Exemple #1
0
/*
 * heap_fill_tuple
 *		Load data portion of a tuple from values/isnull arrays
 *
 * We also fill the null bitmap (if any) and set the infomask bits
 * that reflect the tuple's data contents.
 *
 * NOTE: it is now REQUIRED that the caller have pre-zeroed the data area.
 */
void
heap_fill_tuple(TupleDesc tupleDesc,
				Datum *values, bool *isnull,
				char *data, Size data_size,
				uint16 *infomask, bits8 *bit)
{
	bits8	   *bitP;
	int			bitmask;
	int			i;
	int			numberOfAttributes = tupleDesc->natts;
	Form_pg_attribute *att = tupleDesc->attrs;

#ifdef USE_ASSERT_CHECKING
	char	   *start = data;
#endif

	if (bit != NULL)
	{
		bitP = &bit[-1];
		bitmask = HIGHBIT;
	}
	else
	{
		/* just to keep compiler quiet */
		bitP = NULL;
		bitmask = 0;
	}

	*infomask &= ~(HEAP_HASNULL | HEAP_HASVARWIDTH | HEAP_HASEXTERNAL);

	for (i = 0; i < numberOfAttributes; i++)
	{
		Size		data_length;

		if (bit != NULL)
		{
			if (bitmask != HIGHBIT)
				bitmask <<= 1;
			else
			{
				bitP += 1;
				*bitP = 0x0;
				bitmask = 1;
			}

			if (isnull[i])
			{
				*infomask |= HEAP_HASNULL;
				continue;
			}

			*bitP |= bitmask;
		}

		/*
		 * XXX we use the att_align macros on the pointer value itself, not on
		 * an offset.  This is a bit of a hack.
		 */

		if (att[i]->attbyval)
		{
			/* pass-by-value */
			data = (char *) att_align_nominal(data, att[i]->attalign);
			store_att_byval(data, values[i], att[i]->attlen);
			data_length = att[i]->attlen;
		}
		else if (att[i]->attlen == -1)
		{
			/* varlena */
			Pointer		val = DatumGetPointer(values[i]);

			*infomask |= HEAP_HASVARWIDTH;
			if (VARATT_IS_EXTERNAL(val))
			{
				*infomask |= HEAP_HASEXTERNAL;
				/* no alignment, since it's short by definition */
				data_length = VARSIZE_EXTERNAL(val);
				memcpy(data, val, data_length);
			}
			else if (VARATT_IS_SHORT(val))
			{
				/* no alignment for short varlenas */
				data_length = VARSIZE_SHORT(val);
				memcpy(data, val, data_length);
			}
			else if (VARLENA_ATT_IS_PACKABLE(att[i]) &&
					 VARATT_CAN_MAKE_SHORT(val))
			{
				/* convert to short varlena -- no alignment */
				data_length = VARATT_CONVERTED_SHORT_SIZE(val);
				SET_VARSIZE_SHORT(data, data_length);
				memcpy(data + 1, VARDATA(val), data_length - 1);
			}
			else
			{
				/* full 4-byte header varlena */
				data = (char *) att_align_nominal(data,
												  att[i]->attalign);
				data_length = VARSIZE(val);
				memcpy(data, val, data_length);
			}
		}
		else if (att[i]->attlen == -2)
		{
			/* cstring ... never needs alignment */
			*infomask |= HEAP_HASVARWIDTH;
			Assert(att[i]->attalign == 'c');
			data_length = strlen(DatumGetCString(values[i])) + 1;
			memcpy(data, DatumGetPointer(values[i]), data_length);
		}
		else
		{
			/* fixed-length pass-by-reference */
			data = (char *) att_align_nominal(data, att[i]->attalign);
			Assert(att[i]->attlen > 0);
			data_length = att[i]->attlen;
			memcpy(data, DatumGetPointer(values[i]), data_length);
		}

		data += data_length;
	}

	Assert((data - start) == data_size);
}
Exemple #2
0
static void
compileTheSubstitute(DictThesaurus *d)
{
	int			i;

	for (i = 0; i < d->nsubst; i++)
	{
		TSLexeme   *rem = d->subst[i].res,
				   *outptr,
				   *inptr;
		int			n = 2;

		outptr = d->subst[i].res = (TSLexeme *) palloc(sizeof(TSLexeme) * n);
		outptr->lexeme = NULL;
		inptr = rem;

		while (inptr && inptr->lexeme)
		{
			TSLexeme   *lexized,
						tmplex[2];

			if (inptr->flags & DT_USEASIS)
			{					/* do not lexize */
				tmplex[0] = *inptr;
				tmplex[0].flags = 0;
				tmplex[1].lexeme = NULL;
				lexized = tmplex;
			}
			else
			{
				lexized = (TSLexeme *) DatumGetPointer(
													   FunctionCall4(
													   &(d->subdict->lexize),
									   PointerGetDatum(d->subdict->dictData),
											  PointerGetDatum(inptr->lexeme),
										Int32GetDatum(strlen(inptr->lexeme)),
														PointerGetDatum(NULL)
																	 )
					);
			}

			if (lexized && lexized->lexeme)
			{
				int			toset = (lexized->lexeme && outptr != d->subst[i].res) ? (outptr - d->subst[i].res) : -1;

				while (lexized->lexeme)
				{
					if (outptr - d->subst[i].res + 1 >= n)
					{
						int			diff = outptr - d->subst[i].res;

						n *= 2;
						d->subst[i].res = (TSLexeme *) repalloc(d->subst[i].res, sizeof(TSLexeme) * n);
						outptr = d->subst[i].res + diff;
					}

					*outptr = *lexized;
					outptr->lexeme = pstrdup(lexized->lexeme);

					outptr++;
					lexized++;
				}

				if (toset > 0)
					d->subst[i].res[toset].flags |= TSL_ADDPOS;
			}
			else if (lexized)
			{
				ereport(ERROR,
						(errcode(ERRCODE_CONFIG_FILE_ERROR),
						 errmsg("thesaurus substitute word \"%s\" is a stop word (rule %d)",
								inptr->lexeme, i + 1)));
			}
			else
			{
				ereport(ERROR,
						(errcode(ERRCODE_CONFIG_FILE_ERROR),
						 errmsg("thesaurus substitute word \"%s\" isn't recognized by subdictionary (rule %d)",
								inptr->lexeme, i + 1)));
			}

			if (inptr->lexeme)
				pfree(inptr->lexeme);
			inptr++;
		}

		if (outptr == d->subst[i].res)
			ereport(ERROR,
					(errcode(ERRCODE_CONFIG_FILE_ERROR),
					 errmsg("thesaurus substitute phrase is empty (rule %d)",
							i + 1)));

		d->subst[i].reslen = outptr - d->subst[i].res;

		pfree(rem);
	}
}
/*
 * Compute the list of TIDs to be visited, by evaluating the expressions
 * for them.
 *
 * (The result is actually an array, not a list.)
 */
static void
TidListCreate(TidScanState *tidstate)
{
	List	   *evalList = tidstate->tss_tidquals;
	ExprContext *econtext = tidstate->ss.ps.ps_ExprContext;
	BlockNumber nblocks;
	ItemPointerData *tidList;
	int			numAllocTids;
	int			numTids;
	ListCell   *l;

	/*
	 * We silently discard any TIDs that are out of range at the time of scan
	 * start.  (Since we hold at least AccessShareLock on the table, it won't
	 * be possible for someone to truncate away the blocks we intend to
	 * visit.)
	 */
	nblocks = RelationGetNumberOfBlocks(tidstate->ss.ss_currentRelation);

	/*
	 * We initialize the array with enough slots for the case that all quals
	 * are simple OpExprs or CurrentOfExprs.  If there are any
	 * ScalarArrayOpExprs, we may have to enlarge the array.
	 */
	numAllocTids = list_length(evalList);
	tidList = (ItemPointerData *)
		palloc(numAllocTids * sizeof(ItemPointerData));
	numTids = 0;
	tidstate->tss_isCurrentOf = false;

	foreach(l, evalList)
	{
		ExprState  *exstate = (ExprState *) lfirst(l);
		Expr	   *expr = exstate->expr;
		ItemPointer itemptr;
		bool		isNull;

		if (is_opclause(expr))
		{
			FuncExprState *fexstate = (FuncExprState *) exstate;
			Node	   *arg1;
			Node	   *arg2;

			arg1 = get_leftop(expr);
			arg2 = get_rightop(expr);
			if (IsCTIDVar(arg1))
				exstate = (ExprState *) lsecond(fexstate->args);
			else if (IsCTIDVar(arg2))
				exstate = (ExprState *) linitial(fexstate->args);
			else
				elog(ERROR, "could not identify CTID variable");

			itemptr = (ItemPointer)
				DatumGetPointer(ExecEvalExprSwitchContext(exstate,
														  econtext,
														  &isNull,
														  NULL));
			if (!isNull &&
				ItemPointerIsValid(itemptr) &&
				ItemPointerGetBlockNumber(itemptr) < nblocks)
			{
				if (numTids >= numAllocTids)
				{
					numAllocTids *= 2;
					tidList = (ItemPointerData *)
						repalloc(tidList,
								 numAllocTids * sizeof(ItemPointerData));
				}
				tidList[numTids++] = *itemptr;
			}
		}
		else if (expr && IsA(expr, ScalarArrayOpExpr))
		{
			ScalarArrayOpExprState *saexstate = (ScalarArrayOpExprState *) exstate;
			Datum		arraydatum;
			ArrayType  *itemarray;
			Datum	   *ipdatums;
			bool	   *ipnulls;
			int			ndatums;
			int			i;

			exstate = (ExprState *) lsecond(saexstate->fxprstate.args);
			arraydatum = ExecEvalExprSwitchContext(exstate,
												   econtext,
												   &isNull,
												   NULL);
			if (isNull)
				continue;
			itemarray = DatumGetArrayTypeP(arraydatum);
			deconstruct_array(itemarray,
							  TIDOID, SizeOfIptrData, false, 's',
							  &ipdatums, &ipnulls, &ndatums);
			if (numTids + ndatums > numAllocTids)
			{
				numAllocTids = numTids + ndatums;
				tidList = (ItemPointerData *)
					repalloc(tidList,
							 numAllocTids * sizeof(ItemPointerData));
			}
			for (i = 0; i < ndatums; i++)
			{
				if (!ipnulls[i])
				{
					itemptr = (ItemPointer) DatumGetPointer(ipdatums[i]);
					if (ItemPointerIsValid(itemptr) &&
						ItemPointerGetBlockNumber(itemptr) < nblocks)
						tidList[numTids++] = *itemptr;
				}
			}
			pfree(ipdatums);
			pfree(ipnulls);
		}
		else if (expr && IsA(expr, CurrentOfExpr))
		{
			CurrentOfExpr *cexpr = (CurrentOfExpr *) expr;
			ItemPointerData cursor_tid;

			if (execCurrentOf(cexpr, econtext,
						   RelationGetRelid(tidstate->ss.ss_currentRelation),
							  &cursor_tid))
			{
				if (numTids >= numAllocTids)
				{
					numAllocTids *= 2;
					tidList = (ItemPointerData *)
						repalloc(tidList,
								 numAllocTids * sizeof(ItemPointerData));
				}
				tidList[numTids++] = cursor_tid;
				tidstate->tss_isCurrentOf = true;
			}
		}
		else
			elog(ERROR, "could not identify CTID expression");
	}
Exemple #4
0
/*
 * Convert a HeapTuple into a byte-sequence, and store it directly
 * into a chunklist for transmission.
 *
 * This code is based on the printtup_internal_20() function in printtup.c.
 */
void
SerializeTupleIntoChunks(GenericTuple gtuple, SerTupInfo *pSerInfo, TupleChunkList tcList)
{
	TupleChunkListItem tcItem = NULL;
	MemoryContext oldCtxt;
	TupleDesc	tupdesc;
	int			i,
		natts;

	AssertArg(tcList != NULL);
	AssertArg(gtuple != NULL);
	AssertArg(pSerInfo != NULL);

	tupdesc = pSerInfo->tupdesc;
	natts = tupdesc->natts;

	/* get ready to go */
	tcList->p_first = NULL;
	tcList->p_last = NULL;
	tcList->num_chunks = 0;
	tcList->serialized_data_length = 0;
	tcList->max_chunk_length = Gp_max_tuple_chunk_size;

	if (natts == 0)
	{
		tcItem = getChunkFromCache(&pSerInfo->chunkCache);
		if (tcItem == NULL)
		{
			ereport(FATAL, (errcode(ERRCODE_OUT_OF_MEMORY),
							errmsg("Could not allocate space for first chunk item in new chunk list.")));
		}

		/* TC_EMTPY is just one chunk */
		SetChunkType(tcItem->chunk_data, TC_EMPTY);
		tcItem->chunk_length = TUPLE_CHUNK_HEADER_SIZE;
		appendChunkToTCList(tcList, tcItem);

		return;
	}

	tcItem = getChunkFromCache(&pSerInfo->chunkCache);
	if (tcItem == NULL)
	{
		ereport(FATAL, (errcode(ERRCODE_OUT_OF_MEMORY),
						errmsg("Could not allocate space for first chunk item in new chunk list.")));
	}

	/* assume that we'll take a single chunk */
	SetChunkType(tcItem->chunk_data, TC_WHOLE);
	tcItem->chunk_length = TUPLE_CHUNK_HEADER_SIZE;
	appendChunkToTCList(tcList, tcItem);

	AssertState(s_tupSerMemCtxt != NULL);

	if (is_memtuple(gtuple))
	{
		MemTuple mtuple = (MemTuple) gtuple;
		addByteStringToChunkList(tcList, (char *) mtuple, memtuple_get_size(mtuple), &pSerInfo->chunkCache);
		addPadding(tcList, &pSerInfo->chunkCache, memtuple_get_size(mtuple));
	}
	else
	{
		HeapTuple tuple = (HeapTuple) gtuple;
		HeapTupleHeader t_data = tuple->t_data;
		TupSerHeader tsh;

		unsigned int	datalen;
		unsigned int	nullslen;

		datalen = tuple->t_len - t_data->t_hoff;
		if (HeapTupleHasNulls(tuple))
			nullslen = BITMAPLEN(HeapTupleHeaderGetNatts(t_data));
		else
			nullslen = 0;

		tsh.tuplen = sizeof(TupSerHeader) + TYPEALIGN(TUPLE_CHUNK_ALIGN,nullslen) + datalen;
		tsh.natts = HeapTupleHeaderGetNatts(t_data);
		tsh.infomask = t_data->t_infomask;

		addByteStringToChunkList(tcList, (char *)&tsh, sizeof(TupSerHeader), &pSerInfo->chunkCache);
		/* If we don't have any attributes which have been toasted, we
		 * can be very very simple: just send the raw data. */
		if ((tsh.infomask & HEAP_HASEXTERNAL) == 0)
		{
			if (nullslen)
			{
				addByteStringToChunkList(tcList, (char *)t_data->t_bits, nullslen, &pSerInfo->chunkCache);
				addPadding(tcList,&pSerInfo->chunkCache,nullslen);
			}

			addByteStringToChunkList(tcList, (char *)t_data + t_data->t_hoff, datalen, &pSerInfo->chunkCache);
			addPadding(tcList,&pSerInfo->chunkCache,datalen);
		}
		else
		{
			/* We have to be more careful when we have tuples that
			 * have been toasted. Ideally we'd like to send the
			 * untoasted attributes in as "raw" a format as possible
			 * but that makes rebuilding the tuple harder .
			 */
			oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);

			/* deconstruct the tuple (faster than a heap_getattr loop) */
			heap_deform_tuple(tuple, tupdesc, pSerInfo->values, pSerInfo->nulls);

			MemoryContextSwitchTo(oldCtxt);

			/* Send the nulls character-array. */
			addByteStringToChunkList(tcList, pSerInfo->nulls, natts, &pSerInfo->chunkCache);
			addPadding(tcList,&pSerInfo->chunkCache,natts);

			/*
			 * send the attributes of this tuple: NOTE anything which allocates
			 * temporary space (e.g. could result in a PG_DETOAST_DATUM) should be
			 * executed with the memory context set to s_tupSerMemCtxt
			 */
			for (i = 0; i < natts; ++i)
			{
				SerAttrInfo *attrInfo = pSerInfo->myinfo + i;
				Datum		origattr = pSerInfo->values[i],
					attr;

				/* skip null attributes (already taken care of above) */
				if (pSerInfo->nulls[i])
					continue;

				if (attrInfo->typlen == -1)
				{
					int32		sz;
					char	   *data;

					/*
					 * If we have a toasted datum, forcibly detoast it here to avoid
					 * memory leakage: we want to force the detoast allocation(s) to
					 * happen in our reset-able serialization context.
					 */
					oldCtxt = MemoryContextSwitchTo(s_tupSerMemCtxt);
					attr = PointerGetDatum(PG_DETOAST_DATUM_PACKED(origattr));
					MemoryContextSwitchTo(oldCtxt);

					sz = VARSIZE_ANY_EXHDR(attr);
					data = VARDATA_ANY(attr);

					/* Send length first, then data */
					addInt32ToChunkList(tcList, sz, &pSerInfo->chunkCache);
					addByteStringToChunkList(tcList, data, sz, &pSerInfo->chunkCache);
					addPadding(tcList, &pSerInfo->chunkCache, sz);
				}
				else if (attrInfo->typlen == -2)
				{
					int32		sz;
					char	   *data;

					/* CString, we would send the string with the terminating '\0' */
					data = DatumGetCString(origattr);
					sz = strlen(data) + 1;

					/* Send length first, then data */
					addInt32ToChunkList(tcList, sz, &pSerInfo->chunkCache);
					addByteStringToChunkList(tcList, data, sz, &pSerInfo->chunkCache);
					addPadding(tcList, &pSerInfo->chunkCache, sz);
				}
				else if (attrInfo->typbyval)
				{
					/*
					 * We send a full-width Datum for all pass-by-value types, regardless of
					 * the actual size.
					 */
					addByteStringToChunkList(tcList, (char *) &origattr, sizeof(Datum), &pSerInfo->chunkCache);
					addPadding(tcList, &pSerInfo->chunkCache, sizeof(Datum));
				}
				else
				{
					addByteStringToChunkList(tcList, DatumGetPointer(origattr), attrInfo->typlen, &pSerInfo->chunkCache);
					addPadding(tcList, &pSerInfo->chunkCache, attrInfo->typlen);

					attr = origattr;
				}
			}

			MemoryContextReset(s_tupSerMemCtxt);
		}
	}

	/*
	 * if we have more than 1 chunk we have to set the chunk types on our
	 * first chunk and last chunk
	 */
	if (tcList->num_chunks > 1)
	{
		TupleChunkListItem first,
			last;

		first = tcList->p_first;
		last = tcList->p_last;

		Assert(first != NULL);
		Assert(first != last);
		Assert(last != NULL);

		SetChunkType(first->chunk_data, TC_PARTIAL_START);
		SetChunkType(last->chunk_data, TC_PARTIAL_END);

		/*
		 * any intervening chunks are already set to TC_PARTIAL_MID when
		 * allocated
		 */
	}

	return;
}
/*
 * hstoreUpgrade: PG_DETOAST_DATUM plus support for conversion of old hstores
 */
HStore *
hstoreUpgrade(Datum orig)
{
	HStore	   *hs = (HStore *) PG_DETOAST_DATUM(orig);
	int			valid_new;
	int			valid_old;

	/* Return immediately if no conversion needed */
	if (hs->size_ & HS_FLAG_NEWVERSION)
		return hs;

	/* Do we have a writable copy? If not, make one. */
	if ((void *) hs == (void *) DatumGetPointer(orig))
		hs = (HStore *) PG_DETOAST_DATUM_COPY(orig);

	if (hs->size_ == 0 ||
		(VARSIZE(hs) < 32768 && HSE_ISFIRST((ARRPTR(hs)[0]))))
	{
		HS_SETCOUNT(hs, HS_COUNT(hs));
		HS_FIXSIZE(hs, HS_COUNT(hs));
		return hs;
	}

	valid_new = hstoreValidNewFormat(hs);
	valid_old = hstoreValidOldFormat(hs);

	if (!valid_old || hs->size_ == 0)
	{
		if (valid_new)
		{
			/*
			 * force the "new version" flag and the correct varlena length.
			 */
			HS_SETCOUNT(hs, HS_COUNT(hs));
			HS_FIXSIZE(hs, HS_COUNT(hs));
			return hs;
		}
		else
		{
			elog(ERROR, "invalid hstore value found");
		}
	}

	/*
	 * this is the tricky edge case. It is only possible in some quite extreme
	 * cases (the hstore must have had a lot of wasted padding space at the
	 * end). But the only way a "new" hstore value could get here is if we're
	 * upgrading in place from a pre-release version of hstore-new (NOT
	 * contrib/hstore), so we work off the following assumptions: 1. If you're
	 * moving from old contrib/hstore to hstore-new, you're required to fix up
	 * any potential conflicts first, e.g. by running ALTER TABLE ... USING
	 * col::text::hstore; on all hstore columns before upgrading. 2. If you're
	 * moving from old contrib/hstore to new contrib/hstore, then "new" values
	 * are impossible here 3. If you're moving from pre-release hstore-new to
	 * hstore-new, then "old" values are impossible here 4. If you're moving
	 * from pre-release hstore-new to new contrib/hstore, you're not doing so
	 * as an in-place upgrade, so there is no issue So the upshot of all this
	 * is that we can treat all the edge cases as "new" if we're being built
	 * as hstore-new, and "old" if we're being built as contrib/hstore.
	 *
	 * XXX the WARNING can probably be downgraded to DEBUG1 once this has been
	 * beta-tested. But for now, it would be very useful to know if anyone can
	 * actually reach this case in a non-contrived setting.
	 */

	if (valid_new)
	{
#if HSTORE_IS_HSTORE_NEW
		elog(WARNING, "ambiguous hstore value resolved as hstore-new");

		/*
		 * force the "new version" flag and the correct varlena length.
		 */
		HS_SETCOUNT(hs, HS_COUNT(hs));
		HS_FIXSIZE(hs, HS_COUNT(hs));
		return hs;
#else
		elog(WARNING, "ambiguous hstore value resolved as hstore-old");
#endif
	}

	/*
	 * must have an old-style value. Overwrite it in place as a new-style one.
	 */
	{
		int			count = hs->size_;
		HEntry	   *new_entries = ARRPTR(hs);
		HOldEntry  *old_entries = (HOldEntry *) ARRPTR(hs);
		int			i;

		for (i = 0; i < count; ++i)
		{
			uint32		pos = old_entries[i].pos;
			uint32		keylen = old_entries[i].keylen;
			uint32		vallen = old_entries[i].vallen;
			bool		isnull = old_entries[i].valisnull;

			if (isnull)
				vallen = 0;

			new_entries[2 * i].entry = (pos + keylen) & HENTRY_POSMASK;
			new_entries[2 * i + 1].entry = (((pos + keylen + vallen) & HENTRY_POSMASK)
											| ((isnull) ? HENTRY_ISNULL : 0));
		}

		if (count)
			new_entries[0].entry |= HENTRY_ISFIRST;
		HS_SETCOUNT(hs, count);
		HS_FIXSIZE(hs, count);
	}

	return hs;
}
Datum
_numeric_weighted_stddev_samp_intermediate(PG_FUNCTION_ARGS)
{
	WeightedStddevSampInternalState *state;
	Datum		value,
				weight,
				old_s_0,
				old_s_1,
				old_s_2,
				w_v,
				w_v2;
	MemoryContext aggcontext,
				  oldcontext;

	if (!AggCheckCallContext(fcinfo, &aggcontext))
		/* cannot be called directly because of internal-type argument */
		elog(ERROR, "_weighted_stddev_samp_intermediate called in non-aggregate context");

	if (PG_ARGISNULL(0))
	{
		oldcontext = MemoryContextSwitchTo(aggcontext);
		state = (WeightedStddevSampInternalState *) palloc(sizeof(WeightedStddevSampInternalState));
		state->s_2 = make_numeric(0);
		state->s_1 = make_numeric(0);
		state->s_0 = make_numeric(0);
		state->zero = make_numeric(0);
		state->n_prime = 0;
		MemoryContextSwitchTo(oldcontext);
	}
	else
		state = (WeightedStddevSampInternalState *) PG_GETARG_POINTER(0);

	/*
	 * We're non-strict, so we MUST check args for nullity ourselves before
	 * using them.  To preserve the behaviour of null inputs, we skip updating
	 * on them.
	 */

	if (PG_ARGISNULL(1) || PG_ARGISNULL(2))
		PG_RETURN_POINTER(state);

	/*
	 * We fetch and process the input in the shortlived calling context to
	 * avoid leaking memory in aggcontext per cycle. We force the input to be
	 * detoasted here, too, in the shortlived context. (PG_GETARG_DATUM does
	 * not detoast, but PG_GETARG_NUMERIC does.)
	 */

	value = NumericGetDatum(PG_GETARG_NUMERIC(1));
	weight = NumericGetDatum(PG_GETARG_NUMERIC(2));

	/*
	 * We also skip updating when the weight is zero.
	 */
	if (DatumGetBool(DirectFunctionCall2(numeric_eq, weight, state->zero)))
		PG_RETURN_POINTER(state);

	/*
	 * Compute intermediate values w*v and w*(v^2) in the short-lived context
	 */

	w_v = DirectFunctionCall2(numeric_mul, weight, value);
	w_v2 = DirectFunctionCall2(numeric_mul, w_v, value);

	/*
	 * The new running totals must be allocated in the long-lived context.  We
	 * rely on the numeric_* functions to clean up after themselves (which they
	 * currently do, but only if the input is already detoasted); we could play
	 * safe and copy only the final results into aggcontext, but this turns out
	 * to have a measurable performance hit.
	 */

	oldcontext = MemoryContextSwitchTo(aggcontext);

	old_s_2 = state->s_2;
	old_s_1 = state->s_1;
	old_s_0 = state->s_0;

	state->s_0 = DirectFunctionCall2(numeric_add, old_s_0, weight);
	state->s_1 = DirectFunctionCall2(numeric_add, old_s_1, w_v);
	state->s_2 = DirectFunctionCall2(numeric_add, old_s_2, w_v2);

	state->n_prime += 1;

	pfree(DatumGetPointer(old_s_2));
	pfree(DatumGetPointer(old_s_1));
	pfree(DatumGetPointer(old_s_0));

	MemoryContextSwitchTo(oldcontext);

	PG_RETURN_POINTER(state);
}
Exemple #7
0
Datum
tsquery_rewrite_query(PG_FUNCTION_ARGS)
{
    TSQuery		query = PG_GETARG_TSQUERY_COPY(0);
    text	   *in = PG_GETARG_TEXT_P(1);
    TSQuery		rewrited = query;
    MemoryContext outercontext = CurrentMemoryContext;
    MemoryContext oldcontext;
    QTNode	   *tree;
    char	   *buf;
    SPIPlanPtr	plan;
    Portal		portal;
    bool		isnull;
    int			i;

    if (query->size == 0)
    {
        PG_FREE_IF_COPY(in, 1);
        PG_RETURN_POINTER(rewrited);
    }

    tree = QT2QTN(GETQUERY(query), GETOPERAND(query));
    QTNTernary(tree);
    QTNSort(tree);

    buf = text_to_cstring(in);

    SPI_connect();

    if ((plan = SPI_prepare(buf, 0, NULL)) == NULL)
        elog(ERROR, "SPI_prepare(\"%s\") failed", buf);

    if ((portal = SPI_cursor_open(NULL, plan, NULL, NULL, true)) == NULL)
        elog(ERROR, "SPI_cursor_open(\"%s\") failed", buf);

    SPI_cursor_fetch(portal, true, 100);

    if (SPI_tuptable == NULL ||
            SPI_tuptable->tupdesc->natts != 2 ||
            SPI_gettypeid(SPI_tuptable->tupdesc, 1) != TSQUERYOID ||
            SPI_gettypeid(SPI_tuptable->tupdesc, 2) != TSQUERYOID)
        ereport(ERROR,
                (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
                 errmsg("ts_rewrite query must return two tsquery columns")));

    while (SPI_processed > 0 && tree)
    {
        for (i = 0; i < SPI_processed && tree; i++)
        {
            Datum		qdata = SPI_getbinval(SPI_tuptable->vals[i], SPI_tuptable->tupdesc, 1, &isnull);
            Datum		sdata;

            if (isnull)
                continue;

            sdata = SPI_getbinval(SPI_tuptable->vals[i], SPI_tuptable->tupdesc, 2, &isnull);

            if (!isnull)
            {
                TSQuery		qtex = DatumGetTSQuery(qdata);
                TSQuery		qtsubs = DatumGetTSQuery(sdata);
                QTNode	   *qex,
                           *qsubs = NULL;

                if (qtex->size == 0)
                {
                    if (qtex != (TSQuery) DatumGetPointer(qdata))
                        pfree(qtex);
                    if (qtsubs != (TSQuery) DatumGetPointer(sdata))
                        pfree(qtsubs);
                    continue;
                }

                qex = QT2QTN(GETQUERY(qtex), GETOPERAND(qtex));

                QTNTernary(qex);
                QTNSort(qex);

                if (qtsubs->size)
                    qsubs = QT2QTN(GETQUERY(qtsubs), GETOPERAND(qtsubs));

                oldcontext = MemoryContextSwitchTo(outercontext);
                tree = findsubquery(tree, qex, qsubs, NULL);
                MemoryContextSwitchTo(oldcontext);

                QTNFree(qex);
                if (qtex != (TSQuery) DatumGetPointer(qdata))
                    pfree(qtex);
                QTNFree(qsubs);
                if (qtsubs != (TSQuery) DatumGetPointer(sdata))
                    pfree(qtsubs);

                if (tree)
                {
                    /* ready the tree for another pass */
                    QTNClearFlags(tree, QTN_NOCHANGE);
                    QTNSort(tree);
                }
            }
        }

        SPI_freetuptable(SPI_tuptable);
        SPI_cursor_fetch(portal, true, 100);
    }

    SPI_freetuptable(SPI_tuptable);
    SPI_cursor_close(portal);
    SPI_freeplan(plan);
    SPI_finish();

    if (tree)
    {
        QTNBinary(tree);
        rewrited = QTN2QT(tree);
        QTNFree(tree);
        PG_FREE_IF_COPY(query, 0);
    }
    else
    {
        SET_VARSIZE(rewrited, HDRSIZETQ);
        rewrited->size = 0;
    }

    pfree(buf);
    PG_FREE_IF_COPY(in, 1);
    PG_RETURN_POINTER(rewrited);
}
Exemple #8
0
/*
 * pgstrom_create_param_buffer
 *
 * It construct a param-buffer on the shared memory segment, according to
 * the supplied Const/Param list. Its initial reference counter is 1, so
 * this buffer can be released using pgstrom_put_param_buffer().
 */
kern_parambuf *
pgstrom_create_kern_parambuf(List *used_params,
                             ExprContext *econtext)
{
    StringInfoData	str;
    kern_parambuf  *kpbuf;
    char		padding[STROMALIGN_LEN];
    ListCell   *cell;
    Size		offset;
    int			index = 0;
    int			nparams = list_length(used_params);

    /* seek to the head of variable length field */
    offset = STROMALIGN(offsetof(kern_parambuf, poffset[nparams]));
    initStringInfo(&str);
    enlargeStringInfo(&str, offset);
    memset(str.data, 0, offset);
    str.len = offset;
    /* walks on the Para/Const list */
    foreach (cell, used_params)
    {
        Node   *node = lfirst(cell);

        if (IsA(node, Const))
        {
            Const  *con = (Const *) node;

            kpbuf = (kern_parambuf *)str.data;
            if (con->constisnull)
                kpbuf->poffset[index] = 0;	/* null */
            else
            {
                kpbuf->poffset[index] = str.len;
                if (con->constlen > 0)
                    appendBinaryStringInfo(&str,
                                           (char *)&con->constvalue,
                                           con->constlen);
                else
                    appendBinaryStringInfo(&str,
                                           DatumGetPointer(con->constvalue),
                                           VARSIZE(con->constvalue));
            }
        }
        else if (IsA(node, Param))
        {
            ParamListInfo param_info = econtext->ecxt_param_list_info;
            Param  *param = (Param *) node;

            if (param_info &&
                    param->paramid > 0 && param->paramid <= param_info->numParams)
            {
                ParamExternData	*prm = &param_info->params[param->paramid - 1];

                /* give hook a chance in case parameter is dynamic */
                if (!OidIsValid(prm->ptype) && param_info->paramFetch != NULL)
                    (*param_info->paramFetch) (param_info, param->paramid);

                kpbuf = (kern_parambuf *)str.data;
                if (!OidIsValid(prm->ptype))
                {
                    elog(INFO, "debug: Param has no particular data type");
                    kpbuf->poffset[index++] = 0;	/* null */
                    continue;
                }
                /* safety check in case hook did something unexpected */
                if (prm->ptype != param->paramtype)
                    ereport(ERROR,
                            (errcode(ERRCODE_DATATYPE_MISMATCH),
                             errmsg("type of parameter %d (%s) does not match that when preparing the plan (%s)",
                                    param->paramid,
                                    format_type_be(prm->ptype),
                                    format_type_be(param->paramtype))));
                if (prm->isnull)
                    kpbuf->poffset[index] = 0;	/* null */
                else
                {
                    int		typlen = get_typlen(prm->ptype);

                    if (typlen == 0)
                        elog(ERROR, "cache lookup failed for type %u",
                             prm->ptype);
                    if (typlen > 0)
                        appendBinaryStringInfo(&str,
                                               (char *)&prm->value,
                                               typlen);
                    else
                        appendBinaryStringInfo(&str,
                                               DatumGetPointer(prm->value),
                                               VARSIZE(prm->value));
                }
            }
        }
        else
            elog(ERROR, "unexpected node: %s", nodeToString(node));

        /* alignment */
        if (STROMALIGN(str.len) != str.len)
            appendBinaryStringInfo(&str, padding,
                                   STROMALIGN(str.len) - str.len);
        index++;
    }
Exemple #9
0
Datum
gtsvector_compress(PG_FUNCTION_ARGS)
{
	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
	GISTENTRY  *retval = entry;

	if (entry->leafkey)
	{							/* tsvector */
		SignTSVector *res;
		TSVector	val = DatumGetTSVector(entry->key);
		int32		len;
		int32	   *arr;
		WordEntry  *ptr = ARRPTR(val);
		char	   *words = STRPTR(val);

		len = CALCGTSIZE(ARRKEY, val->size);
		res = (SignTSVector *) palloc(len);
		SET_VARSIZE(res, len);
		res->flag = ARRKEY;
		arr = GETARR(res);
		len = val->size;
		while (len--)
		{
			pg_crc32	c;

			INIT_LEGACY_CRC32(c);
			COMP_LEGACY_CRC32(c, words + ptr->pos, ptr->len);
			FIN_LEGACY_CRC32(c);

			*arr = *(int32 *) &c;
			arr++;
			ptr++;
		}

		len = uniqueint(GETARR(res), val->size);
		if (len != val->size)
		{
			/*
			 * there is a collision of hash-function; len is always less than
			 * val->size
			 */
			len = CALCGTSIZE(ARRKEY, len);
			res = (SignTSVector *) repalloc((void *) res, len);
			SET_VARSIZE(res, len);
		}

		/* make signature, if array is too long */
		if (VARSIZE(res) > TOAST_INDEX_TARGET)
		{
			SignTSVector *ressign;

			len = CALCGTSIZE(SIGNKEY, 0);
			ressign = (SignTSVector *) palloc(len);
			SET_VARSIZE(ressign, len);
			ressign->flag = SIGNKEY;
			makesign(GETSIGN(ressign), res);
			res = ressign;
		}

		retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(res),
					  entry->rel, entry->page,
					  entry->offset, FALSE);
	}
	else if (ISSIGNKEY(DatumGetPointer(entry->key)) &&
			 !ISALLTRUE(DatumGetPointer(entry->key)))
	{
		int32		i,
					len;
		SignTSVector *res;
		BITVECP		sign = GETSIGN(DatumGetPointer(entry->key));

		LOOPBYTE
		{
			if ((sign[i] & 0xff) != 0xff)
				PG_RETURN_POINTER(retval);
		}

		len = CALCGTSIZE(SIGNKEY | ALLISTRUE, 0);
		res = (SignTSVector *) palloc(len);
		SET_VARSIZE(res, len);
		res->flag = SIGNKEY | ALLISTRUE;

		retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(res),
					  entry->rel, entry->page,
					  entry->offset, FALSE);
	}
Exemple #10
0
/*
 * Turn a composite / record into JSON.
 */
static void
composite_to_json(Datum composite, StringInfo result, bool use_line_feeds)
{
    HeapTupleHeader td;
    Oid         tupType;
    int32       tupTypmod;
    TupleDesc   tupdesc;
    HeapTupleData tmptup, *tuple;
	int         i;
	bool        needsep = false;
	char       *sep;

	sep = use_line_feeds ? ",\n " : ",";

    td = DatumGetHeapTupleHeader(composite);

    /* Extract rowtype info and find a tupdesc */
    tupType = HeapTupleHeaderGetTypeId(td);
    tupTypmod = HeapTupleHeaderGetTypMod(td);
    tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod);

    /* Build a temporary HeapTuple control structure */
    tmptup.t_len = HeapTupleHeaderGetDatumLength(td);
    tmptup.t_data = td;
	tuple = &tmptup;

	appendStringInfoChar(result,'{');

    for (i = 0; i < tupdesc->natts; i++)
    {
        Datum       val, origval;
        bool        isnull;
        char       *attname;
		TYPCATEGORY tcategory;
		Oid			typoutput;
		bool		typisvarlena;

		if (tupdesc->attrs[i]->attisdropped)
            continue;

		if (needsep)
			appendStringInfoString(result,sep);
		needsep = true;

        attname = NameStr(tupdesc->attrs[i]->attname);
		escape_json(result,attname);
		appendStringInfoChar(result,':');

        origval = heap_getattr(tuple, i + 1, tupdesc, &isnull);

		if (tupdesc->attrs[i]->atttypid == RECORDARRAYOID)
			tcategory = TYPCATEGORY_ARRAY;
		else if (tupdesc->attrs[i]->atttypid == RECORDOID)
			tcategory = TYPCATEGORY_COMPOSITE;
		else
			tcategory = TypeCategory(tupdesc->attrs[i]->atttypid);

		getTypeOutputInfo(tupdesc->attrs[i]->atttypid,
						  &typoutput, &typisvarlena);

		/*
		 * If we have a toasted datum, forcibly detoast it here to avoid memory
		 * leakage inside the type's output routine.
		 */
		if (typisvarlena && ! isnull)
			val = PointerGetDatum(PG_DETOAST_DATUM(origval));
		else
			val = origval;

		datum_to_json(val, result, tcategory, typoutput);

		/* Clean up detoasted copy, if any */
		if (val != origval)
			pfree(DatumGetPointer(val));
	}

	appendStringInfoChar(result,'}');
    ReleaseTupleDesc(tupdesc);
}
Datum
gin_extract_jsonb_query(PG_FUNCTION_ARGS)
{
	int32	   *nentries = (int32 *) PG_GETARG_POINTER(1);
	StrategyNumber strategy = PG_GETARG_UINT16(2);
	int32	   *searchMode = (int32 *) PG_GETARG_POINTER(6);
	Datum	   *entries;

	if (strategy == JsonbContainsStrategyNumber)
	{
		/* Query is a jsonb, so just apply gin_extract_jsonb... */
		entries = (Datum *)
			DatumGetPointer(DirectFunctionCall2(gin_extract_jsonb,
												PG_GETARG_DATUM(0),
												PointerGetDatum(nentries)));
		/* ...although "contains {}" requires a full index scan */
		if (*nentries == 0)
			*searchMode = GIN_SEARCH_MODE_ALL;
	}
	else if (strategy == JsonbExistsStrategyNumber)
	{
		/* Query is a text string, which we treat as a key */
		text	   *query = PG_GETARG_TEXT_PP(0);

		*nentries = 1;
		entries = (Datum *) palloc(sizeof(Datum));
		entries[0] = make_text_key(JGINFLAG_KEY,
								   VARDATA_ANY(query),
								   VARSIZE_ANY_EXHDR(query));
	}
	else if (strategy == JsonbExistsAnyStrategyNumber ||
			 strategy == JsonbExistsAllStrategyNumber)
	{
		/* Query is a text array; each element is treated as a key */
		ArrayType  *query = PG_GETARG_ARRAYTYPE_P(0);
		Datum	   *key_datums;
		bool	   *key_nulls;
		int			key_count;
		int			i,
					j;

		deconstruct_array(query,
						  TEXTOID, -1, false, 'i',
						  &key_datums, &key_nulls, &key_count);

		entries = (Datum *) palloc(sizeof(Datum) * key_count);

		for (i = 0, j = 0; i < key_count; i++)
		{
			/* Nulls in the array are ignored */
			if (key_nulls[i])
				continue;
			entries[j++] = make_text_key(JGINFLAG_KEY,
										 VARDATA_ANY(key_datums[i]),
										 VARSIZE_ANY_EXHDR(key_datums[i]));
		}

		*nentries = j;
		/* ExistsAll with no keys should match everything */
		if (j == 0 && strategy == JsonbExistsAllStrategyNumber)
			*searchMode = GIN_SEARCH_MODE_ALL;
	}
	else
	{
		elog(ERROR, "unrecognized strategy number: %d", strategy);
		entries = NULL;			/* keep compiler quiet */
	}

	PG_RETURN_POINTER(entries);
}
/*
** GiST Compress and Decompress methods
*/
Datum
g_int_compress(PG_FUNCTION_ARGS)
{
    GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
    GISTENTRY  *retval;
    ArrayType  *r;
    int			len;
    int		   *dr;
    int			i,
                min,
                cand;

    if (entry->leafkey)
    {
        r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
        PREPAREARR(r);
        r->flags |= LEAFKEY;
        retval = palloc(sizeof(GISTENTRY));
        gistentryinit(*retval, PointerGetDatum(r),
                      entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);

        PG_RETURN_POINTER(retval);
    }

    r = (ArrayType *) PG_DETOAST_DATUM(entry->key);
    if (ISLEAFKEY(r) || ARRISVOID(r))
    {
        if (r != (ArrayType *) DatumGetPointer(entry->key))
            pfree(r);
        PG_RETURN_POINTER(entry);
    }

    if ((len = ARRNELEMS(r)) >= 2 * MAXNUMRANGE)
    {   /* compress */
        if (r == (ArrayType *) DatumGetPointer(entry->key))
            r = (ArrayType *) PG_DETOAST_DATUM_COPY(entry->key);
        r = resize_intArrayType(r, 2 * (len));

        dr = ARRPTR(r);

        for (i = len - 1; i >= 0; i--)
            dr[2 * i] = dr[2 * i + 1] = dr[i];

        len *= 2;
        cand = 1;
        while (len > MAXNUMRANGE * 2)
        {
            min = 0x7fffffff;
            for (i = 2; i < len; i += 2)
                if (min > (dr[i] - dr[i - 1]))
                {
                    min = (dr[i] - dr[i - 1]);
                    cand = i;
                }
            memmove((void *) &dr[cand - 1], (void *) &dr[cand + 1], (len - cand - 1) * sizeof(int));
            len -= 2;
        }
        r = resize_intArrayType(r, len);
        retval = palloc(sizeof(GISTENTRY));
        gistentryinit(*retval, PointerGetDatum(r),
                      entry->rel, entry->page, entry->offset, VARSIZE(r), FALSE);
        PG_RETURN_POINTER(retval);
    }
    else
        PG_RETURN_POINTER(entry);

    PG_RETURN_POINTER(entry);
}
Exemple #13
0
Datum
gtsvector_compress(PG_FUNCTION_ARGS)
{
	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
	GISTENTRY  *retval = entry;

	if (entry->leafkey)
	{							/* tsvector */
		GISTTYPE   *res;
		tsvector   *val = (tsvector *) PG_DETOAST_DATUM(entry->key);
		int4		len;
		int4	   *arr;
		WordEntry  *ptr = ARRPTR(val);
		char	   *words = STRPTR(val);

		len = CALCGTSIZE(ARRKEY, val->size);
		res = (GISTTYPE *) palloc(len);
		SET_VARSIZE(res, len);
		res->flag = ARRKEY;
		arr = GETARR(res);
		len = val->size;
		while (len--)
		{
			*arr = crc32_sz(&words[ptr->pos], ptr->len);
			arr++;
			ptr++;
		}

		len = uniqueint(GETARR(res), val->size);
		if (len != val->size)
		{
			/*
			 * there is a collision of hash-function; len is always less than
			 * val->size
			 */
			len = CALCGTSIZE(ARRKEY, len);
			res = (GISTTYPE *) repalloc((void *) res, len);
			SET_VARSIZE(res, len);
		}

		/* make signature, if array is too long */
		if (VARSIZE(res) > TOAST_INDEX_TARGET)
		{
			GISTTYPE   *ressign;

			len = CALCGTSIZE(SIGNKEY, 0);
			ressign = (GISTTYPE *) palloc(len);
			SET_VARSIZE(ressign, len);
			ressign->flag = SIGNKEY;
			makesign(GETSIGN(ressign), res);
			res = ressign;
		}

		retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(res),
					  entry->rel, entry->page,
					  entry->offset, FALSE);
	}
	else if (ISSIGNKEY(DatumGetPointer(entry->key)) &&
			 !ISALLTRUE(DatumGetPointer(entry->key)))
	{
		int4		i,
					len;
		GISTTYPE   *res;
		BITVECP		sign = GETSIGN(DatumGetPointer(entry->key));

		LOOPBYTE(
				 if ((sign[i] & 0xff) != 0xff)
				 PG_RETURN_POINTER(retval);
		);
Exemple #14
0
Datum
ghstore_compress(PG_FUNCTION_ARGS)
{
	GISTENTRY  *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
	GISTENTRY  *retval = entry;

	if (entry->leafkey)
	{
		GISTTYPE   *res = (GISTTYPE *) palloc0(CALCGTSIZE(0));
		HStore	   *toastedval = (HStore *) DatumGetPointer(entry->key);
		HStore	   *val = (HStore *) DatumGetPointer(PG_DETOAST_DATUM(entry->key));
		HEntry	   *ptr = ARRPTR(val);
		char	   *words = STRPTR(val);

		SET_VARSIZE(res, CALCGTSIZE(0));

		while (ptr - ARRPTR(val) < val->size)
		{
			int			h;

			h = crc32_sz((char *) (words + ptr->pos), ptr->keylen);
			HASH(GETSIGN(res), h);
			if (!ptr->valisnull)
			{
				h = crc32_sz((char *) (words + ptr->pos + ptr->keylen), ptr->vallen);
				HASH(GETSIGN(res), h);
			}
			ptr++;
		}

		if (val != toastedval)
			pfree(val);

		retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(res),
					  entry->rel, entry->page,
					  entry->offset,
					  FALSE);
	}
	else if (!ISALLTRUE(DatumGetPointer(entry->key)))
	{
		int4		i;
		GISTTYPE   *res;
		BITVECP		sign = GETSIGN(DatumGetPointer(entry->key));

		LOOPBYTE
		{
			if ((sign[i] & 0xff) != 0xff)
				PG_RETURN_POINTER(retval);
		}

		res = (GISTTYPE *) palloc(CALCGTSIZE(ALLISTRUE));
		SET_VARSIZE(res, CALCGTSIZE(ALLISTRUE));
		res->flag = ALLISTRUE;

		retval = (GISTENTRY *) palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(res),
					  entry->rel, entry->page,
					  entry->offset,
					  FALSE);
	}
Exemple #15
0
/*
 * Fetch dictionary cache entry
 */
TSDictionaryCacheEntry *
lookup_ts_dictionary_cache(Oid dictId)
{
	TSDictionaryCacheEntry *entry;

	if (TSDictionaryCacheHash == NULL)
	{
		/* First time through: initialize the hash table */
		HASHCTL		ctl;

		MemSet(&ctl, 0, sizeof(ctl));
		ctl.keysize = sizeof(Oid);
		ctl.entrysize = sizeof(TSDictionaryCacheEntry);
		TSDictionaryCacheHash = hash_create("Tsearch dictionary cache", 8,
											&ctl, HASH_ELEM | HASH_BLOBS);
		/* Flush cache on pg_ts_dict and pg_ts_template changes */
		CacheRegisterSyscacheCallback(TSDICTOID, InvalidateTSCacheCallBack,
									  PointerGetDatum(TSDictionaryCacheHash));
		CacheRegisterSyscacheCallback(TSTEMPLATEOID, InvalidateTSCacheCallBack,
									  PointerGetDatum(TSDictionaryCacheHash));

		/* Also make sure CacheMemoryContext exists */
		if (!CacheMemoryContext)
			CreateCacheMemoryContext();
	}

	/* Check single-entry cache */
	if (lastUsedDictionary && lastUsedDictionary->dictId == dictId &&
		lastUsedDictionary->isvalid)
		return lastUsedDictionary;

	/* Try to look up an existing entry */
	entry = (TSDictionaryCacheEntry *) hash_search(TSDictionaryCacheHash,
												   (void *) &dictId,
												   HASH_FIND, NULL);
	if (entry == NULL || !entry->isvalid)
	{
		/*
		 * If we didn't find one, we want to make one. But first look up the
		 * object to be sure the OID is real.
		 */
		HeapTuple	tpdict,
					tptmpl;
		Form_pg_ts_dict dict;
		Form_pg_ts_template ctemplate;
		MemoryContext saveCtx;

		tpdict = SearchSysCache1(TSDICTOID, ObjectIdGetDatum(dictId));
		if (!HeapTupleIsValid(tpdict))
			elog(ERROR, "cache lookup failed for text search dictionary %u",
				 dictId);
		dict = (Form_pg_ts_dict) GETSTRUCT(tpdict);

		/*
		 * Sanity checks
		 */
		if (!OidIsValid(dict->dicttemplate))
			elog(ERROR, "text search dictionary %u has no ctemplate", dictId);

		/*
		 * Retrieve dictionary's ctemplate
		 */
		tptmpl = SearchSysCache1(TSTEMPLATEOID,
								 ObjectIdGetDatum(dict->dicttemplate));
		if (!HeapTupleIsValid(tptmpl))
			elog(ERROR, "cache lookup failed for text search ctemplate %u",
				 dict->dicttemplate);
		ctemplate = (Form_pg_ts_template) GETSTRUCT(tptmpl);

		/*
		 * Sanity checks
		 */
		if (!OidIsValid(ctemplate->tmpllexize))
			elog(ERROR, "text search ctemplate %u has no lexize method",
				 ctemplate->tmpllexize);

		if (entry == NULL)
		{
			bool		found;

			/* Now make the cache entry */
			entry = (TSDictionaryCacheEntry *)
				hash_search(TSDictionaryCacheHash,
							(void *) &dictId,
							HASH_ENTER, &found);
			Assert(!found);		/* it wasn't there a moment ago */

			/* Create private___ memory context the first time through */
			saveCtx = AllocSetContextCreate(CacheMemoryContext,
			                                NameStr(dict->dictname),
			                                ALLOCSET_SMALL_MINSIZE,
			                                ALLOCSET_SMALL_INITSIZE,
			                                ALLOCSET_SMALL_MAXSIZE);
		}
		else
		{
			/* Clear the existing entry's private___ context */
			saveCtx = entry->dictCtx;
			MemoryContextResetAndDeleteChildren(saveCtx);
		}

		MemSet(entry, 0, sizeof(TSDictionaryCacheEntry));
		entry->dictId = dictId;
		entry->dictCtx = saveCtx;

		entry->lexizeOid = ctemplate->tmpllexize;

		if (OidIsValid(ctemplate->tmplinit))
		{
			List	   *dictoptions;
			Datum		opt;
			bool		isnull;
			MemoryContext oldcontext;

			/*
			 * Init method runs in dictionary's private___ memory context, and we
			 * make sure the options are stored there too
			 */
			oldcontext = MemoryContextSwitchTo(entry->dictCtx);

			opt = SysCacheGetAttr(TSDICTOID, tpdict,
								  Anum_pg_ts_dict_dictinitoption,
								  &isnull);
			if (isnull)
				dictoptions = NIL;
			else
				dictoptions = deserialize_deflist(opt);

			entry->dictData =
				DatumGetPointer(OidFunctionCall1(ctemplate->tmplinit,
											  PointerGetDatum(dictoptions)));

			MemoryContextSwitchTo(oldcontext);
		}

		ReleaseSysCache(tptmpl);
		ReleaseSysCache(tpdict);

		fmgr_info_cxt(entry->lexizeOid, &entry->lexize, entry->dictCtx);

		entry->isvalid = true;
	}

	lastUsedDictionary = entry;

	return entry;
}
Exemple #16
0
/*
** The GiST PickSplit method for segments
** We use Guttman's poly time split algorithm
*/
GIST_SPLITVEC *
gseg_picksplit(GistEntryVector *entryvec,
			   GIST_SPLITVEC *v)
{
	OffsetNumber i,
				j;
	SEG		   *datum_alpha,
			   *datum_beta;
	SEG		   *datum_l,
			   *datum_r;
	SEG		   *union_d,
			   *union_dl,
			   *union_dr;
	SEG		   *inter_d;
	bool		firsttime;
	float		size_alpha,
				size_beta,
				size_union,
				size_inter;
	float		size_waste,
				waste;
	float		size_l,
				size_r;
	int			nbytes;
	OffsetNumber seed_1 = 1,
				seed_2 = 2;
	OffsetNumber *left,
			   *right;
	OffsetNumber maxoff;

#ifdef GIST_DEBUG
	fprintf(stderr, "picksplit\n");
#endif

	maxoff = entryvec->n - 2;
	nbytes = (maxoff + 2) * sizeof(OffsetNumber);
	v->spl_left = (OffsetNumber *) palloc(nbytes);
	v->spl_right = (OffsetNumber *) palloc(nbytes);

	firsttime = true;
	waste = 0.0;

	for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
	{
		datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[i].key);
		for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
		{
			datum_beta = (SEG *) DatumGetPointer(entryvec->vector[j].key);

			/* compute the wasted space by unioning these guys */
			/* size_waste = size_union - size_inter; */
			union_d = seg_union(datum_alpha, datum_beta);
			rt_seg_size(union_d, &size_union);
			inter_d = seg_inter(datum_alpha, datum_beta);
			rt_seg_size(inter_d, &size_inter);
			size_waste = size_union - size_inter;

			/*
			 * are these a more promising split that what we've already seen?
			 */
			if (size_waste > waste || firsttime)
			{
				waste = size_waste;
				seed_1 = i;
				seed_2 = j;
				firsttime = false;
			}
		}
	}

	left = v->spl_left;
	v->spl_nleft = 0;
	right = v->spl_right;
	v->spl_nright = 0;

	datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[seed_1].key);
	datum_l = seg_union(datum_alpha, datum_alpha);
	rt_seg_size(datum_l, &size_l);
	datum_beta = (SEG *) DatumGetPointer(entryvec->vector[seed_2].key);
	datum_r = seg_union(datum_beta, datum_beta);
	rt_seg_size(datum_r, &size_r);

	/*
	 * Now split up the regions between the two seeds.	An important property
	 * of this split algorithm is that the split vector v has the indices of
	 * items to be split in order in its left and right vectors.  We exploit
	 * this property by doing a merge in the code that actually splits the
	 * page.
	 *
	 * For efficiency, we also place the new index tuple in this loop. This is
	 * handled at the very end, when we have placed all the existing tuples
	 * and i == maxoff + 1.
	 */

	maxoff = OffsetNumberNext(maxoff);
	for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
	{
		/*
		 * If we've already decided where to place this item, just put it on
		 * the right list.	Otherwise, we need to figure out which page needs
		 * the least enlargement in order to store the item.
		 */

		if (i == seed_1)
		{
			*left++ = i;
			v->spl_nleft++;
			continue;
		}
		else if (i == seed_2)
		{
			*right++ = i;
			v->spl_nright++;
			continue;
		}

		/* okay, which page needs least enlargement? */
		datum_alpha = (SEG *) DatumGetPointer(entryvec->vector[i].key);
		union_dl = seg_union(datum_l, datum_alpha);
		union_dr = seg_union(datum_r, datum_alpha);
		rt_seg_size(union_dl, &size_alpha);
		rt_seg_size(union_dr, &size_beta);

		/* pick which page to add it to */
		if (size_alpha - size_l < size_beta - size_r)
		{
			datum_l = union_dl;
			size_l = size_alpha;
			*left++ = i;
			v->spl_nleft++;
		}
		else
		{
			datum_r = union_dr;
			size_r = size_alpha;
			*right++ = i;
			v->spl_nright++;
		}
	}
	*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */

	v->spl_ldatum = PointerGetDatum(datum_l);
	v->spl_rdatum = PointerGetDatum(datum_r);

	return v;
}
/*
 *	compute_tsvector_stats() -- compute statistics for a tsvector column
 *
 *	This functions computes statistics that are useful for determining @@
 *	operations' selectivity, along with the fraction of non-null rows and
 *	average width.
 *
 *	Instead of finding the most common values, as we do for most datatypes,
 *	we're looking for the most common lexemes. This is more useful, because
 *	there most probably won't be any two rows with the same tsvector and thus
 *	the notion of a MCV is a bit bogus with this datatype. With a list of the
 *	most common lexemes we can do a better job at figuring out @@ selectivity.
 *
 *	For the same reasons we assume that tsvector columns are unique when
 *	determining the number of distinct values.
 *
 *	The algorithm used is Lossy Counting, as proposed in the paper "Approximate
 *	frequency counts over data streams" by G. S. Manku and R. Motwani, in
 *	Proceedings of the 28th International Conference on Very Large Data Bases,
 *	Hong Kong, China, August 2002, section 4.2. The paper is available at
 *	http://www.vldb.org/conf/2002/S10P03.pdf
 *
 *	The Lossy Counting (aka LC) algorithm goes like this:
 *	Let D be a set of triples (e, f, d), where e is an element value, f is
 *	that element's frequency (occurrence count) and d is the maximum error in
 *	f.	We start with D empty and process the elements in batches of size
 *	w. (The batch size is also known as "bucket size".) Let the current batch
 *	number be b_current, starting with 1. For each element e we either
 *	increment its f count, if it's already in D, or insert a new triple into D
 *	with values (e, 1, b_current - 1). After processing each batch we prune D,
 *	by removing from it all elements with f + d <= b_current. Finally, we
 *	gather elements with largest f.  The LC paper proves error bounds on f
 *	dependent on the batch size w, and shows that the required table size
 *	is no more than a few times w.
 *
 *	We use a hashtable for the D structure and a bucket width of
 *	statistics_target * 10, where 10 is an arbitrarily chosen constant,
 *	meant to approximate the number of lexemes in a single tsvector.
 */
static void
compute_tsvector_stats(VacAttrStats *stats,
					   AnalyzeAttrFetchFunc fetchfunc,
					   int samplerows,
					   double totalrows)
{
	int			num_mcelem;
	int			null_cnt = 0;
	double		total_width = 0;

	/* This is D from the LC algorithm. */
	HTAB	   *lexemes_tab;
	HASHCTL		hash_ctl;
	HASH_SEQ_STATUS scan_status;

	/* This is the current bucket number from the LC algorithm */
	int			b_current;

	/* This is 'w' from the LC algorithm */
	int			bucket_width;
	int			vector_no,
				lexeme_no;
	LexemeHashKey hash_key;
	TrackItem  *item;

	/* We want statistics_target * 10 lexemes in the MCELEM array */
	num_mcelem = stats->attr->attstattarget * 10;

	/*
	 * We set bucket width equal to the target number of result lexemes. This
	 * is probably about right but perhaps might need to be scaled up or down
	 * a bit?
	 */
	bucket_width = num_mcelem;

	/*
	 * Create the hashtable. It will be in local memory, so we don't need to
	 * worry about initial size too much. Also we don't need to pay any
	 * attention to locking and memory management.
	 */
	MemSet(&hash_ctl, 0, sizeof(hash_ctl));
	hash_ctl.keysize = sizeof(LexemeHashKey);
	hash_ctl.entrysize = sizeof(TrackItem);
	hash_ctl.hash = lexeme_hash;
	hash_ctl.match = lexeme_match;
	hash_ctl.hcxt = CurrentMemoryContext;
	lexemes_tab = hash_create("Analyzed lexemes table",
							  bucket_width * 4,
							  &hash_ctl,
					HASH_ELEM | HASH_FUNCTION | HASH_COMPARE | HASH_CONTEXT);

	/* Initialize counters. */
	b_current = 1;
	lexeme_no = 1;

	/* Loop over the tsvectors. */
	for (vector_no = 0; vector_no < samplerows; vector_no++)
	{
		Datum		value;
		bool		isnull;
		TSVector	vector;
		WordEntry  *curentryptr;
		char	   *lexemesptr;
		int			j;

		vacuum_delay_point();

		value = fetchfunc(stats, vector_no, &isnull);

		/*
		 * Check for null/nonnull.
		 */
		if (isnull)
		{
			null_cnt++;
			continue;
		}

		/*
		 * Add up widths for average-width calculation.  Since it's a
		 * tsvector, we know it's varlena.  As in the regular
		 * compute_minimal_stats function, we use the toasted width for this
		 * calculation.
		 */
		total_width += VARSIZE_ANY(DatumGetPointer(value));

		/*
		 * Now detoast the tsvector if needed.
		 */
		vector = DatumGetTSVector(value);

		/*
		 * We loop through the lexemes in the tsvector and add them to our
		 * tracking hashtable.	Note: the hashtable entries will point into
		 * the (detoasted) tsvector value, therefore we cannot free that
		 * storage until we're done.
		 */
		lexemesptr = STRPTR(vector);
		curentryptr = ARRPTR(vector);
		for (j = 0; j < vector->size; j++)
		{
			bool		found;

			/* Construct a hash key */
			hash_key.lexeme = lexemesptr + curentryptr->pos;
			hash_key.length = curentryptr->len;

			/* Lookup current lexeme in hashtable, adding it if new */
			item = (TrackItem *) hash_search(lexemes_tab,
											 (const void *) &hash_key,
											 HASH_ENTER, &found);

			if (found)
			{
				/* The lexeme is already on the tracking list */
				item->frequency++;
			}
			else
			{
				/* Initialize new tracking list element */
				item->frequency = 1;
				item->delta = b_current - 1;
			}

			/* We prune the D structure after processing each bucket */
			if (lexeme_no % bucket_width == 0)
			{
				prune_lexemes_hashtable(lexemes_tab, b_current);
				b_current++;
			}

			/* Advance to the next WordEntry in the tsvector */
			lexeme_no++;
			curentryptr++;
		}
	}

	/* We can only compute real stats if we found some non-null values. */
	if (null_cnt < samplerows)
	{
		int			nonnull_cnt = samplerows - null_cnt;
		int			i;
		TrackItem **sort_table;
		int			track_len;
		int			minfreq,
					maxfreq;

		stats->stats_valid = true;
		/* Do the simple null-frac and average width stats */
		stats->stanullfrac = (double) null_cnt / (double) samplerows;
		stats->stawidth = total_width / (double) nonnull_cnt;

		/* Assume it's a unique column (see notes above) */
		stats->stadistinct = -1.0;

		/*
		 * Determine the top-N lexemes by simply copying pointers from the
		 * hashtable into an array and applying qsort()
		 */
		track_len = hash_get_num_entries(lexemes_tab);

		sort_table = (TrackItem **) palloc(sizeof(TrackItem *) * track_len);

		hash_seq_init(&scan_status, lexemes_tab);
		i = 0;
		while ((item = (TrackItem *) hash_seq_search(&scan_status)) != NULL)
		{
			sort_table[i++] = item;
		}
		Assert(i == track_len);

		qsort(sort_table, track_len, sizeof(TrackItem *),
			  trackitem_compare_frequencies_desc);

		/* Suppress any single-occurrence items */
		while (track_len > 0)
		{
			if (sort_table[track_len - 1]->frequency > 1)
				break;
			track_len--;
		}

		/* Determine the number of most common lexemes to be stored */
		if (num_mcelem > track_len)
			num_mcelem = track_len;

		/* Generate MCELEM slot entry */
		if (num_mcelem > 0)
		{
			MemoryContext old_context;
			Datum	   *mcelem_values;
			float4	   *mcelem_freqs;

			/* Grab the minimal and maximal frequencies that will get stored */
			minfreq = sort_table[num_mcelem - 1]->frequency;
			maxfreq = sort_table[0]->frequency;

			/*
			 * We want to store statistics sorted on the lexeme value using
			 * first length, then byte-for-byte comparison. The reason for
			 * doing length comparison first is that we don't care about the
			 * ordering so long as it's consistent, and comparing lengths
			 * first gives us a chance to avoid a strncmp() call.
			 *
			 * This is different from what we do with scalar statistics --
			 * they get sorted on frequencies. The rationale is that we
			 * usually search through most common elements looking for a
			 * specific value, so we can grab its frequency.  When values are
			 * presorted we can employ binary search for that.	See
			 * ts_selfuncs.c for a real usage scenario.
			 */
			qsort(sort_table, num_mcelem, sizeof(TrackItem *),
				  trackitem_compare_lexemes);

			/* Must copy the target values into anl_context */
			old_context = MemoryContextSwitchTo(stats->anl_context);

			/*
			 * We sorted statistics on the lexeme value, but we want to be
			 * able to find out the minimal and maximal frequency without
			 * going through all the values.  We keep those two extra
			 * frequencies in two extra cells in mcelem_freqs.
			 */
			mcelem_values = (Datum *) palloc(num_mcelem * sizeof(Datum));
			mcelem_freqs = (float4 *) palloc((num_mcelem + 2) * sizeof(float4));

			for (i = 0; i < num_mcelem; i++)
			{
				TrackItem  *item = sort_table[i];

				mcelem_values[i] =
					PointerGetDatum(cstring_to_text_with_len(item->key.lexeme,
														  item->key.length));
				mcelem_freqs[i] = (double) item->frequency / (double) nonnull_cnt;
			}
			mcelem_freqs[i++] = (double) minfreq / (double) nonnull_cnt;
			mcelem_freqs[i] = (double) maxfreq / (double) nonnull_cnt;
			MemoryContextSwitchTo(old_context);

			stats->stakind[0] = STATISTIC_KIND_MCELEM;
			stats->staop[0] = TextEqualOperator;
			stats->stanumbers[0] = mcelem_freqs;
			/* See above comment about two extra frequency fields */
			stats->numnumbers[0] = num_mcelem + 2;
			stats->stavalues[0] = mcelem_values;
			stats->numvalues[0] = num_mcelem;
			/* We are storing text values */
			stats->statypid[0] = TEXTOID;
			stats->statyplen[0] = -1;	/* typlen, -1 for varlena */
			stats->statypbyval[0] = false;
			stats->statypalign[0] = 'i';
		}
	}
	else
	{
		/* We found only nulls; assume the column is entirely null */
		stats->stats_valid = true;
		stats->stanullfrac = 1.0;
		stats->stawidth = 0;	/* "unknown" */
		stats->stadistinct = 0.0;		/* "unknown" */
	}

	/*
	 * We don't need to bother cleaning up any of our temporary palloc's. The
	 * hashtable should also go away, as it used a child memory context.
	 */
}
Exemple #18
0
static TSLexeme *
LexizeExec(LexizeData *ld, ParsedLex **correspondLexem)
{
	int			i;
	ListDictionary *map;
	TSDictionaryCacheEntry *dict;
	TSLexeme   *res;

	if (ld->curDictId == InvalidOid)
	{
		/*
		 * usial mode: dictionary wants only one word, but we should keep in
		 * mind that we should go through all stack
		 */

		while (ld->towork.head)
		{
			ParsedLex  *curVal = ld->towork.head;
			char	   *curValLemm = curVal->lemm;
			int			curValLenLemm = curVal->lenlemm;

			map = ld->cfg->map + curVal->type;

			if (curVal->type == 0 || curVal->type >= ld->cfg->lenmap || map->len == 0)
			{
				/* skip this type of lexeme */
				RemoveHead(ld);
				continue;
			}

			for (i = ld->posDict; i < map->len; i++)
			{
				dict = lookup_ts_dictionary_cache(map->dictIds[i]);

				ld->dictState.isend = ld->dictState.getnext = false;
				ld->dictState.private_state = NULL;
				res = (TSLexeme *) DatumGetPointer(FunctionCall4(
															 &(dict->lexize),
											 PointerGetDatum(dict->dictData),
												 PointerGetDatum(curValLemm),
												Int32GetDatum(curValLenLemm),
											  PointerGetDatum(&ld->dictState)
																 ));

				if (ld->dictState.getnext)
				{
					/*
					 * dictionary wants next word, so setup and store current
					 * position and go to multiword mode
					 */

					ld->curDictId = DatumGetObjectId(map->dictIds[i]);
					ld->posDict = i + 1;
					ld->curSub = curVal->next;
					if (res)
						setNewTmpRes(ld, curVal, res);
					return LexizeExec(ld, correspondLexem);
				}

				if (!res)		/* dictionary doesn't know this lexeme */
					continue;

				if (res->flags & TSL_FILTER)
				{
					curValLemm = res->lexeme;
					curValLenLemm = strlen(res->lexeme);
					continue;
				}

				RemoveHead(ld);
				setCorrLex(ld, correspondLexem);
				return res;
			}

			RemoveHead(ld);
		}
	}
	else
	{							/* curDictId is valid */
		dict = lookup_ts_dictionary_cache(ld->curDictId);

		/*
		 * Dictionary ld->curDictId asks  us about following words
		 */

		while (ld->curSub)
		{
			ParsedLex  *curVal = ld->curSub;

			map = ld->cfg->map + curVal->type;

			if (curVal->type != 0)
			{
				bool		dictExists = false;

				if (curVal->type >= ld->cfg->lenmap || map->len == 0)
				{
					/* skip this type of lexeme */
					ld->curSub = curVal->next;
					continue;
				}

				/*
				 * We should be sure that current type of lexeme is recognized
				 * by our dictinonary: we just check is it exist in list of
				 * dictionaries ?
				 */
				for (i = 0; i < map->len && !dictExists; i++)
					if (ld->curDictId == DatumGetObjectId(map->dictIds[i]))
						dictExists = true;

				if (!dictExists)
				{
					/*
					 * Dictionary can't work with current tpe of lexeme,
					 * return to basic mode and redo all stored lexemes
					 */
					ld->curDictId = InvalidOid;
					return LexizeExec(ld, correspondLexem);
				}
			}

			ld->dictState.isend = (curVal->type == 0) ? true : false;
			ld->dictState.getnext = false;

			res = (TSLexeme *) DatumGetPointer(FunctionCall4(
															 &(dict->lexize),
											 PointerGetDatum(dict->dictData),
											   PointerGetDatum(curVal->lemm),
											  Int32GetDatum(curVal->lenlemm),
											  PointerGetDatum(&ld->dictState)
															 ));

			if (ld->dictState.getnext)
			{
				/* Dictionary wants one more */
				ld->curSub = curVal->next;
				if (res)
					setNewTmpRes(ld, curVal, res);
				continue;
			}

			if (res || ld->tmpRes)
			{
				/*
				 * Dictionary normalizes lexemes, so we remove from stack all
				 * used lexemes, return to basic mode and redo end of stack
				 * (if it exists)
				 */
				if (res)
				{
					moveToWaste(ld, ld->curSub);
				}
				else
				{
					res = ld->tmpRes;
					moveToWaste(ld, ld->lastRes);
				}

				/* reset to initial state */
				ld->curDictId = InvalidOid;
				ld->posDict = 0;
				ld->lastRes = NULL;
				ld->tmpRes = NULL;
				setCorrLex(ld, correspondLexem);
				return res;
			}

			/*
			 * Dict don't want next lexem and didn't recognize anything, redo
			 * from ld->towork.head
			 */
			ld->curDictId = InvalidOid;
			return LexizeExec(ld, correspondLexem);
		}
	}

	setCorrLex(ld, correspondLexem);
	return NULL;
}
Datum
_numeric_weighted_mean_intermediate(PG_FUNCTION_ARGS)
{
	WeightedMeanInternalState *state;
	Datum		value,
				weight,
				temp_total,
				old_sum,
				old_weight;
	MemoryContext aggcontext,
				oldcontext;

	if (!AggCheckCallContext(fcinfo, &aggcontext))
		/* cannot be called directly because of internal-type argument */
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("_numeric_weighted_mean_intermediate called in non-aggregate context")));

	if (PG_ARGISNULL(0))
	{
		oldcontext = MemoryContextSwitchTo(aggcontext);
		state = (WeightedMeanInternalState *) palloc(sizeof(WeightedMeanInternalState));
		state->running_sum = make_numeric(0);
		state->running_weight = make_numeric(0);
		MemoryContextSwitchTo(oldcontext);
	}
	else
		state = (WeightedMeanInternalState *) PG_GETARG_POINTER(0);

	/*
	 * We're non-strict, so we MUST check args for nullity ourselves before
	 * using them.  To preserve the behaviour of null inputs, we skip updating
	 * on them.
	 */

	if (PG_ARGISNULL(1) || PG_ARGISNULL(2))
		PG_RETURN_POINTER(state);

	/*
	 * We fetch and process the input in the shortlived calling context to
	 * avoid leaking memory in aggcontext per cycle. We force the input to be
	 * detoasted here, too, in the shortlived context. (PG_GETARG_DATUM does
	 * not detoast, but PG_GETARG_NUMERIC does.)
	 */

	value = NumericGetDatum(PG_GETARG_NUMERIC(1));
	weight = NumericGetDatum(PG_GETARG_NUMERIC(2));
	temp_total = DirectFunctionCall2(numeric_mul, value, weight);

	/*
	 * The new running totals must be allocated in the long-lived context.  We
	 * rely on the numeric_* functions to clean up after themselves (which they
	 * currently do, but only if the input is already detoasted); we could play
	 * safe and copy only the final results into aggcontext, but this turns out
	 * to have a measurable performance hit.
	 */

	oldcontext = MemoryContextSwitchTo(aggcontext);

	old_sum = state->running_sum;
	old_weight = state->running_weight;

	state->running_sum = DirectFunctionCall2(numeric_add,
											 state->running_sum, temp_total);

	state->running_weight = DirectFunctionCall2(numeric_add,
												state->running_weight, weight);

	pfree(DatumGetPointer(old_sum));
	pfree(DatumGetPointer(old_weight));

	MemoryContextSwitchTo(oldcontext);

	PG_RETURN_POINTER(state);
}
Exemple #20
0
/*
 * Parse string and lexize words.
 *
 * prs will be filled in.
 */
void
parsetext(Oid cfgId, ParsedText *prs, char *buf, int buflen)
{
	int			type,
				lenlemm;
	char	   *lemm = NULL;
	LexizeData	ldata;
	TSLexeme   *norms;
	TSConfigCacheEntry *cfg;
	TSParserCacheEntry *prsobj;
	void	   *prsdata;

	cfg = lookup_ts_config_cache(cfgId);
	prsobj = lookup_ts_parser_cache(cfg->prsId);

	prsdata = (void *) DatumGetPointer(FunctionCall2(&prsobj->prsstart,
													 PointerGetDatum(buf),
													 Int32GetDatum(buflen)));

	LexizeInit(&ldata, cfg);

	do
	{
		type = DatumGetInt32(FunctionCall3(&(prsobj->prstoken),
										   PointerGetDatum(prsdata),
										   PointerGetDatum(&lemm),
										   PointerGetDatum(&lenlemm)));

		if (type > 0 && lenlemm >= MAXSTRLEN)
		{
#ifdef IGNORE_LONGLEXEME
			ereport(NOTICE,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
			continue;
#else
			ereport(ERROR,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
#endif
		}

		LexizeAddLemm(&ldata, type, lemm, lenlemm);

		while ((norms = LexizeExec(&ldata, NULL)) != NULL)
		{
			TSLexeme   *ptr = norms;

			prs->pos++;			/* set pos */

			while (ptr->lexeme)
			{
				if (prs->curwords == prs->lenwords)
				{
					prs->lenwords *= 2;
					prs->words = (ParsedWord *) repalloc((void *) prs->words, prs->lenwords * sizeof(ParsedWord));
				}

				if (ptr->flags & TSL_ADDPOS)
					prs->pos++;
				prs->words[prs->curwords].len = strlen(ptr->lexeme);
				prs->words[prs->curwords].word = ptr->lexeme;
				prs->words[prs->curwords].nvariant = ptr->nvariant;
				prs->words[prs->curwords].flags = ptr->flags & TSL_PREFIX;
				prs->words[prs->curwords].alen = 0;
				prs->words[prs->curwords].pos.pos = LIMITPOS(prs->pos);
				ptr++;
				prs->curwords++;
			}
			pfree(norms);
		}
	} while (type > 0);

	FunctionCall1(&(prsobj->prsend), PointerGetDatum(prsdata));
}
Exemple #21
0
void
ginNewScanKey(IndexScanDesc scan)
{
	ScanKey		scankey = scan->keyData;
	GinScanOpaque so = (GinScanOpaque) scan->opaque;
	int			i;
	bool		hasNullQuery = false;

	/* if no scan keys provided, allocate extra EVERYTHING GinScanKey */
	so->keys = (GinScanKey)
		palloc(Max(scan->numberOfKeys, 1) * sizeof(GinScanKeyData));
	so->nkeys = 0;

	/* initialize expansible array of GinScanEntry pointers */
	so->totalentries = 0;
	so->allocentries = 32;
	so->entries = (GinScanEntry *)
		palloc0(so->allocentries * sizeof(GinScanEntry));

	so->isVoidRes = false;

	for (i = 0; i < scan->numberOfKeys; i++)
	{
		ScanKey		skey = &scankey[i];
		Datum	   *queryValues;
		int32		nQueryValues = 0;
		bool	   *partial_matches = NULL;
		Pointer    *extra_data = NULL;
		bool	   *nullFlags = NULL;
		int32		searchMode = GIN_SEARCH_MODE_DEFAULT;

		/*
		 * We assume that GIN-indexable operators are strict, so a null query
		 * argument means an unsatisfiable query.
		 */
		if (skey->sk_flags & SK_ISNULL)
		{
			so->isVoidRes = true;
			break;
		}

		/* OK to call the extractQueryFn */
		queryValues = (Datum *)
			DatumGetPointer(FunctionCall7(&so->ginstate.extractQueryFn[skey->sk_attno - 1],
										  skey->sk_argument,
										  PointerGetDatum(&nQueryValues),
										  UInt16GetDatum(skey->sk_strategy),
										  PointerGetDatum(&partial_matches),
										  PointerGetDatum(&extra_data),
										  PointerGetDatum(&nullFlags),
										  PointerGetDatum(&searchMode)));

		/*
		 * If bogus searchMode is returned, treat as GIN_SEARCH_MODE_ALL; note
		 * in particular we don't allow extractQueryFn to select
		 * GIN_SEARCH_MODE_EVERYTHING.
		 */
		if (searchMode < GIN_SEARCH_MODE_DEFAULT ||
			searchMode > GIN_SEARCH_MODE_ALL)
			searchMode = GIN_SEARCH_MODE_ALL;

		/* Non-default modes require the index to have placeholders */
		if (searchMode != GIN_SEARCH_MODE_DEFAULT)
			hasNullQuery = true;

		/*
		 * In default mode, no keys means an unsatisfiable query.
		 */
		if (queryValues == NULL || nQueryValues <= 0)
		{
			if (searchMode == GIN_SEARCH_MODE_DEFAULT)
			{
				so->isVoidRes = true;
				break;
			}
			nQueryValues = 0;	/* ensure sane value */
		}

		/*
		 * If the extractQueryFn didn't create a nullFlags array, create one,
		 * assuming that everything's non-null.  Otherwise, run through the
		 * array and make sure each value is exactly 0 or 1; this ensures
		 * binary compatibility with the GinNullCategory representation. While
		 * at it, detect whether any null keys are present.
		 */
		if (nullFlags == NULL)
			nullFlags = (bool *) palloc0(nQueryValues * sizeof(bool));
		else
		{
			int32		j;

			for (j = 0; j < nQueryValues; j++)
			{
				if (nullFlags[j])
				{
					nullFlags[j] = true;		/* not any other nonzero value */
					hasNullQuery = true;
				}
			}
		}
		/* now we can use the nullFlags as category codes */

		ginFillScanKey(so, skey->sk_attno,
					   skey->sk_strategy, searchMode,
					   skey->sk_argument, nQueryValues,
					   queryValues, (GinNullCategory *) nullFlags,
					   partial_matches, extra_data);
	}

	/*
	 * If there are no regular scan keys, generate an EVERYTHING scankey to
	 * drive a full-index scan.
	 */
	if (so->nkeys == 0 && !so->isVoidRes)
	{
		hasNullQuery = true;
		ginFillScanKey(so, FirstOffsetNumber,
					   InvalidStrategy, GIN_SEARCH_MODE_EVERYTHING,
					   (Datum) 0, 0,
					   NULL, NULL, NULL, NULL);
	}

	/*
	 * If the index is version 0, it may be missing null and placeholder
	 * entries, which would render searches for nulls and full-index scans
	 * unreliable.	Throw an error if so.
	 */
	if (hasNullQuery && !so->isVoidRes)
	{
		GinStatsData ginStats;

		ginGetStats(scan->indexRelation, &ginStats);
		if (ginStats.ginVersion < 1)
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("old GIN indexes do not support whole-index scans nor searches for nulls"),
					 errhint("To fix this, do REINDEX INDEX \"%s\".",
							 RelationGetRelationName(scan->indexRelation))));
	}

	pgstat_count_index_scan(scan->indexRelation);
}
Exemple #22
0
void
hlparsetext(Oid cfgId, HeadlineParsedText *prs, TSQuery query, char *buf, int buflen)
{
	int			type,
				lenlemm;
	char	   *lemm = NULL;
	LexizeData	ldata;
	TSLexeme   *norms;
	ParsedLex  *lexs;
	TSConfigCacheEntry *cfg;
	TSParserCacheEntry *prsobj;
	void	   *prsdata;

	cfg = lookup_ts_config_cache(cfgId);
	prsobj = lookup_ts_parser_cache(cfg->prsId);

	prsdata = (void *) DatumGetPointer(FunctionCall2(&(prsobj->prsstart),
													 PointerGetDatum(buf),
													 Int32GetDatum(buflen)));

	LexizeInit(&ldata, cfg);

	do
	{
		type = DatumGetInt32(FunctionCall3(&(prsobj->prstoken),
										   PointerGetDatum(prsdata),
										   PointerGetDatum(&lemm),
										   PointerGetDatum(&lenlemm)));

		if (type > 0 && lenlemm >= MAXSTRLEN)
		{
#ifdef IGNORE_LONGLEXEME
			ereport(NOTICE,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
			continue;
#else
			ereport(ERROR,
					(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
					 errmsg("word is too long to be indexed"),
					 errdetail("Words longer than %d characters are ignored.",
							   MAXSTRLEN)));
#endif
		}

		LexizeAddLemm(&ldata, type, lemm, lenlemm);

		do
		{
			if ((norms = LexizeExec(&ldata, &lexs)) != NULL)
				addHLParsedLex(prs, query, lexs, norms);
			else
				addHLParsedLex(prs, query, lexs, NULL);
		} while (norms);

	} while (type > 0);

	FunctionCall1(&(prsobj->prsend), PointerGetDatum(prsdata));
}
Exemple #23
0
/* ----------------------------------------------------------------
 *		ProcedureCreate
 *
 * Note: allParameterTypes, parameterModes, parameterNames, and proconfig
 * are either arrays of the proper types or NULL.  We declare them Datum,
 * not "ArrayType *", to avoid importing array.h into pg_proc_fn.h.
 * ----------------------------------------------------------------
 */
Oid
ProcedureCreate(const char *procedureName,
				Oid procNamespace,
				bool replace,
				bool returnsSet,
				Oid returnType,
				Oid languageObjectId,
				Oid languageValidator,
				const char *prosrc,
				const char *probin,
				bool isAgg,
				bool isWindowFunc,
				bool security_definer,
				bool isStrict,
				char volatility,
				oidvector *parameterTypes,
				Datum allParameterTypes,
				Datum parameterModes,
				Datum parameterNames,
				List *parameterDefaults,
				Datum proconfig,
				float4 procost,
				float4 prorows)
{
	Oid			retval;
	int			parameterCount;
	int			allParamCount;
	Oid		   *allParams;
	bool		genericInParam = false;
	bool		genericOutParam = false;
	bool		internalInParam = false;
	bool		internalOutParam = false;
	Oid			variadicType = InvalidOid;
	Oid			proowner = GetUserId();
	Acl		   *proacl = NULL;
	Relation	rel;
	HeapTuple	tup;
	HeapTuple	oldtup;
	bool		nulls[Natts_pg_proc];
	Datum		values[Natts_pg_proc];
	bool		replaces[Natts_pg_proc];
	Oid			relid;
	NameData	procname;
	TupleDesc	tupDesc;
	bool		is_update;
	ObjectAddress myself,
				referenced;
	int			i;

	/*
	 * sanity checks
	 */
	Assert(PointerIsValid(prosrc));

	parameterCount = parameterTypes->dim1;
	if (parameterCount < 0 || parameterCount > FUNC_MAX_ARGS)
		ereport(ERROR,
				(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
				 errmsg_plural("functions cannot have more than %d argument",
							   "functions cannot have more than %d arguments",
							   FUNC_MAX_ARGS,
							   FUNC_MAX_ARGS)));
	/* note: the above is correct, we do NOT count output arguments */

	if (allParameterTypes != PointerGetDatum(NULL))
	{
		/*
		 * We expect the array to be a 1-D OID array; verify that. We don't
		 * need to use deconstruct_array() since the array data is just going
		 * to look like a C array of OID values.
		 */
		ArrayType  *allParamArray = (ArrayType *) DatumGetPointer(allParameterTypes);

		allParamCount = ARR_DIMS(allParamArray)[0];
		if (ARR_NDIM(allParamArray) != 1 ||
			allParamCount <= 0 ||
			ARR_HASNULL(allParamArray) ||
			ARR_ELEMTYPE(allParamArray) != OIDOID)
			elog(ERROR, "allParameterTypes is not a 1-D Oid array");
		allParams = (Oid *) ARR_DATA_PTR(allParamArray);
		Assert(allParamCount >= parameterCount);
		/* we assume caller got the contents right */
	}
	else
	{
		allParamCount = parameterCount;
		allParams = parameterTypes->values;
	}

	/*
	 * Do not allow polymorphic return type unless at least one input argument
	 * is polymorphic.	Also, do not allow return type INTERNAL unless at
	 * least one input argument is INTERNAL.
	 */
	for (i = 0; i < parameterCount; i++)
	{
		switch (parameterTypes->values[i])
		{
			case ANYARRAYOID:
			case ANYELEMENTOID:
			case ANYNONARRAYOID:
			case ANYENUMOID:
				genericInParam = true;
				break;
			case INTERNALOID:
				internalInParam = true;
				break;
		}
	}

	if (allParameterTypes != PointerGetDatum(NULL))
	{
		for (i = 0; i < allParamCount; i++)
		{
			/*
			 * We don't bother to distinguish input and output params here, so
			 * if there is, say, just an input INTERNAL param then we will
			 * still set internalOutParam.	This is OK since we don't really
			 * care.
			 */
			switch (allParams[i])
			{
				case ANYARRAYOID:
				case ANYELEMENTOID:
				case ANYNONARRAYOID:
				case ANYENUMOID:
					genericOutParam = true;
					break;
				case INTERNALOID:
					internalOutParam = true;
					break;
			}
		}
	}

	if ((IsPolymorphicType(returnType) || genericOutParam)
		&& !genericInParam)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
				 errmsg("cannot determine result data type"),
				 errdetail("A function returning a polymorphic type must have at least one polymorphic argument.")));

	if ((returnType == INTERNALOID || internalOutParam) && !internalInParam)
		ereport(ERROR,
				(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
				 errmsg("unsafe use of pseudo-type \"internal\""),
				 errdetail("A function returning \"internal\" must have at least one \"internal\" argument.")));

	/*
	 * don't allow functions of complex types that have the same name as
	 * existing attributes of the type
	 */
	if (parameterCount == 1 &&
		OidIsValid(parameterTypes->values[0]) &&
		(relid = typeidTypeRelid(parameterTypes->values[0])) != InvalidOid &&
		get_attnum(relid, procedureName) != InvalidAttrNumber)
		ereport(ERROR,
				(errcode(ERRCODE_DUPLICATE_COLUMN),
				 errmsg("\"%s\" is already an attribute of type %s",
						procedureName,
						format_type_be(parameterTypes->values[0]))));

	if (parameterModes != PointerGetDatum(NULL))
	{
		/*
		 * We expect the array to be a 1-D CHAR array; verify that. We don't
		 * need to use deconstruct_array() since the array data is just going
		 * to look like a C array of char values.
		 */
		ArrayType  *modesArray = (ArrayType *) DatumGetPointer(parameterModes);
		char	   *modes;

		if (ARR_NDIM(modesArray) != 1 ||
			ARR_DIMS(modesArray)[0] != allParamCount ||
			ARR_HASNULL(modesArray) ||
			ARR_ELEMTYPE(modesArray) != CHAROID)
			elog(ERROR, "parameterModes is not a 1-D char array");
		modes = (char *) ARR_DATA_PTR(modesArray);

		/*
		 * Only the last input parameter can be variadic; if it is, save its
		 * element type.  Errors here are just elog since caller should have
		 * checked this already.
		 */
		for (i = 0; i < allParamCount; i++)
		{
			switch (modes[i])
			{
				case PROARGMODE_IN:
				case PROARGMODE_INOUT:
					if (OidIsValid(variadicType))
						elog(ERROR, "variadic parameter must be last");
					break;
				case PROARGMODE_OUT:
				case PROARGMODE_TABLE:
					/* okay */
					break;
				case PROARGMODE_VARIADIC:
					if (OidIsValid(variadicType))
						elog(ERROR, "variadic parameter must be last");
					switch (allParams[i])
					{
						case ANYOID:
							variadicType = ANYOID;
							break;
						case ANYARRAYOID:
							variadicType = ANYELEMENTOID;
							break;
						default:
							variadicType = get_element_type(allParams[i]);
							if (!OidIsValid(variadicType))
								elog(ERROR, "variadic parameter is not an array");
							break;
					}
					break;
				default:
					elog(ERROR, "invalid parameter mode '%c'", modes[i]);
					break;
			}
		}
	}

	/*
	 * All seems OK; prepare the data to be inserted into pg_proc.
	 */

	for (i = 0; i < Natts_pg_proc; ++i)
	{
		nulls[i] = false;
		values[i] = (Datum) 0;
		replaces[i] = true;
	}

	namestrcpy(&procname, procedureName);
	values[Anum_pg_proc_proname - 1] = NameGetDatum(&procname);
	values[Anum_pg_proc_pronamespace - 1] = ObjectIdGetDatum(procNamespace);
	values[Anum_pg_proc_proowner - 1] = ObjectIdGetDatum(proowner);
	values[Anum_pg_proc_prolang - 1] = ObjectIdGetDatum(languageObjectId);
	values[Anum_pg_proc_procost - 1] = Float4GetDatum(procost);
	values[Anum_pg_proc_prorows - 1] = Float4GetDatum(prorows);
	values[Anum_pg_proc_provariadic - 1] = ObjectIdGetDatum(variadicType);
	values[Anum_pg_proc_proisagg - 1] = BoolGetDatum(isAgg);
	values[Anum_pg_proc_proiswindow - 1] = BoolGetDatum(isWindowFunc);
	values[Anum_pg_proc_prosecdef - 1] = BoolGetDatum(security_definer);
	values[Anum_pg_proc_proisstrict - 1] = BoolGetDatum(isStrict);
	values[Anum_pg_proc_proretset - 1] = BoolGetDatum(returnsSet);
	values[Anum_pg_proc_provolatile - 1] = CharGetDatum(volatility);
	values[Anum_pg_proc_pronargs - 1] = UInt16GetDatum(parameterCount);
	values[Anum_pg_proc_pronargdefaults - 1] = UInt16GetDatum(list_length(parameterDefaults));
	values[Anum_pg_proc_prorettype - 1] = ObjectIdGetDatum(returnType);
	values[Anum_pg_proc_proargtypes - 1] = PointerGetDatum(parameterTypes);
	if (allParameterTypes != PointerGetDatum(NULL))
		values[Anum_pg_proc_proallargtypes - 1] = allParameterTypes;
	else
		nulls[Anum_pg_proc_proallargtypes - 1] = true;
	if (parameterModes != PointerGetDatum(NULL))
		values[Anum_pg_proc_proargmodes - 1] = parameterModes;
	else
		nulls[Anum_pg_proc_proargmodes - 1] = true;
	if (parameterNames != PointerGetDatum(NULL))
		values[Anum_pg_proc_proargnames - 1] = parameterNames;
	else
		nulls[Anum_pg_proc_proargnames - 1] = true;
	if (parameterDefaults != NIL)
		values[Anum_pg_proc_proargdefaults - 1] = CStringGetTextDatum(nodeToString(parameterDefaults));
	else
		nulls[Anum_pg_proc_proargdefaults - 1] = true;
	values[Anum_pg_proc_prosrc - 1] = CStringGetTextDatum(prosrc);
	if (probin)
		values[Anum_pg_proc_probin - 1] = CStringGetTextDatum(probin);
	else
		nulls[Anum_pg_proc_probin - 1] = true;
	if (proconfig != PointerGetDatum(NULL))
		values[Anum_pg_proc_proconfig - 1] = proconfig;
	else
		nulls[Anum_pg_proc_proconfig - 1] = true;
	/* proacl will be determined later */

	rel = heap_open(ProcedureRelationId, RowExclusiveLock);
	tupDesc = RelationGetDescr(rel);

	/* Check for pre-existing definition */
	oldtup = SearchSysCache3(PROCNAMEARGSNSP,
							 PointerGetDatum(procedureName),
							 PointerGetDatum(parameterTypes),
							 ObjectIdGetDatum(procNamespace));

	if (HeapTupleIsValid(oldtup))
	{
		/* There is one; okay to replace it? */
		Form_pg_proc oldproc = (Form_pg_proc) GETSTRUCT(oldtup);
		Datum		proargnames;
		bool		isnull;

		if (!replace)
			ereport(ERROR,
					(errcode(ERRCODE_DUPLICATE_FUNCTION),
			errmsg("function \"%s\" already exists with same argument types",
				   procedureName)));
		if (!pg_proc_ownercheck(HeapTupleGetOid(oldtup), proowner))
			aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_PROC,
						   procedureName);

		/*
		 * Not okay to change the return type of the existing proc, since
		 * existing rules, views, etc may depend on the return type.
		 */
		if (returnType != oldproc->prorettype ||
			returnsSet != oldproc->proretset)
			ereport(ERROR,
					(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
					 errmsg("cannot change return type of existing function"),
					 errhint("Use DROP FUNCTION first.")));

		/*
		 * If it returns RECORD, check for possible change of record type
		 * implied by OUT parameters
		 */
		if (returnType == RECORDOID)
		{
			TupleDesc	olddesc;
			TupleDesc	newdesc;

			olddesc = build_function_result_tupdesc_t(oldtup);
			newdesc = build_function_result_tupdesc_d(allParameterTypes,
													  parameterModes,
													  parameterNames);
			if (olddesc == NULL && newdesc == NULL)
				 /* ok, both are runtime-defined RECORDs */ ;
			else if (olddesc == NULL || newdesc == NULL ||
					 !equalTupleDescs(olddesc, newdesc))
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
					errmsg("cannot change return type of existing function"),
				errdetail("Row type defined by OUT parameters is different."),
						 errhint("Use DROP FUNCTION first.")));
		}

		/*
		 * If there were any named input parameters, check to make sure the
		 * names have not been changed, as this could break existing calls. We
		 * allow adding names to formerly unnamed parameters, though.
		 */
		proargnames = SysCacheGetAttr(PROCNAMEARGSNSP, oldtup,
									  Anum_pg_proc_proargnames,
									  &isnull);
		if (!isnull)
		{
			Datum		proargmodes;
			char	  **old_arg_names;
			char	  **new_arg_names;
			int			n_old_arg_names;
			int			n_new_arg_names;
			int			j;

			proargmodes = SysCacheGetAttr(PROCNAMEARGSNSP, oldtup,
										  Anum_pg_proc_proargmodes,
										  &isnull);
			if (isnull)
				proargmodes = PointerGetDatum(NULL);	/* just to be sure */

			n_old_arg_names = get_func_input_arg_names(proargnames,
													   proargmodes,
													   &old_arg_names);
			n_new_arg_names = get_func_input_arg_names(parameterNames,
													   parameterModes,
													   &new_arg_names);
			for (j = 0; j < n_old_arg_names; j++)
			{
				if (old_arg_names[j] == NULL)
					continue;
				if (j >= n_new_arg_names || new_arg_names[j] == NULL ||
					strcmp(old_arg_names[j], new_arg_names[j]) != 0)
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
					   errmsg("cannot change name of input parameter \"%s\"",
							  old_arg_names[j]),
							 errhint("Use DROP FUNCTION first.")));
			}
		}

		/*
		 * If there are existing defaults, check compatibility: redefinition
		 * must not remove any defaults nor change their types.  (Removing a
		 * default might cause a function to fail to satisfy an existing call.
		 * Changing type would only be possible if the associated parameter is
		 * polymorphic, and in such cases a change of default type might alter
		 * the resolved output type of existing calls.)
		 */
		if (oldproc->pronargdefaults != 0)
		{
			Datum		proargdefaults;
			List	   *oldDefaults;
			ListCell   *oldlc;
			ListCell   *newlc;

			if (list_length(parameterDefaults) < oldproc->pronargdefaults)
				ereport(ERROR,
						(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
						 errmsg("cannot remove parameter defaults from existing function"),
						 errhint("Use DROP FUNCTION first.")));

			proargdefaults = SysCacheGetAttr(PROCNAMEARGSNSP, oldtup,
											 Anum_pg_proc_proargdefaults,
											 &isnull);
			Assert(!isnull);
			oldDefaults = (List *) stringToNode(TextDatumGetCString(proargdefaults));
			Assert(IsA(oldDefaults, List));
			Assert(list_length(oldDefaults) == oldproc->pronargdefaults);

			/* new list can have more defaults than old, advance over 'em */
			newlc = list_head(parameterDefaults);
			for (i = list_length(parameterDefaults) - oldproc->pronargdefaults;
				 i > 0;
				 i--)
				newlc = lnext(newlc);

			foreach(oldlc, oldDefaults)
			{
				Node	   *oldDef = (Node *) lfirst(oldlc);
				Node	   *newDef = (Node *) lfirst(newlc);

				if (exprType(oldDef) != exprType(newDef))
					ereport(ERROR,
							(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
							 errmsg("cannot change data type of existing parameter default value"),
							 errhint("Use DROP FUNCTION first.")));
				newlc = lnext(newlc);
			}
		}
Exemple #24
0
static jvalue _TupleDesc_coerceDatum(Type self, Datum arg)
{
	jvalue result;
	result.l = TupleDesc_create((TupleDesc)DatumGetPointer(arg));
	return result;
}
Exemple #25
0
static void
compileTheLexeme(DictThesaurus *d)
{
	int			i,
				nnw = 0,
				tnm = 16;
	TheLexeme  *newwrds = (TheLexeme *) palloc(sizeof(TheLexeme) * tnm),
			   *ptrwrds;

	for (i = 0; i < d->nwrds; i++)
	{
		TSLexeme   *ptr;

		if (strcmp(d->wrds[i].lexeme, "?") == 0)		/* Is stop word marker? */
			newwrds = addCompiledLexeme(newwrds, &nnw, &tnm, NULL, d->wrds[i].entries, 0);
		else
		{
			ptr = (TSLexeme *) DatumGetPointer(FunctionCall4(&(d->subdict->lexize),
									   PointerGetDatum(d->subdict->dictData),
										  PointerGetDatum(d->wrds[i].lexeme),
									Int32GetDatum(strlen(d->wrds[i].lexeme)),
													 PointerGetDatum(NULL)));

			if (!ptr)
				ereport(ERROR,
						(errcode(ERRCODE_CONFIG_FILE_ERROR),
						 errmsg("thesaurus sample word \"%s\" isn't recognized by subdictionary (rule %d)",
								d->wrds[i].lexeme,
								d->wrds[i].entries->idsubst + 1)));
			else if (!(ptr->lexeme))
				ereport(ERROR,
						(errcode(ERRCODE_CONFIG_FILE_ERROR),
						 errmsg("thesaurus sample word \"%s\" is a stop word (rule %d)",
								d->wrds[i].lexeme,
								d->wrds[i].entries->idsubst + 1),
						 errhint("Use \"?\" to represent a stop word within a sample phrase.")));
			else
			{
				while (ptr->lexeme)
				{
					TSLexeme   *remptr = ptr + 1;
					int			tnvar = 1;
					int			curvar = ptr->nvariant;

					/* compute n words in one variant */
					while (remptr->lexeme)
					{
						if (remptr->nvariant != (remptr - 1)->nvariant)
							break;
						tnvar++;
						remptr++;
					}

					remptr = ptr;
					while (remptr->lexeme && remptr->nvariant == curvar)
					{
						newwrds = addCompiledLexeme(newwrds, &nnw, &tnm, remptr, d->wrds[i].entries, tnvar);
						remptr++;
					}

					ptr = remptr;
				}
			}
		}

		pfree(d->wrds[i].lexeme);
		pfree(d->wrds[i].entries);
	}

	if (d->wrds)
		pfree(d->wrds);
	d->wrds = newwrds;
	d->nwrds = nnw;
	d->ntwrds = tnm;

	if (d->nwrds > 1)
	{
		qsort(d->wrds, d->nwrds, sizeof(TheLexeme), cmpTheLexeme);

		/* uniq */
		newwrds = d->wrds;
		ptrwrds = d->wrds + 1;
		while (ptrwrds - d->wrds < d->nwrds)
		{
			if (cmpLexeme(ptrwrds, newwrds) == 0)
			{
				if (cmpLexemeInfo(ptrwrds->entries, newwrds->entries))
				{
					ptrwrds->entries->nextentry = newwrds->entries;
					newwrds->entries = ptrwrds->entries;
				}
				else
					pfree(ptrwrds->entries);

				if (ptrwrds->lexeme)
					pfree(ptrwrds->lexeme);
			}
			else
			{
				newwrds++;
				*newwrds = *ptrwrds;
			}

			ptrwrds++;
		}

		d->nwrds = newwrds - d->wrds + 1;
		d->wrds = (TheLexeme *) repalloc(d->wrds, sizeof(TheLexeme) * d->nwrds);
	}
}
Exemple #26
0
/* ----------------
 *		printtup --- print a tuple in protocol 3.0
 * ----------------
 */
static void
printtup(TupleTableSlot *slot, DestReceiver *self)
{
	TupleDesc	typeinfo = slot->tts_tupleDescriptor;
	DR_printtup *myState = (DR_printtup *) self;
	StringInfoData buf;
	int			natts = typeinfo->natts;
	int			i;

	/* Set or update my derived attribute info, if needed */
	if (myState->attrinfo != typeinfo || myState->nattrs != natts)
		printtup_prepare_info(myState, typeinfo, natts);

	/* Make sure the tuple is fully deconstructed */
	slot_getallattrs(slot);

	/*
	 * Prepare a DataRow message
	 */
	pq_beginmessage(&buf, 'D');

	pq_sendint(&buf, natts, 2);

	/*
	 * send the attributes of this tuple
	 */
	for (i = 0; i < natts; ++i)
	{
		PrinttupAttrInfo *thisState = myState->myinfo + i;
		Datum		origattr = slot->tts_values[i],
					attr;

		if (slot->tts_isnull[i])
		{
			pq_sendint(&buf, -1, 4);
			continue;
		}

		/*
		 * If we have a toasted datum, forcibly detoast it here to avoid
		 * memory leakage inside the type's output routine.
		 */
		if (thisState->typisvarlena)
			attr = PointerGetDatum(PG_DETOAST_DATUM(origattr));
		else
			attr = origattr;

		if (thisState->format == 0)
		{
			/* Text output */
			char	   *outputstr;

			outputstr = OutputFunctionCall(&thisState->finfo, attr);
			pq_sendcountedtext(&buf, outputstr, strlen(outputstr), false);
			pfree(outputstr);
		}
		else
		{
			/* Binary output */
			bytea	   *outputbytes;

			outputbytes = SendFunctionCall(&thisState->finfo, attr);
			pq_sendint(&buf, VARSIZE(outputbytes) - VARHDRSZ, 4);
			pq_sendbytes(&buf, VARDATA(outputbytes),
						 VARSIZE(outputbytes) - VARHDRSZ);
			pfree(outputbytes);
		}

		/* Clean up detoasted copy, if any */
		if (attr != origattr)
			pfree(DatumGetPointer(attr));
	}

	pq_endmessage(&buf);
}
GISTENTRY *
gbt_num_compress(GISTENTRY *retval, GISTENTRY *entry, const gbtree_ninfo *tinfo)
{
	if (entry->leafkey)
	{
		union
		{
			int16		i2;
			int32		i4;
			int64		i8;
			float4		f4;
			float8		f8;
			DateADT		dt;
			TimeADT		tm;
			Timestamp	ts;
			Cash		ch;
		}			v;

		GBT_NUMKEY *r = (GBT_NUMKEY *) palloc0(tinfo->indexsize);
		void	   *leaf = NULL;

		switch (tinfo->t)
		{
			case gbt_t_int2:
				v.i2 = DatumGetInt16(entry->key);
				leaf = &v.i2;
				break;
			case gbt_t_int4:
				v.i4 = DatumGetInt32(entry->key);
				leaf = &v.i4;
				break;
			case gbt_t_int8:
				v.i8 = DatumGetInt64(entry->key);
				leaf = &v.i8;
				break;
			case gbt_t_oid:
				v.i4 = DatumGetObjectId(entry->key);
				leaf = &v.i4;
				break;
			case gbt_t_float4:
				v.f4 = DatumGetFloat4(entry->key);
				leaf = &v.f4;
				break;
			case gbt_t_float8:
				v.f8 = DatumGetFloat8(entry->key);
				leaf = &v.f8;
				break;
			case gbt_t_date:
				v.dt = DatumGetDateADT(entry->key);
				leaf = &v.dt;
				break;
			case gbt_t_time:
				v.tm = DatumGetTimeADT(entry->key);
				leaf = &v.tm;
				break;
			case gbt_t_ts:
				v.ts = DatumGetTimestamp(entry->key);
				leaf = &v.ts;
				break;
			case gbt_t_cash:
				v.ch = DatumGetCash(entry->key);
				leaf = &v.ch;
				break;
			default:
				leaf = DatumGetPointer(entry->key);
		}

		Assert(tinfo->indexsize >= 2 * tinfo->size);

		memcpy((void *) &r[0], leaf, tinfo->size);
		memcpy((void *) &r[tinfo->size], leaf, tinfo->size);
		retval = palloc(sizeof(GISTENTRY));
		gistentryinit(*retval, PointerGetDatum(r), entry->rel, entry->page,
					  entry->offset, FALSE);
	}
	else
		retval = entry;

	return retval;
}
Exemple #28
0
/* ----------------
 *		printtup_internal_20 --- print a binary tuple in protocol 2.0
 *
 * We use a different message type, i.e. 'B' instead of 'D' to
 * indicate a tuple in internal (binary) form.
 *
 * This is largely same as printtup_20, except we use binary formatting.
 * ----------------
 */
static void
printtup_internal_20(TupleTableSlot *slot, DestReceiver *self)
{
	TupleDesc	typeinfo = slot->tts_tupleDescriptor;
	DR_printtup *myState = (DR_printtup *) self;
	StringInfoData buf;
	int			natts = typeinfo->natts;
	int			i,
				j,
				k;

	/* Set or update my derived attribute info, if needed */
	if (myState->attrinfo != typeinfo || myState->nattrs != natts)
		printtup_prepare_info(myState, typeinfo, natts);

	/* Make sure the tuple is fully deconstructed */
	slot_getallattrs(slot);

	/*
	 * tell the frontend to expect new tuple data (in binary style)
	 */
	pq_beginmessage(&buf, 'B');

	/*
	 * send a bitmap of which attributes are not null
	 */
	j = 0;
	k = 1 << 7;
	for (i = 0; i < natts; ++i)
	{
		if (!slot->tts_isnull[i])
			j |= k;				/* set bit if not null */
		k >>= 1;
		if (k == 0)				/* end of byte? */
		{
			pq_sendint(&buf, j, 1);
			j = 0;
			k = 1 << 7;
		}
	}
	if (k != (1 << 7))			/* flush last partial byte */
		pq_sendint(&buf, j, 1);

	/*
	 * send the attributes of this tuple
	 */
	for (i = 0; i < natts; ++i)
	{
		PrinttupAttrInfo *thisState = myState->myinfo + i;
		Datum		origattr = slot->tts_values[i],
					attr;
		bytea	   *outputbytes;

		if (slot->tts_isnull[i])
			continue;

		Assert(thisState->format == 1);

		/*
		 * If we have a toasted datum, forcibly detoast it here to avoid
		 * memory leakage inside the type's output routine.
		 */
		if (thisState->typisvarlena)
			attr = PointerGetDatum(PG_DETOAST_DATUM(origattr));
		else
			attr = origattr;

		outputbytes = SendFunctionCall(&thisState->finfo, attr);
		/* We assume the result will not have been toasted */
		pq_sendint(&buf, VARSIZE(outputbytes) - VARHDRSZ, 4);
		pq_sendbytes(&buf, VARDATA(outputbytes),
					 VARSIZE(outputbytes) - VARHDRSZ);
		pfree(outputbytes);

		/* Clean up detoasted copy, if any */
		if (attr != origattr)
			pfree(DatumGetPointer(attr));
	}

	pq_endmessage(&buf);
}
Exemple #29
0
/*
 * Add an attribute to the hash calculation.
 * **IMPORTANT: any new hard coded support for a data type in here
 * must be added to isGreenplumDbHashable() below!
 *
 * Note that the caller should provide the base type if the datum is
 * of a domain type. It is quite expensive to call get_typtype() and
 * getBaseType() here since this function gets called a lot for the
 * same set of Datums.
 *
 * @param hashFn called to update the hash value.
 * @param clientData passed to hashFn.
 */
void
hashDatum(Datum datum, Oid type, datumHashFunction hashFn, void *clientData)
{

	void	   *buf = NULL;		/* pointer to the data */
	size_t		len = 0;		/* length for the data buffer */
	
	int64		intbuf;			/* an 8 byte buffer for all integer sizes */
		
	float4		buf_f4;
	float8		buf_f8;
	Timestamp	tsbuf;			/* timestamp data dype is either a double or
								 * int8 (determined in compile time) */
	TimestampTz tstzbuf;
	DateADT		datebuf;
	TimeADT		timebuf;
	TimeTzADT  *timetzptr;
	Interval   *intervalptr;
	AbsoluteTime abstime_buf;
	RelativeTime reltime_buf;
	TimeInterval tinterval;
	AbsoluteTime tinterval_len;
	
	Numeric		num;
	bool		bool_buf;
	char        char_buf;
	Name		namebuf;
	
	ArrayType  *arrbuf;
	inet		 *inetptr; /* inet/cidr */
	unsigned char inet_hkey[sizeof(inet_struct)];
	macaddr		*macptr; /* MAC address */
	
	VarBit		*vbitptr;
	
	int2vector *i2vec_buf;
	oidvector  *oidvec_buf;
	
	Cash		cash_buf;
	AclItem	   *aclitem_ptr;
	uint32		aclitem_buf;
	
	/*
	 * special case buffers
	 */
	uint32		nanbuf;
	uint32		invalidbuf;

	void *tofree = NULL;

	/*
	 * Select the hash to be performed according to the field type we are adding to the
	 * hash.
	 */
	switch (type)
	{
		/*
		 * ======= NUMERIC TYPES ========
		 */
		case INT2OID:			/* -32 thousand to 32 thousand, 2-byte storage */
			intbuf = (int64) DatumGetInt16(datum);		/* cast to 8 byte before
														 * hashing */
			buf = &intbuf;
			len = sizeof(intbuf);
			break;

		case INT4OID:			/* -2 billion to 2 billion integer, 4-byte
								 * storage */
			intbuf = (int64) DatumGetInt32(datum);		/* cast to 8 byte before
														 * hashing */
			buf = &intbuf;
			len = sizeof(intbuf);
			break;
			
		case INT8OID:			/* ~18 digit integer, 8-byte storage */
			intbuf = DatumGetInt64(datum);		/* cast to 8 byte before
												 * hashing */
			buf = &intbuf;
			len = sizeof(intbuf);
			break;

		case FLOAT4OID: /* single-precision floating point number,
								 * 4-byte storage */
			buf_f4 = DatumGetFloat4(datum);

			/*
			 * On IEEE-float machines, minus zero and zero have different bit
			 * patterns but should compare as equal.  We must ensure that they
			 * have the same hash value, which is most easily done this way:
			 */
			if (buf_f4 == (float4) 0)
				buf_f4 = 0.0;

			buf = &buf_f4;
			len = sizeof(buf_f4);
			break;

		case FLOAT8OID: /* double-precision floating point number,
								 * 8-byte storage */
			buf_f8 = DatumGetFloat8(datum);

			/*
			 * On IEEE-float machines, minus zero and zero have different bit
			 * patterns but should compare as equal.  We must ensure that they
			 * have the same hash value, which is most easily done this way:
			 */
			if (buf_f8 == (float8) 0)
				buf_f8 = 0.0;

			buf = &buf_f8;
			len = sizeof(buf_f8);
			break;

		case NUMERICOID:

			num = DatumGetNumeric(datum);

			if (NUMERIC_IS_NAN(num))
			{
				nanbuf = NAN_VAL;
				buf = &nanbuf;
				len = sizeof(nanbuf);
			}
			else
				/* not a nan */
			{
				buf = num->n_data;
				len = (VARSIZE(num) - NUMERIC_HDRSZ);
			}

            /* 
             * If we did a pg_detoast_datum, we need to remember to pfree, 
             * or we will leak memory.  Because of the 1-byte varlena header stuff.
             */
            if (num != DatumGetPointer(datum)) 
                tofree = num;

			break;
		
		/*
		 * ====== CHARACTER TYPES =======
		 */
		case CHAROID:			/* char(1), single character */
			char_buf = DatumGetChar(datum);
			buf = &char_buf;
			len = 1;
			break;

		case BPCHAROID: /* char(n), blank-padded string, fixed storage */
		case TEXTOID:   /* text */
		case VARCHAROID: /* varchar */ 
		case BYTEAOID:   /* bytea */
			{
				int tmplen;
				varattrib_untoast_ptr_len(datum, (char **) &buf, &tmplen, &tofree);
				/* adjust length to not include trailing blanks */
				if (type != BYTEAOID && tmplen > 1)
					tmplen = ignoreblanks((char *) buf, tmplen);

				len = tmplen;
				break;
			}

		case NAMEOID:
			namebuf = DatumGetName(datum);
			len = NAMEDATALEN;
			buf = NameStr(*namebuf);

			/* adjust length to not include trailing blanks */
			if (len > 1)
				len = ignoreblanks((char *) buf, len);
			break;
		
		/*
		 * ====== OBJECT IDENTIFIER TYPES ======
		 */
		case OIDOID:				/* object identifier(oid), maximum 4 billion */
		case REGPROCOID:			/* function name */
		case REGPROCEDUREOID:		/* function name with argument types */
		case REGOPEROID:			/* operator name */
		case REGOPERATOROID:		/* operator with argument types */
		case REGCLASSOID:			/* relation name */
		case REGTYPEOID:			/* data type name */
			intbuf = (int64) DatumGetUInt32(datum);	/* cast to 8 byte before hashing */
			buf = &intbuf;
			len = sizeof(intbuf);
			break;

        case TIDOID:                /* tuple id (6 bytes) */
            buf = DatumGetPointer(datum);
            len = SizeOfIptrData;
            break;
			
		/*
		 * ====== DATE/TIME TYPES ======
		 */
		case TIMESTAMPOID:		/* date and time */
			tsbuf = DatumGetTimestamp(datum);
			buf = &tsbuf;
			len = sizeof(tsbuf);
			break;

		case TIMESTAMPTZOID:	/* date and time with time zone */
			tstzbuf = DatumGetTimestampTz(datum);
			buf = &tstzbuf;
			len = sizeof(tstzbuf);
			break;

		case DATEOID:			/* ANSI SQL date */
			datebuf = DatumGetDateADT(datum);
			buf = &datebuf;
			len = sizeof(datebuf);
			break;

		case TIMEOID:			/* hh:mm:ss, ANSI SQL time */
			timebuf = DatumGetTimeADT(datum);
			buf = &timebuf;
			len = sizeof(timebuf);
			break;

		case TIMETZOID: /* time with time zone */
			
			/*
			 * will not compare to TIMEOID on equal values.
			 * Postgres never attempts to compare the two as well.
			 */
			timetzptr = DatumGetTimeTzADTP(datum);
			buf = (unsigned char *) timetzptr;
			
			/*
			 * Specify hash length as sizeof(double) + sizeof(int4), not as
			 * sizeof(TimeTzADT), so that any garbage pad bytes in the structure
			 * won't be included in the hash!
			 */
			len = sizeof(timetzptr->time) + sizeof(timetzptr->zone);
			break;

		case INTERVALOID:		/* @ <number> <units>, time interval */
			intervalptr = DatumGetIntervalP(datum);
			buf = (unsigned char *) intervalptr;
			/*
			 * Specify hash length as sizeof(double) + sizeof(int4), not as
			 * sizeof(Interval), so that any garbage pad bytes in the structure
			 * won't be included in the hash!
			 */
			len = sizeof(intervalptr->time) + sizeof(intervalptr->month);
			break;
			
		case ABSTIMEOID:
			abstime_buf = DatumGetAbsoluteTime(datum);
			
			if (abstime_buf == INVALID_ABSTIME)
			{
				/* hash to a constant value */
				invalidbuf = INVALID_VAL;
				len = sizeof(invalidbuf);
				buf = &invalidbuf;
			}
			else
			{
				len = sizeof(abstime_buf);
				buf = &abstime_buf;
			}
					
			break;

		case RELTIMEOID:
			reltime_buf = DatumGetRelativeTime(datum);
			
			if (reltime_buf == INVALID_RELTIME)
			{
				/* hash to a constant value */
				invalidbuf = INVALID_VAL;
				len = sizeof(invalidbuf);
				buf = &invalidbuf;
			}
			else
			{
				len = sizeof(reltime_buf);
				buf = &reltime_buf;
			}
				
			break;
			
		case TINTERVALOID:
			tinterval = DatumGetTimeInterval(datum);
			
			/*
			 * check if a valid interval. the '0' status code
			 * stands for T_INTERVAL_INVAL which is defined in
			 * nabstime.c. We use the actual value instead
			 * of defining it again here.
			 */
			if(tinterval->status == 0 ||
			   tinterval->data[0] == INVALID_ABSTIME ||
			   tinterval->data[1] == INVALID_ABSTIME)
			{
				/* hash to a constant value */
				invalidbuf = INVALID_VAL;
				len = sizeof(invalidbuf);
				buf = &invalidbuf;				
			}
			else
			{
				/* normalize on length of the time interval */
				tinterval_len = tinterval->data[1] -  tinterval->data[0];
				len = sizeof(tinterval_len);
				buf = &tinterval_len;	
			}

			break;
			
		/*
		 * ======= NETWORK TYPES ========
		 */
		case INETOID:
		case CIDROID:
			
			inetptr = DatumGetInetP(datum);
			len = inet_getkey(inetptr, inet_hkey, sizeof(inet_hkey)); /* fill-in inet_key & get len */
			buf = inet_hkey;
			break;
		
		case MACADDROID:
			
			macptr = DatumGetMacaddrP(datum);
			len = sizeof(macaddr);
			buf = (unsigned char *) macptr;
			break;
			
		/*
		 * ======== BIT STRINGS ========
		 */
		case BITOID:
		case VARBITOID:
			
			/*
			 * Note that these are essentially strings.
			 * we don't need to worry about '10' and '010'
			 * to compare, b/c they will not, by design.
			 * (see SQL standard, and varbit.c)
			 */
			vbitptr = DatumGetVarBitP(datum);
			len = VARBITBYTES(vbitptr);
			buf = (char *) VARBITS(vbitptr);
			break;

		/*
		 * ======= other types =======
		 */
		case BOOLOID:			/* boolean, 'true'/'false' */
			bool_buf = DatumGetBool(datum);
			buf = &bool_buf;
			len = sizeof(bool_buf);
			break;
			
		/*
		 * We prepare the hash key for aclitems just like postgresql does.
		 * (see code and comment in acl.c: hash_aclitem() ).
		 */
		case ACLITEMOID:
			aclitem_ptr = DatumGetAclItemP(datum);
			aclitem_buf = (uint32) (aclitem_ptr->ai_privs + aclitem_ptr->ai_grantee + aclitem_ptr->ai_grantor);
			buf = &aclitem_buf;
			len = sizeof(aclitem_buf);
			break;
			
		/*
		 * ANYARRAY is a pseudo-type. We use it to include
		 * any of the array types (OIDs 1007-1033 in pg_type.h).
		 * caller needs to be sure the type is ANYARRAYOID
		 * before calling cdbhash on an array (INSERT and COPY do so).
		 */
		case ANYARRAYOID:	
					
			arrbuf = DatumGetArrayTypeP(datum);
			len = VARSIZE(arrbuf) - VARHDRSZ;
			buf = VARDATA(arrbuf);
			break;
			
		case INT2VECTOROID:
			i2vec_buf = (int2vector *) DatumGetPointer(datum);
			len = i2vec_buf->dim1 * sizeof(int2);
			buf = (void *)i2vec_buf->values;
			break;
			
		case OIDVECTOROID:	
			oidvec_buf = (oidvector *) DatumGetPointer(datum);
			len = oidvec_buf->dim1 * sizeof(Oid);
			buf = oidvec_buf->values;
			break;
			
		case CASHOID: /* cash is stored in int32 internally */
			cash_buf = (* (Cash *)DatumGetPointer(datum));
			len = sizeof(Cash);
			buf = &cash_buf;
			break;
				
		default:
			ereport(ERROR,
					(errcode(ERRCODE_CDB_FEATURE_NOT_YET),
					 errmsg("Type %u is not hashable.", type)));

	}							/* switch(type) */

	/* do the hash using the selected algorithm */
	hashFn(clientData, buf, len);
	if(tofree)
		pfree(tofree);
}
Exemple #30
0
/*
 * heap_form_tuple
 *		construct a tuple from the given values[] and isnull[] arrays,
 *		which are of the length indicated by tupleDescriptor->natts
 *
 * The result is allocated in the current memory context.
 */
HeapTuple
heaptuple_form_to(TupleDesc tupleDescriptor, Datum *values, bool *isnull, HeapTuple dst, uint32 *dstlen)
{
	HeapTuple	tuple;			/* return tuple */
	HeapTupleHeader td;			/* tuple data */
	Size		actual_len;
	Size		len,
				data_len;
	int			hoff;
	bool		hasnull = false;
	Form_pg_attribute *att = tupleDescriptor->attrs;
	int			numberOfAttributes = tupleDescriptor->natts;
	int			i;

	if (numberOfAttributes > MaxTupleAttributeNumber)
		ereport(ERROR,
				(errcode(ERRCODE_TOO_MANY_COLUMNS),
				 errmsg("number of columns (%d) exceeds limit (%d)",
						numberOfAttributes, MaxTupleAttributeNumber)));

	/*
	 * Check for nulls and embedded tuples; expand any toasted attributes in
	 * embedded tuples.  This preserves the invariant that toasting can only
	 * go one level deep.
	 *
	 * We can skip calling toast_flatten_tuple_attribute() if the attribute
	 * couldn't possibly be of composite type.  All composite datums are
	 * varlena and have alignment 'd'; furthermore they aren't arrays. Also,
	 * if an attribute is already toasted, it must have been sent to disk
	 * already and so cannot contain toasted attributes.
	 */
	for (i = 0; i < numberOfAttributes; i++)
	{
		if (isnull[i])
			hasnull = true;
		else if (att[i]->attlen == -1 &&
				 att[i]->attalign == 'd' &&
				 att[i]->attndims == 0 &&
				 !VARATT_IS_EXTENDED(DatumGetPointer(values[i])))
		{
			values[i] = toast_flatten_tuple_attribute(values[i],
													  att[i]->atttypid,
													  att[i]->atttypmod);
		}
	}

	/*
	 * Determine total space needed
	 */
	len = offsetof(HeapTupleHeaderData, t_bits);

	if (hasnull)
		len += BITMAPLEN(numberOfAttributes);

	if (tupleDescriptor->tdhasoid)
		len += sizeof(Oid);

	hoff = len = MAXALIGN(len); /* align user data safely */

	data_len = heap_compute_data_size(tupleDescriptor, values, isnull);

	len += data_len;

	if (dstlen && (*dstlen) < (HEAPTUPLESIZE + len))
	{
		*dstlen = HEAPTUPLESIZE + len;
		return NULL;
	}

	if (dstlen)
	{
		*dstlen = HEAPTUPLESIZE + len;
		tuple = dst;
		memset(tuple, 0, HEAPTUPLESIZE + len);
	}
	else
		tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + len);

	/*
	 * Allocate and zero the space needed.	Note that the tuple body and
	 * HeapTupleData management structure are allocated in one chunk.
	 */
	tuple->t_data = td = (HeapTupleHeader) ((char *) tuple + HEAPTUPLESIZE);

	/*
	 * And fill in the information.  Note we fill the Datum fields even though
	 * this tuple may never become a Datum.
	 */
	tuple->t_len = len;
	ItemPointerSetInvalid(&(tuple->t_self));

	HeapTupleHeaderSetDatumLength(td, len);
	HeapTupleHeaderSetTypeId(td, tupleDescriptor->tdtypeid);
	HeapTupleHeaderSetTypMod(td, tupleDescriptor->tdtypmod);

	HeapTupleHeaderSetNatts(td, numberOfAttributes);
	td->t_hoff = hoff;

	if (tupleDescriptor->tdhasoid)		/* else leave infomask = 0 */
		td->t_infomask = HEAP_HASOID;

	actual_len = heap_fill_tuple(tupleDescriptor,
								 values,
								 isnull,
								 (char *) td + hoff,
								 data_len,
								 &td->t_infomask,
								 (hasnull ? td->t_bits : NULL));

	Assert(data_len == actual_len);
	Assert(!is_heaptuple_memtuple(tuple));

	return tuple;
}