			QString unitsStr("mm");
			dxf.writeText(	*dw,
				DL_TextData(xLegend,yLegend,0.0,xLegend,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,(QString("Deviation units: ")+unitsStr).toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);

			//next line
			yLegend += c_textHeight_mm*2.0;

			//true profile line (red)
			dxf.writeLine(	*dw,
							DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0),
							DL_Attributes(LEGEND_LAYER, DL_Codes::green, -1, "BYLAYER"));

			dxf.writeText(	*dw,
				DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendRealProfileTitle.toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);

			//next line
			yLegend += c_textHeight_mm*2.0;

			//theoretical profile line (red)
			dxf.writeLine(	*dw,
							DL_LineData(xLegend,yLegend,0,xLegend+legendWidth_mm,yLegend,0.0),
							DL_Attributes(LEGEND_LAYER, DL_Codes::red, -1, "BYLAYER"));

			dxf.writeText(	*dw,
				DL_TextData(xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,xLegend+legendWidth_mm+c_textMargin_mm,yLegend,0.0,c_textHeight_mm,1.0,0,0,0,params.legendTheoProfileTitle.toStdString(),"STANDARD",0.0),
				DefaultLegendMaterial);
		}

		//profile values (fixed size: one per angular step of the input grid)
		std::vector<HorizStepData> polySteps;
		try
		{
			polySteps.resize(map->xSteps);
		}
		catch(std::bad_alloc)
		{
			//not engouh memory
			dw->dxfEOF();
			dw->close();
			delete dw;
			return false;
		}

		//write horizontal profiles
		for (unsigned heightStep=0; heightStep<heightStepCount; ++heightStep)
		{			
			//profile height
			double height = yMin + static_cast<double>(heightStep) / static_cast<double>(heightStepCount-1) * ySpan;

			//corresponding index in map
			if (height < map->yMin || height >= map->yMin + static_cast<double>(map->ySteps) * map->yStep)
			{
				assert(false); //we have computed yMin and yMax so that those values are totally included inside the map's boundaries...
				continue;
			}
			unsigned jMap = static_cast<unsigned>((height-map->yMin)/map->yStep);
			assert(jMap < map->ySteps);

			//find corresponding radius
			double currentRadius = 0.0;
			{
				bool found = false;
				for (unsigned i=1; i<profile->size(); ++i)
				{
					const CCVector3* A = profile->getPoint(i-1);
					const CCVector3* B = profile->getPoint(i);

					double alpha = static_cast<double>((height - A->y)/(B->y - A->y));
					if (alpha >= 0.0 && alpha <= 1.0)
					{
						//we deduce the right radius by linear interpolation
						currentRadius = A->x + alpha * (B->x - A->x);
						found = true;
						break;
					}
				}

				if (!found)
				{
					assert(false); //we have computed yMin and yMax so that 'height' is totally included inside the profile's boundaries...
					continue;
				}
			}

			const QString& currentLayer = profileNames[heightStep];
			const DL_Attributes DefaultMaterial(currentLayer.toStdString(), DL_Codes::bylayer, -1, "BYLAYER");
			const DL_Attributes GrayMaterial(currentLayer.toStdString(), DL_Codes::l_gray, -1, "");

			//write layer title
			if (params.profileTitles.size() == 1)
			{
				QString title = QString(params.profileTitles[0]).arg(height,0,'f',params.precision);

				CCVector3d Ptop(xc, y0 + 2.0 * maxRadius * scale + c_profileMargin_mm / 2.0, 0.0);

				dxf.writeText(	*dw,
					DL_TextData(Ptop.x,Ptop.y,Ptop.z,Ptop.x,Ptop.y,Ptop.z,c_textHeight_mm,1.0,0,1,0,title.toStdString(),"STANDARD",0.0),
					GrayMaterial);
			}

			//write theoretical profile (polyline = circle)
			{
				dxf.writeCircle(*dw,
									DL_CircleData(xc, yc, 0.0, currentRadius*scale),
									DL_Attributes(currentLayer.toStdString(), DL_Codes::red, -1, "BYLAYER"));
			}

			assert(polySteps.size() == map->xSteps);
			{
				const DistanceMapGenerationTool::MapCell* cell = &map->at(jMap * map->xSteps);
				for (unsigned iMap=0; iMap<map->xSteps; ++iMap, ++cell)
				{
					HorizStepData step;
					step.angle_rad = 2.0*M_PI * static_cast<double>(iMap)/static_cast<double>(map->xSteps);
					step.deviation = cell->count ? cell->value : 0.0;
					polySteps[iMap] = step;
				}
			}

			//profile "direction"
			double cwSign = map->counterclockwise ? -1.0 : 1.0;

			CCVector3d pageShift(xc,yc,0.0);

			//write profile polyline
			{
				dxf.writePolyline(	*dw,
									DL_PolylineData(static_cast<int>(polySteps.size()),0,0,1), //closed shape!
									DefaultMaterial);

				for (size_t i=0; i<polySteps.size(); ++i)
				{
					const HorizStepData& step = polySteps[i];
					double radius = currentRadius + step.deviation * params.devMagnifyCoef;
					dxf.writeVertex(*dw, DL_VertexData(	pageShift.x - (cwSign * radius * sin(step.angle_rad)) * scale,
														pageShift.y - (radius * cos(step.angle_rad)) * scale,
														0.0));
				}

				dxf.writePolylineEnd(*dw);
			}

			//write corresponding 'deviation bars' and labels
			{
				size_t lastStep = 0;
				for (size_t i=0; i<polySteps.size(); ++i)
				{
					const HorizStepData& step = polySteps[i];
					bool displayIt = (i == 0/*|| i+1 == polySteps.size()*/); //warning: cycle
					if (i != 0)
					{
						double dAngle = polySteps[i].angle_rad - polySteps[lastStep].angle_rad;
						double next_dAngle = (i+1 == polySteps.size() ? polySteps[0].angle_rad + 2.0*M_PI : polySteps[i+1].angle_rad) - polySteps[lastStep].angle_rad;
						if (dAngle >= angularStep_rad || (next_dAngle > angularStep_rad && fabs(dAngle - angularStep_rad) < fabs(next_dAngle - angularStep_rad)))
						{
							displayIt = true;
						}
					}

					if (displayIt && i != 0) //we skip 0 as we always display a vertical axis!
					{
						CCVector3d relativePos( -cwSign * sin(step.angle_rad),
												-cos(step.angle_rad),
												0.0);
						CCVector3d Pangle = relativePos * currentRadius;
						CCVector3d Pdev = relativePos * (currentRadius + step.deviation * params.devMagnifyCoef);

						//page scaling
						Pangle = pageShift + Pangle * scale;
						Pdev = pageShift + Pdev * scale;

						//deviation bar
						dxf.writeLine(*dw,
										DL_LineData(Pangle.x,Pangle.y,Pangle.z,Pdev.x,Pdev.y,Pdev.z),
										GrayMaterial);

						//labels

						//justification depends on the current angle
						const double c_angleMargin_rad = 5.0 / 180.0 * M_PI; //margin: 5 degrees
						const double c_margin = sin(c_angleMargin_rad);

						//Horizontal justification: 0 = Left , 1 = Center, 2 = Right
						int hJustification = 1;
						if (relativePos.x < -c_margin) //point on the left
							hJustification = 2; //Right
						else if (relativePos.x > c_margin) //point on the right
							hJustification = 0; //Left

						//Vertical justification: 0 = Baseline, 1 = Bottom, 2 = Middle, 3 = Top
						int vJustification = 2;
						if (relativePos.y < -c_margin) //point in the lower part
							vJustification = 3; //Top
						else if (relativePos.y > c_margin) //point in the upper part
							vJustification = 1; //Bottom

						int hJustificationDev = hJustification;
						int hJustificationAng = hJustification;
						int vJustificationDev = vJustification;
						int vJustificationAng = vJustification;

						//negative deviation: profile is inside the circle
						// - deviation is displayed insde
						// - angle is displayed outside
						if (step.deviation < 0.0)
						{
							Pdev -= relativePos * 2.0*c_textMargin_mm;
							Pangle += relativePos * c_textMargin_mm;
							//invert dev. text justification
							if (hJustificationDev != 1)
								hJustificationDev = 2-hJustificationDev; // 0 <-> 2
							if (vJustificationDev != 2)
								vJustificationDev = 4-vJustificationDev; // 1 <-> 3
						}
						else
						{
							Pdev += relativePos * 2.0*c_textMargin_mm;
							Pangle -= relativePos * c_textMargin_mm;
							//invert ang. text justification
							if (hJustificationAng != 1)
								hJustificationAng = 2-hJustificationAng; // 0 <-> 2
							if (vJustificationAng != 2)
								vJustificationAng = 4-vJustificationAng; // 1 <-> 3
						}

						QString devText = QString::number(polySteps[i].deviation * params.devLabelMultCoef,'f',params.precision);
						dxf.writeText(	*dw,
							DL_TextData(Pdev.x,Pdev.y,Pdev.z,Pdev.x,Pdev.y,Pdev.z,c_textHeight_mm,1.0,0,hJustificationDev,vJustificationDev,devText.toStdString(),"STANDARD",0.0),
							DefaultMaterial);

						QString angleText = QString::number(polySteps[i].angle_rad *radToUnitConvFactor,'f',params.precision)+angleUnit;
						dxf.writeText(	*dw,
							DL_TextData(Pangle.x,Pangle.y,Pangle.z,Pangle.x,Pangle.y,Pangle.z,c_textHeight_mm,1.0,0,hJustificationAng,vJustificationAng,angleText.toStdString(),"STANDARD",0.0),
							GrayMaterial);
						
						lastStep = i;
					}
				}
			}
		}

		dw->sectionEnd();

	}

	//Writing the Objects Section
	dxf.writeObjects(*dw);
	dxf.writeObjectsEnd(*dw);

	//Ending and Closing the File
	dw->dxfEOF();
	dw->close();
	delete dw;
	dw = 0;

	return true;

#else
	return false;
#endif
}