//Main Function void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[]) { //Input Args double *f, *A = NULL, *b = NULL, *lb = NULL, *ub = NULL, *y0 = NULL; double *sdpDIM = NULL, *SDP_pr = NULL; //Return Args double *x, *pval, *dval, *exitflag, *iter, *pdflag; //Options (most get defaults written in) int maxiter = 1500; int reuse=4,rpos=0,drho=1,ndim,sdpnmax=1; double penalty,rho,dbound,dlbound,zbar,r0,mu0,ylow,yhigh,gaptol,pnormtol,maxtrust,steptol,inftol,infptol; double lpb=1.0, datanorm[3], *dreuse, *fixed = NULL; //Internal Vars size_t nlincon = 0, ndec = 0, ncones = 0, nfix = 0; size_t lincon_nz = 0; size_t i, j; size_t nLB = 0, nUB = 0; int *temp_ir = NULL, *temp_jc = NULL; double *temp_pr = NULL; const char *onames[2] = {"pval","dval"}; const char *fnames[11] = {"iter","pdflag","r","mu","pstep","dstep","pnorm","ynorm","tracex","reuse","rho"}; double evaltime, *X = NULL; int iters = 0, status, indcell = 0; //DSDP Vars DSDP dsdp; SDPCone sdpcone = NULL; LPCone lpcone = NULL; BCone bcone = NULL; DSDPTerminationReason reason; DSDPSolutionType pdfeasible; //Sparse Indicing mwIndex *A_ir, *A_jc; //Version Return if(nrhs < 1) { if(nlhs < 1) printSolverInfo(); else plhs[0] = mxCreateString(DSDP_VERSION); return; } //Check Inputs checkInputs(prhs,nrhs); //Get pointers to Input variables f = mxGetPr(pF); ndec = mxGetNumberOfElements(pF); if(!mxIsEmpty(pA)) { A = mxGetPr(pA); A_ir = mxGetIr(pA); A_jc = mxGetJc(pA); b = mxGetPr(pB); nlincon = mxGetM(pA); lincon_nz = A_jc[mxGetN(pA)]; } if(nrhs > eLB && !mxIsEmpty(pLB)) lb = mxGetPr(pLB); if(nrhs > eUB && !mxIsEmpty(pUB)) ub = mxGetPr(pUB); if(nrhs > eSDP && !mxIsEmpty(pSDP)) { if(mxIsCell(pSDP)) ncones = mxGetNumberOfElements(pSDP); else ncones = 1; } if(nrhs > eY0 && !mxIsEmpty(pY0)) y0 = mxGetPr(pY0); if(nrhs > eOPTS && !mxIsEmpty(pOPTS) && mxGetField(pOPTS,0,"fixed") && !mxIsEmpty(mxGetField(pOPTS,0,"fixed"))) { fixed = mxGetPr(mxGetField(pOPTS,0,"fixed")); nfix = mxGetM(mxGetField(pOPTS,0,"fixed")); } //Create Outputs plhs[0] = mxCreateDoubleMatrix(ndec,1, mxREAL); plhs[1] = mxCreateStructMatrix(1,1,2,onames); mxSetField(plhs[1],0,onames[0],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[1],0,onames[1],mxCreateDoubleMatrix(1,1, mxREAL)); plhs[2] = mxCreateDoubleMatrix(1,1, mxREAL); x = mxGetPr(plhs[0]); pval = mxGetPr(mxGetField(plhs[1],0,onames[0])); dval = mxGetPr(mxGetField(plhs[1],0,onames[1])); exitflag = mxGetPr(plhs[2]); //Info Output plhs[3] = mxCreateStructMatrix(1,1,11,fnames); mxSetField(plhs[3],0,fnames[0],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[1],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[2],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[3],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[4],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[5],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[6],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[7],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[8],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[9],mxCreateDoubleMatrix(1,1, mxREAL)); mxSetField(plhs[3],0,fnames[10],mxCreateDoubleMatrix(1,1, mxREAL)); iter = mxGetPr(mxGetField(plhs[3],0,fnames[0])); pdflag = mxGetPr(mxGetField(plhs[3],0,fnames[1])); dreuse = mxGetPr(mxGetField(plhs[3],0,"reuse")); if(nlhs > 4) plhs[4] = mxCreateCellMatrix(ncones+(int)(nlincon>0)+(int)(nfix>0),1); //Set Defaults maxtime = 1000; printLevel = 0; //Create DSDP Problem DSDP_ERR( DSDPCreate((int)ndec,&dsdp), "Error Creating DSDP Problem"); //Set Monitor DSDP_ERR( DSDPSetMonitor(dsdp,DSDPMonitor,0), "Error Setting DSDP Monitor"); //Set Dual Objective for (i=0;i<ndec;i++){ DSDP_ERR( DSDPSetDualObjective(dsdp,(int)i+1,f[i]), "Error Adding Objective Coefficients"); } //Check finite bounds for allocation if(lb || ub) for(i=0;i<ndec;i++) { if(lb) if(!mxIsInf(lb[i])) nLB++; if(ub) if(!mxIsInf(ub[i])) nUB++; } //Set Bounds as BCone if(nLB || nUB) { DSDP_ERR( DSDPCreateBCone(dsdp, &bcone), "Error creating BCone"); DSDP_ERR( BConeAllocateBounds(bcone, (int)(nLB+nUB)), "Error allocating bounds"); for(i=0;i<ndec;i++) { if(nLB > 0 && !mxIsInf(lb[i])) DSDP_ERR( BConeSetLowerBound(bcone, (int)i+1, lb[i]), "Error setting lower bound"); if(nUB > 0 && !mxIsInf(ub[i])) DSDP_ERR( BConeSetUpperBound(bcone, (int)i+1, ub[i]), "Error setting upper bound"); } } //Set Linear Inequality Constraints as LPCone if(nlincon) { int M = (int)mxGetM(pA); int N = (int)mxGetN(pA); DSDP_ERR( DSDPCreateLPCone(dsdp, &lpcone), "Error creating LPCone (inequalities)"); //Create Memory to store A*x <= b in dsdp and integer format temp_jc = mxCalloc(N+2,sizeof(int)); temp_ir = mxCalloc(lincon_nz+M,sizeof(int)); temp_pr = mxCalloc(lincon_nz+M,sizeof(double)); //Copy over linear A for(i=0;i<=(size_t)N;i++) temp_jc[i] = (int)A_jc[i]; for(i=0;i<lincon_nz;i++) { temp_ir[i] = (int)A_ir[i]; temp_pr[i] = A[i]; } //Append linear rhs (b) temp_jc[N+1] = temp_jc[N] + M; for(i=lincon_nz,j=0;j<(size_t)M;j++) { if(b[j] != 0) { temp_ir[i] = (int)j; temp_pr[i++] = b[j]; } else temp_jc[N+1]--; } #ifdef DEBUG mexPrintf("---- Inequality Constraints ----\n"); for(i=0;i<=(size_t)(N+1);i++) mexPrintf("jc[%d] = %d\n",i,temp_jc[i]); for(i=0;i<lincon_nz+M;i++) mexPrintf("ir[%d] = %d, pr[%d] = %f\n",i,temp_ir[i],i,temp_pr[i]); #endif //Set LP Cone Data DSDP_ERR( LPConeSetData2(lpcone, M, temp_jc, temp_ir, temp_pr), "Error setting LP Cone data (inequality)" ); //Optionally set X data if(nlhs > 4) { mxSetCell(plhs[4],indcell,mxCreateDoubleMatrix(M,1,mxREAL)); DSDP_ERR( LPConeSetXVec(lpcone,mxGetPr(mxGetCell(plhs[4],indcell++)),M), "Error setting LP Cone X data" ); } } //Set Semidefinite Constraints as SDPCone if(ncones) { //Create the cone structure, specifying each constraint as a block DSDP_ERR( DSDPCreateSDPCone(dsdp,(int)ncones,&sdpcone), "Error creating SDPCone"); //Add each constraint cone for(i=0;i<ncones;i++) { if(ncones == 1 && !mxIsCell(pSDP)) { if(nlhs > 4) { mxSetCell(plhs[4],indcell,mxCreateDoubleMatrix(mxGetM(pSDP),1,mxREAL)); X = mxGetPr(mxGetCell(plhs[4],indcell++)); } ndim = addSDPCone(sdpcone,pSDP,(int)i,X); } else { if(nlhs > 4) { mxSetCell(plhs[4],indcell,mxCreateDoubleMatrix(mxGetM(mxGetCell(pSDP,i)),1,mxREAL)); X = mxGetPr(mxGetCell(plhs[4],indcell++)); } ndim = addSDPCone(sdpcone,mxGetCell(pSDP,i),(int)i,X); } //Update max dim if(sdpnmax < ndim) sdpnmax = ndim; } } //Set y0 if (y0) for (i=0;i<ndec;i++) { DSDP_ERR( DSDPSetY0(dsdp,(int)i+1,y0[i]), "Error setting Y0"); } //Determine whether to reuse schur complement matrix (dsdp authors' heuristic) if(ndec == 1) reuse = 1/sdpnmax; else reuse = ((int)ndec-2)/sdpnmax; if (ndec<50 && reuse==0) reuse=1; if (reuse>=1) reuse++; reuse=reuse*reuse; if (ndec<2000 && ndec>10) reuse=10; if (ndec>12) reuse=12; //Get DSDP Default Options DSDP_ERR( DSDPGetR(dsdp,&r0), "Error Getting R"); DSDP_ERR( DSDPGetPenaltyParameter(dsdp,&penalty), "Error Getting Penalty Parameter"); DSDP_ERR( DSDPGetPotentialParameter(dsdp,&rho), "Error Getting Potential Parameter"); DSDP_ERR( DSDPGetDualBound(dsdp,&dbound), "Error Getting Dual Bound"); DSDP_ERR( DSDPGetGapTolerance(dsdp,&gaptol), "Error Getting Gap Tolerance"); DSDP_ERR( DSDPGetRTolerance(dsdp,&inftol), "Error Getting R Tolerance"); DSDP_ERR( DSDPGetBarrierParameter(dsdp,&mu0), "Error Getting Barrier Parameter"); DSDP_ERR( DSDPGetMaxTrustRadius(dsdp,&maxtrust), "Error Getting Max Trust Radius"); DSDP_ERR( DSDPGetStepTolerance(dsdp,&steptol), "Error Getting Step Tolerance"); DSDP_ERR( DSDPGetPTolerance(dsdp,&infptol), "Error Getting P Tolerance"); DSDP_ERR( DSDPGetPNormTolerance(dsdp,&pnormtol), "Error Getting PNorm Tolerance"); //Get Data Norms to establish y bounds DSDP_ERR( DSDPGetDataNorms(dsdp, datanorm), "Error Getting Data Norms"); DSDP_ERR( DSDPGetYBounds(dsdp,&ylow,&yhigh), "Error Getting Y Bounds"); if (datanorm[0]==0){DSDP_ERR( DSDPSetYBounds(dsdp,-1.0,1.0), "Error Setting Y Bounds");} //Get User Options (overwrites defaults above) if(nrhs > eOPTS && !mxIsEmpty(pOPTS)) { //OPTI Options GetIntegerOption(pOPTS,"maxiter",&maxiter); GetDoubleOption(pOPTS,"maxtime",&maxtime); GetIntegerOption(pOPTS,"display",&printLevel); //DSDP Options GetDoubleOption(pOPTS,"r0",&r0); GetDoubleOption(pOPTS,"penalty",&penalty); GetDoubleOption(pOPTS,"rho",&rho); GetDoubleOption(pOPTS,"dbound",&dbound); GetDoubleOption(pOPTS,"gaptol",&gaptol); GetDoubleOption(pOPTS,"rtol",&inftol); GetDoubleOption(pOPTS,"mu0",&mu0); GetDoubleOption(pOPTS,"maxtrust",&maxtrust); GetDoubleOption(pOPTS,"steptol",&steptol); GetDoubleOption(pOPTS,"ptol",&infptol); GetDoubleOption(pOPTS,"pnormtol",&pnormtol); GetIntegerOption(pOPTS,"reuse",&reuse); GetIntegerOption(pOPTS,"rpos",&rpos); GetIntegerOption(pOPTS,"drho",&drho); //Check and set DSDP options without valid defaults if(mxGetField(pOPTS,0,"zbar") && !mxIsEmpty(mxGetField(pOPTS,0,"zbar"))) { GetDoubleOption(pOPTS,"zbar",&zbar); DSDP_ERR( DSDPSetZBar(dsdp,zbar), "Error Setting Z Bar"); } if(mxGetField(pOPTS,0,"dlbound") && !mxIsEmpty(mxGetField(pOPTS,0,"dlbound"))) { GetDoubleOption(pOPTS,"dlbound",&dlbound); DSDP_ERR( DSDPSetDualLowerBound(dsdp,dlbound), "Error Setting Dual Lower Bound"); } if(mxGetField(pOPTS,0,"ybound") && !mxIsEmpty(mxGetField(pOPTS,0,"ybound"))) { GetDoubleOption(pOPTS,"ybound",&yhigh); ylow = -yhigh; DSDP_ERR( DSDPSetYBounds(dsdp,ylow,yhigh), "Error Setting Y Bounds"); } } //Set DSDP Options with Defaults DSDP_ERR( DSDPSetMaxIts(dsdp,maxiter), "Error Setting Max Iterations"); DSDP_ERR( DSDPSetR0(dsdp,r0), "Error Setting Option R0 "); DSDP_ERR( DSDPSetPenaltyParameter(dsdp,penalty), "Error Setting Penalty Parameter"); DSDP_ERR( DSDPSetPotentialParameter(dsdp,rho), "Error Setting Potential Parameter"); DSDP_ERR( DSDPSetDualBound(dsdp,dbound), "Error Setting Dual Bound"); DSDP_ERR( DSDPSetGapTolerance(dsdp,gaptol), "Error Setting Gap Tolerance"); DSDP_ERR( DSDPSetRTolerance(dsdp,inftol), "Error Setting R Tolerance"); DSDP_ERR( DSDPSetBarrierParameter(dsdp,mu0), "Error Setting Barrier Parameter"); DSDP_ERR( DSDPSetMaxTrustRadius(dsdp,maxtrust), "Error Setting Max Trust Radius"); DSDP_ERR( DSDPSetStepTolerance(dsdp,steptol), "Error Setting Step Tolerance") DSDP_ERR( DSDPSetPTolerance(dsdp,infptol), "Error Setting P Tolerance"); DSDP_ERR( DSDPSetPNormTolerance(dsdp,pnormtol), "Error Setting PNorm Tolerance"); if(reuse < 0) reuse = 0; if(reuse > 15) reuse = 15; DSDP_ERR( DSDPReuseMatrix(dsdp,reuse), "Error Setting Reuse Matrix"); //Set Other DSDP Options DSDP_ERR( DSDPUsePenalty(dsdp,rpos), "Error Setting Use Penalty"); DSDP_ERR( DSDPUseDynamicRho(dsdp,drho), "Error Setting Dynamic Rho"); if (lpb<0.1) lpb=0.1; if(lpcone) DSDP_ERR( LPConeScaleBarrier(lpcone,lpb), "Error Setting LPCone Scale Barrier"); //Set Fixed Variables if(fixed != NULL) { if(nlhs > 4) { mxSetCell(plhs[4],indcell,mxCreateDoubleMatrix(nfix,1,mxREAL)); X = mxGetPr(mxGetCell(plhs[4],indcell++)); } else X = NULL; DSDP_ERR( DSDPSetFixedVariables(dsdp, fixed, &fixed[nfix], X, (int)nfix), "Error Setting Fixed Variables"); } //Print Header if(printLevel) { mexPrintf("\n------------------------------------------------------------------\n"); mexPrintf(" This is DSDP v%s\n",DSDP_VERSION); mexPrintf(" Authors: Steve Benson, Yinyu Ye and Xiong Zhang\n\n"); mexPrintf(" Problem Properties:\n"); mexPrintf(" # Decision Variables: %4d\n",ndec); mexPrintf(" # Linear Inequalities: %4d ",nlincon); if(nlincon) mexPrintf("[%d nz]\n",lincon_nz); else mexPrintf("\n"); mexPrintf(" # Semidefinite Cones: %4d\n",ncones); mexPrintf("------------------------------------------------------------------\n"); } //Start timer start = clock(); //Call DSDP Setup to initialize problem DSDP_ERR( DSDPSetup(dsdp), "Error setting up DSDP Problem, likely out of memory"); //Now Solve the Problem status = DSDPSolve(dsdp); //Stop Timer end = clock(); evaltime = ((double)(end-start))/CLOCKS_PER_SEC; //Determine Stop Reason if(status == 0) { DSDP_ERR( DSDPStopReason(dsdp,&reason), "Error retrieving post-solve stop reason"); } else if(status == DSDP_MAX_TIME || status == DSDP_USER_TERMINATION) reason = status; else { DSDP_ERR( status, "Error solving DSDP Problem!");} //Computer X and Get Solution Type if (reason!=DSDP_INFEASIBLE_START) DSDP_ERR( DSDPComputeX(dsdp), "Error computing post-solve x"); DSDP_ERR( DSDPGetSolutionType(dsdp,&pdfeasible), "Error collecting post-solve solution type"); //Copy Dual Solution DSDP_ERR( DSDPGetY(dsdp,x,(int)ndec), "Error returning Solution Vector"); //Collect Output Statistics DSDPGetIts(dsdp,&iters); DSDPGetDObjective(dsdp,dval); DSDPGetPObjective(dsdp,pval); DSDPGetR(dsdp,mxGetPr(mxGetField(plhs[3],0,"r"))); DSDPGetBarrierParameter(dsdp,mxGetPr(mxGetField(plhs[3],0,"mu"))); DSDPGetStepLengths(dsdp,mxGetPr(mxGetField(plhs[3],0,"pstep")),mxGetPr(mxGetField(plhs[3],0,"dstep"))); DSDPGetPnorm(dsdp,mxGetPr(mxGetField(plhs[3],0,"pnorm"))); DSDPGetYMaxNorm(dsdp,mxGetPr(mxGetField(plhs[3],0,"ynorm"))); DSDPGetTraceX(dsdp,mxGetPr(mxGetField(plhs[3],0,"tracex"))); DSDPGetPotentialParameter(dsdp,mxGetPr(mxGetField(plhs[3],0,"rho"))); *dreuse = (double)reuse; //Assign to MATLAB *iter = (double)iters; *exitflag = (double)reason; *pdflag = (double)pdfeasible; //Print Header if(printLevel){ //Detail termination reason switch(reason) { //Success case DSDP_CONVERGED: mexPrintf("\n *** DSDP CONVERGED ***\n"); break; case DSDP_UPPERBOUND: mexPrintf("\n *** DSDP CONVERGED: Dual Objective exceeds its bound***\n"); break; //Error case DSDP_SMALL_STEPS: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Terminated due to Small Steps ***\n"); break; case DSDP_MAX_IT: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Maximum Iterations Reached ***\n"); break; case DSDP_MAX_TIME: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Maximum Time Reached ***\n"); break; case DSDP_INFEASIBLE_START: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: Infeasible Starting Point ***\n"); break; case DSDP_USER_TERMINATION: mexPrintf("\n *** TERMINATION: EARLY EXIT ***\n *** CAUSE: User Exited ***\n"); break; //Here is ok too? default: mexPrintf("\n *** DSDP FINISHED ***\n"); break; } //Detail solution status if(reason == DSDP_CONVERGED || reason == DSDP_UPPERBOUND) { switch(pdfeasible) { //Success case DSDP_PDFEASIBLE: mexPrintf(" Solution Status: Both Primal and Dual are Feasible and Bounded\n"); break; //Error case DSDP_UNBOUNDED: mexPrintf(" Solution Status: Dual Unbounded, Primal Infeasible\n"); break; case DSDP_INFEASIBLE: mexPrintf(" Solution Status: Primal Unbounded, Dual Infeasible\n"); break; case DSDP_PDUNKNOWN: default: mexPrintf(" Solution Status: Unknown - Check Dual Bounds\n"); break; } } if(reason==DSDP_CONVERGED) mexPrintf("\n Final Primal Objective: %2.5g\n Final Dual Objective: %2.5g\n In %5d iterations\n %5.2f seconds\n",*pval,*dval,iters,evaltime); mexPrintf("------------------------------------------------------------------\n\n"); } //Free DSDP Problem DSDP_ERR( DSDPDestroy(dsdp), "Error Destroying DSDP Problem"); //Free Temporary memory if(temp_jc) {mxFree(temp_jc); temp_jc = NULL;} if(temp_ir) {mxFree(temp_ir); temp_ir = NULL;} if(temp_pr) {mxFree(temp_pr); temp_pr = NULL;} }
void DSDPInternal::init() { // Initialize the base classes SDPSolverInternal::init(); terminationReason_[DSDP_CONVERGED]="DSDP_CONVERGED"; terminationReason_[DSDP_MAX_IT]="DSDP_MAX_IT"; terminationReason_[DSDP_INFEASIBLE_START]="DSDP_INFEASIBLE_START"; terminationReason_[DSDP_INDEFINITE_SCHUR_MATRIX]="DSDP_INDEFINITE SCHUR"; terminationReason_[DSDP_SMALL_STEPS]="DSDP_SMALL_STEPS"; terminationReason_[DSDP_NUMERICAL_ERROR]="DSDP_NUMERICAL_ERROR"; terminationReason_[DSDP_UPPERBOUND]="DSDP_UPPERBOUND"; terminationReason_[DSDP_USER_TERMINATION]="DSDP_USER_TERMINATION"; terminationReason_[CONTINUE_ITERATING]="CONTINUE_ITERATING"; solutionType_[DSDP_PDFEASIBLE] = "DSDP_PDFEASIBLE"; solutionType_[DSDP_UNBOUNDED] = "DSDP_UNBOUNDED"; solutionType_[DSDP_INFEASIBLE] = "DSDP_INFEASIBLE"; solutionType_[DSDP_PDUNKNOWN] = "DSDP_PDUNKNOWN"; // A return flag used by DSDP int info; // Destroy existing DSDP instance if already allocated if(dsdp_!=0) { DSDPDestroy(dsdp_); dsdp_ = 0; } // Allocate DSDP solver memory info = DSDPCreate(m_, &dsdp_); DSDPSetStandardMonitor(dsdp_, 1); DSDPSetGapTolerance(dsdp_, getOption("gapTol")); DSDPSetMaxIts(dsdp_, getOption("maxIter")); DSDPSetPTolerance(dsdp_,getOption("dualTol")); DSDPSetRTolerance(dsdp_,getOption("primalTol")); DSDPSetStepTolerance(dsdp_,getOption("stepTol")); info = DSDPCreateSDPCone(dsdp_,nb_,&sdpcone_); for (int j=0; j<nb_; ++j) { info = SDPConeSetBlockSize(sdpcone_, j, block_sizes_[j]); info = SDPConeSetSparsity(sdpcone_, j, block_sizes_[j]); } // Fill the data structures that hold DSDP-style sparse symmetric matrix pattern_.resize(m_+1); values_.resize(m_+1); for (int i=0; i<m_+1; ++i) { pattern_[i].resize(nb_); values_[i].resize(nb_); for (int j=0; j<nb_; ++j) { CRSSparsity CAij = mapping_.output(i*nb_+j).sparsity(); pattern_[i][j].resize(CAij.sizeL()); values_[i][j].resize(pattern_[i][j].size()); int nz=0; vector<int> rowind,col; CAij.getSparsityCRS(rowind,col); for(int r=0; r<rowind.size()-1; ++r) { for(int el=rowind[r]; el<rowind[r+1]; ++el) { if(r>=col[el]) { pattern_[i][j][nz++] = r*(r + 1)/2 + col[el]; } } } mapping_.output(i*nb_+j).get(values_[i][j],SPARSESYM); } } if (calc_dual_) { store_X_.resize(nb_); for (int j=0; j<nb_; ++j) { store_X_[j].resize(block_sizes_[j]*(block_sizes_[j]+1)/2); } } if (calc_p_) { store_P_.resize(nb_); for (int j=0; j<nb_; ++j) { store_P_[j].resize(block_sizes_[j]*(block_sizes_[j]+1)/2); } } }