Exemple #1
0
RKWidget::~RKWidget()
{
    if ( N_ != 0 ) {

        SUPERLU_FREE (rhsb);
        SUPERLU_FREE (rhsx);
        SUPERLU_FREE (etree);
        SUPERLU_FREE (perm_r);
        SUPERLU_FREE (perm_c);
        SUPERLU_FREE (R);
        SUPERLU_FREE (C);
        SUPERLU_FREE (ferr);
        SUPERLU_FREE (berr);
        /// ???
        if(aexist) {
            /// ??? Destroy_CompCol_Matrix(&A);
            delete[] a;
            delete[] xa;
            delete[] asub;
        }
        Destroy_SuperMatrix_Store(&B);
        Destroy_SuperMatrix_Store(&X);
        if ( lwork == 0 && !dirty) {
            Destroy_SuperNode_Matrix(&L);
            Destroy_CompCol_Matrix(&Up);
        } else if ( lwork > 0 ) {
            SUPERLU_FREE(work);
        }
    }
}
Exemple #2
0
PetscErrorCode MatDestroy_SuperLU(Mat A)
{
  PetscErrorCode ierr;
  Mat_SuperLU    *lu=(Mat_SuperLU*)A->spptr;

  PetscFunctionBegin;
  if (lu && lu->CleanUpSuperLU) { /* Free the SuperLU datastructures */
    Destroy_SuperMatrix_Store(&lu->A);
    Destroy_SuperMatrix_Store(&lu->B);
    Destroy_SuperMatrix_Store(&lu->X);
    StatFree(&lu->stat);
    if (lu->lwork >= 0) {
      Destroy_SuperNode_Matrix(&lu->L);
      Destroy_CompCol_Matrix(&lu->U);
    }
  }
  if (lu) {
    ierr = PetscFree(lu->etree);CHKERRQ(ierr);
    ierr = PetscFree(lu->perm_r);CHKERRQ(ierr);
    ierr = PetscFree(lu->perm_c);CHKERRQ(ierr);
    ierr = PetscFree(lu->R);CHKERRQ(ierr);
    ierr = PetscFree(lu->C);CHKERRQ(ierr);
    ierr = PetscFree(lu->rhs_dup);CHKERRQ(ierr);
    ierr = MatDestroy(&lu->A_dup);CHKERRQ(ierr);
  }
  ierr = PetscFree(A->spptr);CHKERRQ(ierr);

  /* clear composed functions */
  ierr = PetscObjectComposeFunctionDynamic((PetscObject)A,"MatFactorGetSolverPackage_C","",PETSC_NULL);CHKERRQ(ierr);
  ierr = PetscObjectComposeFunctionDynamic((PetscObject)A,"MatSuperluSetILUDropTol_C","",PETSC_NULL);CHKERRQ(ierr);

  ierr = MatDestroy_SeqAIJ(A);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
void tlin::solve(SuperMatrix *A, SuperMatrix *BX, superlu_options_t *opt)
{
	assert(A->nrow == A->ncol);
	int n = A->nrow;

	if (!opt)
		opt = &defaultOpt;

	SuperMatrix L, U;
	int *perm_c, *perm_r;

	perm_c = intMalloc(n);
	perm_r = intMalloc(n);

	SuperLUStat_t stat;
	StatInit(&stat);

	int result;
	dgssv(opt, A, perm_c, perm_r, &L, &U, BX, &stat, &result);

	Destroy_SuperNode_Matrix(&L);
	Destroy_CompCol_Matrix(&U);
	SUPERLU_FREE(perm_r);
	SUPERLU_FREE(perm_c);
	StatFree(&stat);
}
Exemple #4
0
void XDestroy_SuperNode_Matrix(SuperMatrix *A)
{
    if (A->Store) {
        Destroy_SuperNode_Matrix(A);
    }
    A->Store = NULL;
}
Exemple #5
0
void RKWidget::setSize ( const size_t value )
{
    int add = value%nblock;
    size_t newval = value + add;
    if ( newval == N_ ) return;
    dirty = true;
    if ( N_ != 0 ) {
        if(nStage != 0) delete[] b_k;

        SUPERLU_FREE (rhsb);
        SUPERLU_FREE (rhsx);
        SUPERLU_FREE (etree);
        SUPERLU_FREE (perm_r);
        SUPERLU_FREE (perm_c);
        SUPERLU_FREE (R);
        SUPERLU_FREE (C);
        SUPERLU_FREE (ferr);
        SUPERLU_FREE (berr);

        if(aexist) {
            // ??? Destroy_CompCol_Matrix(&A);
            //delete[] a;
            //delete[] xa;
            //delete[] asub;
        }
        Destroy_SuperMatrix_Store(&B);
        Destroy_SuperMatrix_Store(&X);
        if ( lwork == 0 && !dirty) {
            Destroy_SuperNode_Matrix(&L);
            Destroy_CompCol_Matrix(&Up);
        } else if ( lwork > 0 ) {
            SUPERLU_FREE(work);
        }
        aexist= false;
        dirty = true;
    }
    if(nStage != 0) b_k = new double[value*nStage];

    if ( !(rhsb = doubleMalloc(value)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = doubleMalloc(value)) ) ABORT("Malloc fails for rhsx[].");
    dCreate_Dense_Matrix(&B, value, 1, rhsb, value, SLU_DN, SLU_D, SLU_GE);
    dCreate_Dense_Matrix(&X, value, 1, rhsx, value, SLU_DN, SLU_D, SLU_GE);

    if ( !(etree = intMalloc(value)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(value)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(value)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (double *) SUPERLU_MALLOC(value * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(value * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (double *) SUPERLU_MALLOC( sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (double *) SUPERLU_MALLOC( sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for berr[].");
    resize(value);
}
Exemple #6
0
void nlClear_SUPERLU() {

	superlu_context* context = (superlu_context*)(nlCurrentContext->direct_solver_context) ;
	if(context != NULL) {
		Destroy_SuperNode_Matrix(&(context->L)) ;
		Destroy_CompCol_Matrix(&(context->U)) ;
		NL_DELETE_ARRAY(context->perm_c) ;
		NL_DELETE_ARRAY(context->perm_r) ;
	}
}
void tlin::freeF(SuperFactors *F) {
  if (!F) return;
  Destroy_SuperNode_Matrix(F->L);
  Destroy_CompCol_Matrix(F->U);
  SUPERLU_FREE(F->L);
  SUPERLU_FREE(F->U);
  SUPERLU_FREE(F->perm_r);
  SUPERLU_FREE(F->perm_c);
  SUPERLU_FREE(F);
}
Exemple #8
0
static void __nlFree_SUPERLU(__NLContext *context) {

	Destroy_SuperNode_Matrix(&(context->slu.L));
	Destroy_CompCol_Matrix(&(context->slu.U));

	StatFree(&(context->slu.stat));

	__NL_DELETE_ARRAY(context->slu.perm_r);
	__NL_DELETE_ARRAY(context->slu.perm_c);

	context->slu.alloc_slu = NL_FALSE;
}
static  void
SparseFactor_dealloc(SparseFactor* self)
{
  free(self->perm_c);
  free(self->perm_r);
  free(self->etree);
  if (self->AC.Store != NULL)
    Destroy_CompCol_Permuted(&self->AC);
  if (self->L.Store != NULL)
    Destroy_SuperNode_Matrix(&self->L);
  if (self->U.Store != NULL)
    Destroy_CompCol_Matrix(&self->U);
  StatFree(&self->stat);
  self->ob_type->tp_free((PyObject*)self);
}
Exemple #10
0
  //! \brief The destructor frees the dynamically allocated data members.
  ~SuperLUdata()
  {
    Destroy_SuperMatrix_Store(&A);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
    if (R)      delete[] R;
    if (C)      delete[] C;
    if (perm_r) delete[] perm_r;
    if (perm_c) delete[] perm_c;
    if (etree)  delete[] etree;
#ifdef HAS_SUPERLU_MT
    delete[] opts->etree;
    delete[] opts->colcnt_h;
    delete[] opts->part_super_h;
#endif
    if (opts)   delete   opts;
  }
		~SolveSuperLU () {
			if (verbosity > 3) {
				cout << "~SolveSuperLU S:" << endl;
			}

			// if (etree)    delete[] etree;
			// if (perm_r)   delete[] perm_r;
			// if (perm_c)   delete[] perm_c;
			if (RR) {delete [] RR;}

			if (CC) {delete [] CC;}

			if (A.Store) {Destroy_SuperMatrix_Store(&A);}

			if (L.Store) {Destroy_SuperNode_Matrix(&L);}

			if (U.Store) {Destroy_CompCol_Matrix(&U);}
		}
static void slm_dtor(void* context)
{
  slm_t* mat = context;
  if (mat->cperm != NULL)
  {
    SUPERLU_FREE(mat->cperm);
    SUPERLU_FREE(mat->rperm);
    Destroy_SuperNode_Matrix(&mat->L);
    Destroy_CompCol_Matrix(&mat->U);
  }
  supermatrix_free(mat->A);
  Destroy_SuperMatrix_Store(&mat->rhs);
  polymec_free(mat->rhs_data);
  Destroy_SuperMatrix_Store(&mat->X);
  polymec_free(mat->X_data);
  polymec_free(mat->R);
  polymec_free(mat->C);
  StatFree(&mat->stat);
  if (mat->etree != NULL)
    polymec_free(mat->etree);
  mat->ilu_params = NULL;
  adj_graph_free(mat->sparsity);
  polymec_free(mat);
}
void
c_fortran_zgssv_(int *iopt, int *n, int *nnz, int *nrhs, 
                 doublecomplex *values, int *rowind, int *colptr,
                 doublecomplex *b, int *ldb,
		 fptr *f_factors, /* a handle containing the address
				     pointing to the factored matrices */
		 int *info)

{
/* 
 * This routine can be called from Fortran.
 *
 * iopt (input) int
 *      Specifies the operation:
 *      = 1, performs LU decomposition for the first time
 *      = 2, performs triangular solve
 *      = 3, free all the storage in the end
 *
 * f_factors (input/output) fptr* 
 *      If iopt == 1, it is an output and contains the pointer pointing to
 *                    the structure of the factored matrices.
 *      Otherwise, it it an input.
 *
 */
 
    SuperMatrix A, AC, B;
    SuperMatrix *L, *U;
    int *perm_r; /* row permutations from partial pivoting */
    int *perm_c; /* column permutation vector */
    int *etree;  /* column elimination tree */
    SCformat *Lstore;
    NCformat *Ustore;
    int      i, panel_size, permc_spec, relax;
    trans_t  trans;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    factors_t *LUfactors;

    trans = TRANS;
    
    if ( *iopt == 1 ) { /* LU decomposition */

        /* Set the default input options. */
        set_default_options(&options);

	/* Initialize the statistics variables. */
	StatInit(&stat);

	/* Adjust to 0-based indexing */
	for (i = 0; i < *nnz; ++i) --rowind[i];
	for (i = 0; i <= *n; ++i) --colptr[i];

	zCreate_CompCol_Matrix(&A, *n, *n, *nnz, values, rowind, colptr,
			       SLU_NC, SLU_Z, SLU_GE);
	L = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	U = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	if ( !(perm_r = intMalloc(*n)) ) ABORT("Malloc fails for perm_r[].");
	if ( !(perm_c = intMalloc(*n)) ) ABORT("Malloc fails for perm_c[].");
	if ( !(etree = intMalloc(*n)) ) ABORT("Malloc fails for etree[].");

	/*
	 * Get column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = 0: natural ordering 
	 *   permc_spec = 1: minimum degree on structure of A'*A
	 *   permc_spec = 2: minimum degree on structure of A'+A
	 *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
	 */    	
	permc_spec = options.ColPerm;        
	get_perm_c(permc_spec, &A, perm_c);
	
	sp_preorder(&options, &A, perm_c, etree, &AC);

	panel_size = sp_ienv(1);
	relax = sp_ienv(2);

	zgstrf(&options, &AC, relax, panel_size, etree,
                NULL, 0, perm_c, perm_r, L, U, &stat, info);

	if ( *info == 0 ) {
	    Lstore = (SCformat *) L->Store;
	    Ustore = (NCformat *) U->Store;
	    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
	    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
	    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz);
	    zQuerySpace(L, U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	} else {
	    printf("zgstrf() error returns INFO= %d\n", *info);
	    if ( *info <= *n ) { /* factorization completes */
		zQuerySpace(L, U, &mem_usage);
		printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	    }
	}
	
	/* Restore to 1-based indexing */
	for (i = 0; i < *nnz; ++i) ++rowind[i];
	for (i = 0; i <= *n; ++i) ++colptr[i];

	/* Save the LU factors in the factors handle */
	LUfactors = (factors_t*) SUPERLU_MALLOC(sizeof(factors_t));
	LUfactors->L = L;
	LUfactors->U = U;
	LUfactors->perm_c = perm_c;
	LUfactors->perm_r = perm_r;
	*f_factors = (fptr) LUfactors;

	/* Free un-wanted storage */
	SUPERLU_FREE(etree);
	Destroy_SuperMatrix_Store(&A);
	Destroy_CompCol_Permuted(&AC);
	StatFree(&stat);

    } else if ( *iopt == 2 ) { /* Triangular solve */
	/* Initialize the statistics variables. */
	StatInit(&stat);

	/* Extract the LU factors in the factors handle */
	LUfactors = (factors_t*) *f_factors;
	L = LUfactors->L;
	U = LUfactors->U;
	perm_c = LUfactors->perm_c;
	perm_r = LUfactors->perm_r;

	zCreate_Dense_Matrix(&B, *n, *nrhs, b, *ldb, SLU_DN, SLU_Z, SLU_GE);

        /* Solve the system A*X=B, overwriting B with X. */
        zgstrs (trans, L, U, perm_c, perm_r, &B, &stat, info);

	Destroy_SuperMatrix_Store(&B);
	StatFree(&stat);

    } else if ( *iopt == 3 ) { /* Free storage */
	/* Free the LU factors in the factors handle */
	LUfactors = (factors_t*) *f_factors;
	SUPERLU_FREE (LUfactors->perm_r);
	SUPERLU_FREE (LUfactors->perm_c);
	Destroy_SuperNode_Matrix(LUfactors->L);
	Destroy_CompCol_Matrix(LUfactors->U);
        SUPERLU_FREE (LUfactors->L);
        SUPERLU_FREE (LUfactors->U);
	SUPERLU_FREE (LUfactors);
    } else {
	fprintf(stderr,"Invalid iopt=%d passed to c_fortran_zgssv()\n",*iopt);
	exit(-1);
    }
}
Exemple #14
0
bool SparseMatrix::solveSLU (Vector& B)
{
  int ierr = ncol+1;
  if (!factored) this->optimiseSLU();

#ifdef HAS_SUPERLU_MT
  if (!slu) {
    // Create a new SuperLU matrix
    slu = new SuperLUdata;
    slu->perm_c = new int[ncol];
    slu->perm_r = new int[nrow];
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }
  else {
    Destroy_SuperMatrix_Store(&slu->A);
    Destroy_SuperNode_Matrix(&slu->L);
    Destroy_CompCol_Matrix(&slu->U);
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }

  // Get column permutation vector perm_c[], according to permc_spec:
  //   permc_spec = 0: natural ordering
  //   permc_spec = 1: minimum degree ordering on structure of A'*A
  //   permc_spec = 2: minimum degree ordering on structure of A'+A
  //   permc_spec = 3: approximate minimum degree for unsymmetric matrices
  int permc_spec = 1;
  get_perm_c(permc_spec, &slu->A, slu->perm_c);

  // Create right-hand-side/solution vector(s)
  size_t nrhs = B.size() / nrow;
  SuperMatrix Bmat;
  dCreate_Dense_Matrix(&Bmat, nrow, nrhs, B.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);

  // Invoke the simple driver
  pdgssv(numThreads, &slu->A, slu->perm_c, slu->perm_r,
         &slu->L, &slu->U, &Bmat, &ierr);

  if (ierr > 0)
    std::cerr <<"SuperLU_MT Failure "<< ierr << std::endl;

  Destroy_SuperMatrix_Store(&Bmat);

#elif defined(HAS_SUPERLU)
  if (!slu) {
    // Create a new SuperLU matrix
    slu = new SuperLUdata(1);
    slu->perm_c = new int[ncol];
    slu->perm_r = new int[nrow];
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }
  else if (factored)
    slu->opts->Fact = FACTORED; // Re-use previous factorization
  else {
    Destroy_SuperMatrix_Store(&slu->A);
    Destroy_SuperNode_Matrix(&slu->L);
    Destroy_CompCol_Matrix(&slu->U);
    dCreate_CompCol_Matrix(&slu->A, nrow, ncol, this->size(),
                           &A.front(), &JA.front(), &IA.front(),
                           SLU_NC, SLU_D, SLU_GE);
  }

  // Create right-hand-side/solution vector(s)
  size_t nrhs = B.size() / nrow;
  SuperMatrix Bmat;
  dCreate_Dense_Matrix(&Bmat, nrow, nrhs, B.ptr(), nrow,
                       SLU_DN, SLU_D, SLU_GE);

  SuperLUStat_t stat;
  StatInit(&stat);

  // Invoke the simple driver
  dgssv(slu->opts, &slu->A, slu->perm_c, slu->perm_r,
        &slu->L, &slu->U, &Bmat, &stat, &ierr);

  if (ierr > 0)
    std::cerr <<"SuperLU Failure "<< ierr << std::endl;
  else
    factored = true;

  if (printSLUstat)
    StatPrint(&stat);
  StatFree(&stat);

  Destroy_SuperMatrix_Store(&Bmat);
#else
  std::cerr <<"SparseMatrix::solve: SuperLU solver not available"<< std::endl;
#endif
  return ierr == 0;
}
Exemple #15
0
int main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program CLINSOLX2.
 *
 * This example illustrates how to use CGSSVX to solve systems repeatedly
 * with the same sparsity pattern of matrix A.
 * In this case, the column permutation vector perm_c is computed once.
 * The following data structures will be reused in the subsequent call to
 * CGSSVX: perm_c, etree
 * 
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, A1, L, U;
    SuperMatrix    B, B1, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    complex         *a, *a1;
    int            *asub, *xa, *asub1, *xa1;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, j, m, n, nnz;
    complex         *rhsb, *rhsb1, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("DLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    creadhb(&m, &n, &nnz, &a, &asub, &xa);
    if ( !(a1 = complexMalloc(nnz)) ) ABORT("Malloc fails for a1[].");
    if ( !(asub1 = intMalloc(nnz)) ) ABORT("Malloc fails for asub1[].");
    if ( !(xa1 = intMalloc(n+1)) ) ABORT("Malloc fails for xa1[].");
    for (i = 0; i < nnz; ++i) {
        a1[i] = a[i];
	asub1[i] = asub[i];
    }
    for (i = 0; i < n+1; ++i) xa1[i] = xa[i];
    
    cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsb1 = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb1[].");
    if ( !(rhsx = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    cCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    ldx = n;
    cGenXtrue(n, nrhs, xact, ldx);
    cFillRHS(trans, nrhs, xact, ldx, &A, &B);
    for (j = 0; j < nrhs; ++j)
        for (i = 0; i < m; ++i) rhsb1[i+j*m] = rhsb[i+j*m];
    
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME: AX = B
       ------------------------------------------------------------*/
    cgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("First system: cgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        complex *sol = (complex*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);
    Destroy_CompCol_Matrix(&A);
    Destroy_Dense_Matrix(&B);
    if ( lwork >= 0 ) { /* Deallocate storage associated with L and U. */
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }

    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER LINEAR SYSTEM: A1*X = B1
       ONLY THE SPARSITY PATTERN OF A1 IS THE SAME AS THAT OF A.
       ------------------------------------------------------------*/
    options.Fact = SamePattern;
    StatInit(&stat); /* Initialize the statistics variables. */

    cCreate_CompCol_Matrix(&A1, m, n, nnz, a1, asub1, xa1,
                           SLU_NC, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&B1, m, nrhs, rhsb1, m, SLU_DN, SLU_C, SLU_GE);

    cgssvx(&options, &A1, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B1, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("\nSecond system: cgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        complex *sol = (complex*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A1);
    Destroy_Dense_Matrix(&B1);
    Destroy_Dense_Matrix(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Exemple #16
0
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    double   *a;
    int      *asub, *xa;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, m, n, nnz;
    double   *xact, *rhs;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Set the default input options:
        options.Fact = DOFACT;
        options.Equil = YES;
        options.ColPerm = COLAMD;
        options.DiagPivotThresh = 1.0;
        options.Trans = NOTRANS;
        options.IterRefine = NOREFINE;
        options.SymmetricMode = NO;
        options.PivotGrowth = NO;
        options.ConditionNumber = NO;
        options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Now we modify the default options to use the symmetric mode. */
    options.SymmetricMode = YES;
    options.ColPerm = MMD_AT_PLUS_A;
    options.DiagPivotThresh = 0.001;

#if 1
    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
        printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
                "-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
                "-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
                "-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
                argv[0]);
        return 0;
    }
    else
    {
        switch (argv[1][1])
        {
            case 'H':
            case 'h':
                printf("Input a Harwell-Boeing format matrix:\n");
                dreadhb(&m, &n, &nnz, &a, &asub, &xa);
                break;
            case 'R':
            case 'r':
                printf("Input a Rutherford-Boeing format matrix:\n");
                dreadrb(&m, &n, &nnz, &a, &asub, &xa);
                break;
            case 'T':
            case 't':
                printf("Input a triplet format matrix:\n");
                dreadtriple(&m, &n, &nnz, &a, &asub, &xa);
                break;
            default:
                printf("Unrecognized format.\n");
                return 0;
        }
    }
#else
    /* Read the matrix in Harwell-Boeing format. */
    dreadhb(&m, &n, &nnz, &a, &asub, &xa);
#endif

    dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);

    nrhs   = 1;
    if ( !(rhs = doubleMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);
    xact = doubleMalloc(n * nrhs);
    ldx = n;
    dGenXtrue(n, nrhs, xact, ldx);
    dFillRHS(options.Trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);

    dgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);

    if ( info == 0 ) {

        /* This is how you could access the solution matrix. */
        double *sol = (double*) ((DNformat*) B.Store)->nzval;

         /* Compute the infinity norm of the error. */
        dinf_norm_error(nrhs, &B, xact);

        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
        printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
        printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
        printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
        printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

        dQuerySpace(&L, &U, &mem_usage);
        printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
               mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);

    } else {
        printf("dgssv() error returns INFO= %d\n", info);
        if ( info <= n ) { /* factorization completes */
            dQuerySpace(&L, &U, &mem_usage);
            printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
                   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
        }
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Exemple #17
0
static PyObject *
Py_gssv(PyObject *self, PyObject *args, PyObject *kwdict)
{
    PyObject *Py_B=NULL, *Py_X=NULL;
    PyArrayObject *nzvals=NULL;
    PyArrayObject *colind=NULL, *rowptr=NULL;
    int N, nnz;
    int info;
    int csc=0;
    int *perm_r=NULL, *perm_c=NULL;
    SuperMatrix A, B, L, U;
    superlu_options_t options;
    SuperLUStat_t stat;
    PyObject *option_dict = NULL;
    int type;
    int ssv_finished = 0;

    static char *kwlist[] = {"N","nnz","nzvals","colind","rowptr","B", "csc",
                             "options",NULL};
    
    /* Get input arguments */
    if (!PyArg_ParseTupleAndKeywords(args, kwdict, "iiO!O!O!O|iO", kwlist,
                                     &N, &nnz, &PyArray_Type, &nzvals,
                                     &PyArray_Type, &colind, &PyArray_Type,
                                     &rowptr, &Py_B, &csc, &option_dict)) {
        return NULL;
    }

    if (!_CHECK_INTEGER(colind) || !_CHECK_INTEGER(rowptr)) {
        PyErr_SetString(PyExc_TypeError,
                        "colind and rowptr must be of type cint");
        return NULL;
    }

    type = PyArray_TYPE(nzvals);
    if (!CHECK_SLU_TYPE(type)) {
        PyErr_SetString(PyExc_TypeError,
                        "nzvals is not of a type supported by SuperLU");
        return NULL;
    }

    if (!set_superlu_options_from_dict(&options, 0, option_dict, NULL, NULL)) {
        return NULL;
    }

    /* Create Space for output */
    Py_X = PyArray_CopyFromObject(Py_B, type, 1, 2);
    if (Py_X == NULL) return NULL;

    if (csc) {
        if (NCFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr,
                                   type)) {
            Py_DECREF(Py_X);
            return NULL;
        }
    }
    else {
        if (NRFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr,
                                   type)) {
            Py_DECREF(Py_X);
            return NULL;
        }
    }
    
    if (DenseSuper_from_Numeric(&B, Py_X)) {
        Destroy_SuperMatrix_Store(&A);  
        Py_DECREF(Py_X);
        return NULL;
    }

    /* B and Py_X  share same data now but Py_X "owns" it */
    
    /* Setup options */
    
    if (setjmp(_superlu_py_jmpbuf)) {
        goto fail;
    }
    else {
        perm_c = intMalloc(N);
        perm_r = intMalloc(N);
        StatInit(&stat);

        /* Compute direct inverse of sparse Matrix */
        gssv(type, &options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
    }
    ssv_finished = 1;

    SUPERLU_FREE(perm_r);
    SUPERLU_FREE(perm_c);
    Destroy_SuperMatrix_Store(&A);  /* holds just a pointer to the data */
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
    StatFree(&stat);
 
    return Py_BuildValue("Ni", Py_X, info);

fail:
    SUPERLU_FREE(perm_r);
    SUPERLU_FREE(perm_c);
    Destroy_SuperMatrix_Store(&A);  /* holds just a pointer to the data */
    Destroy_SuperMatrix_Store(&B);
    if (ssv_finished) {
        /* Avoid trying to free partially initialized matrices;
           might leak some memory, but avoids a crash */
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }
    StatFree(&stat);  
    Py_XDECREF(Py_X);
    return NULL;
}
static PyObject* superluWrappersSparseFactorPrepare(PyObject* self,
                                                    PyObject* args)
{
  int i,n,relax=1,panel_size=10,lwork=0,info=0,permc_spec=3;
  double drop_tol=-1.0;/* not used by superlu */
  void *work=NULL;
  PyObject *mat,*sparseFactor;
  if(!PyArg_ParseTuple(args,"OO",
                       &mat,
                       &sparseFactor))
    return NULL;
  SFP(sparseFactor)->storeA.nnz = ((SparseMatrix*)mat)->A.nnz;
  SFP(sparseFactor)->storeA.nzval = ((SparseMatrix*)mat)->A.nzval;
  SFP(sparseFactor)->storeA.colptr = ((SparseMatrix*)mat)->A.rowptr;
  SFP(sparseFactor)->storeA.rowind = ((SparseMatrix*)mat)->A.colind;
  /* calc column permutation */
  if ( SFP(sparseFactor)->use_same_perm_c == 0)
    {
      get_perm_c(permc_spec, 
                 &SFP(sparseFactor)->A, 
                 SFP(sparseFactor)->perm_c);
      SFP(sparseFactor)->use_same_perm_c = 1;
    }
  if ( SFP(sparseFactor)->use_same_sparsity == 0)
    {
      if (SFP(sparseFactor)->AC.Store  != NULL)
        {
          Destroy_CompCol_Permuted(&SFP(sparseFactor)->AC);
          Destroy_SuperNode_Matrix(&SFP(sparseFactor)->L);
          Destroy_CompCol_Matrix(&SFP(sparseFactor)->U);
        }
      /* apply column permutation and build AC and etree*/
      sp_preorder(&SFP(sparseFactor)->options, 
                  &SFP(sparseFactor)->A, 
                  SFP(sparseFactor)->perm_c, 
                  SFP(sparseFactor)->etree, 
                  &SFP(sparseFactor)->AC);
      SFP(sparseFactor)->use_same_sparsity = 1;
    }
  else
    {
      /* apply column permutation */
      SFP(sparseFactor)->options.Fact = SamePattern_SameRowPerm;
      n = SFP(sparseFactor)->A.ncol;
      for (i = 0; i < n; i++) 
        {
          ((NCPformat*)SFP(sparseFactor)->AC.Store)->colbeg[SFP(sparseFactor)->perm_c[i]] = ((NCformat*)SFP(sparseFactor)->A.Store)->colptr[i]; 
          ((NCPformat*)SFP(sparseFactor)->AC.Store)->colend[SFP(sparseFactor)->perm_c[i]] = ((NCformat*)SFP(sparseFactor)->A.Store)->colptr[i+1];
        }
    }
  dgstrf(&SFP(sparseFactor)->options,
         &SFP(sparseFactor)->AC,
         relax,
         panel_size,
         SFP(sparseFactor)->etree,
         work,
         lwork,
         SFP(sparseFactor)->perm_c,
         SFP(sparseFactor)->perm_r,
         &SFP(sparseFactor)->L,
         &SFP(sparseFactor)->U,
	 &SFP(sparseFactor)->Glu,
         &SFP(sparseFactor)->stat,
         &info);
  Py_INCREF(Py_None); 
  return Py_None;
}
Exemple #19
0
main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program ZLINSOLX1.
 *
 * This example illustrates how to use ZGSSVX to solve systems with the same
 * A but different right-hand side.
 * In this case, we factorize A only once in the first call to DGSSVX,
 * and reuse the following data structures in the subsequent call to ZGSSVX:
 *     perm_c, perm_r, R, C, L, U.
 * 
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, L, U;
    SuperMatrix    B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    doublecomplex         *a;
    int            *asub, *xa;
    int            *perm_c; /* column permutation vector */
    int            *perm_r; /* row permutations from partial pivoting */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, m, n, nnz;
    doublecomplex         *rhsb, *rhsx, *xact;
    double         *R, *C;
    double         *ferr, *berr;
    double         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default values for options argument:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
    */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("ZLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_Z, SLU_GE);
    zCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (double *) SUPERLU_MALLOC(A.nrow * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (double *) SUPERLU_MALLOC(A.ncol * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (double *) SUPERLU_MALLOC(nrhs * sizeof(double))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* ONLY PERFORM THE LU DECOMPOSITION */
    B.ncol = 0;  /* Indicate not to solve the system */
    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("LU factorization: zgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    /* ------------------------------------------------------------
       NOW WE SOLVE THE LINEAR SYSTEM USING THE FACTORED FORM OF A.
       ------------------------------------------------------------*/
    options.Fact = FACTORED; /* Indicate the factored form of A is supplied. */
    B.ncol = nrhs;  /* Set the number of right-hand side */

    /* Initialize the statistics variables. */
    StatInit(&stat);

    zgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("Triangular solve: zgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) X.Store)->nzval; 

	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }


#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Exemple #20
0
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, m, n, nnz;
    doublecomplex   *xact, *rhs;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Now we modify the default options to use the symmetric mode. */
    options.SymmetricMode = YES;
    options.ColPerm = MMD_AT_PLUS_A;
    options.DiagPivotThresh = 0.001;

    /* Read the matrix in Harwell-Boeing format. */
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    nrhs   = 1;
    if ( !(rhs = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(options.Trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    zgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
    
    if ( info == 0 ) {

	/* This is how you could access the solution matrix. */
        doublecomplex *sol = (doublecomplex*) ((DNformat*) B.Store)->nzval; 

	 /* Compute the infinity norm of the error. */
	zinf_norm_error(nrhs, &B, xact);

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	
	zQuerySpace(&L, &U, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	
    } else {
	printf("zgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    zQuerySpace(&L, &U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
		   mem_usage.expansions);
	}
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Exemple #21
0
PetscErrorCode MatLUFactorNumeric_SuperLU(Mat F,Mat A,const MatFactorInfo *info)
{
  Mat_SuperLU    *lu = (Mat_SuperLU*)F->spptr;
  Mat_SeqAIJ     *aa;
  PetscErrorCode ierr;
  PetscInt       sinfo;
  PetscReal      ferr, berr; 
  NCformat       *Ustore;
  SCformat       *Lstore;
  
  PetscFunctionBegin;
  if (lu->flg == SAME_NONZERO_PATTERN){ /* successing numerical factorization */
    lu->options.Fact = SamePattern;
    /* Ref: ~SuperLU_3.0/EXAMPLE/dlinsolx2.c */
    Destroy_SuperMatrix_Store(&lu->A); 
    if (lu->options.Equil){
      ierr = MatCopy_SeqAIJ(A,lu->A_dup,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
    }
    if ( lu->lwork >= 0 ) { 
      Destroy_SuperNode_Matrix(&lu->L);
      Destroy_CompCol_Matrix(&lu->U);
      lu->options.Fact = SamePattern;
    }
  }

  /* Create the SuperMatrix for lu->A=A^T:
       Since SuperLU likes column-oriented matrices,we pass it the transpose,
       and then solve A^T X = B in MatSolve(). */
  if (lu->options.Equil){
    aa = (Mat_SeqAIJ*)(lu->A_dup)->data;
  } else {
    aa = (Mat_SeqAIJ*)(A)->data;
  }
#if defined(PETSC_USE_COMPLEX)
  zCreate_CompCol_Matrix(&lu->A,A->cmap->n,A->rmap->n,aa->nz,(doublecomplex*)aa->a,aa->j,aa->i,
                           SLU_NC,SLU_Z,SLU_GE);
#else
  dCreate_CompCol_Matrix(&lu->A,A->cmap->n,A->rmap->n,aa->nz,aa->a,aa->j,aa->i,
                           SLU_NC,SLU_D,SLU_GE);
#endif

  /* Numerical factorization */
  lu->B.ncol = 0;  /* Indicate not to solve the system */
  if (F->factortype == MAT_FACTOR_LU){
#if defined(PETSC_USE_COMPLEX)
    zgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &sinfo);
#else
    dgssvx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C,
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, &ferr, &berr,
           &lu->mem_usage, &lu->stat, &sinfo);
#endif
  } else if (F->factortype == MAT_FACTOR_ILU){
    /* Compute the incomplete factorization, condition number and pivot growth */
#if defined(PETSC_USE_COMPLEX)
    zgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r,lu->etree, lu->equed, lu->R, lu->C, 
           &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond,
           &lu->mem_usage, &lu->stat, &sinfo);
#else
    dgsisx(&lu->options, &lu->A, lu->perm_c, lu->perm_r, lu->etree, lu->equed, lu->R, lu->C, 
          &lu->L, &lu->U, lu->work, lu->lwork, &lu->B, &lu->X, &lu->rpg, &lu->rcond, 
          &lu->mem_usage, &lu->stat, &sinfo);
#endif
  } else {
    SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Factor type not supported");
  }
  if ( !sinfo || sinfo == lu->A.ncol+1 ) {
    if ( lu->options.PivotGrowth ) 
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Recip. pivot growth = %e\n", lu->rpg);
    if ( lu->options.ConditionNumber )
      ierr = PetscPrintf(PETSC_COMM_SELF,"  Recip. condition number = %e\n", lu->rcond);
  } else if ( sinfo > 0 ){
    if ( lu->lwork == -1 ) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"  ** Estimated memory: %D bytes\n", sinfo - lu->A.ncol);
    } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_MAT_LU_ZRPVT,"Zero pivot in row %D",sinfo);
  } else { /* sinfo < 0 */
    SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_LIB, "info = %D, the %D-th argument in gssvx() had an illegal value", sinfo,-sinfo); 
  }

  if ( lu->options.PrintStat ) {
    ierr = PetscPrintf(PETSC_COMM_SELF,"MatLUFactorNumeric_SuperLU():\n");
    StatPrint(&lu->stat);
    Lstore = (SCformat *) lu->L.Store;
    Ustore = (NCformat *) lu->U.Store;
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in factor L = %D\n", Lstore->nnz);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in factor U = %D\n", Ustore->nnz);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  No of nonzeros in L+U = %D\n", Lstore->nnz + Ustore->nnz - lu->A.ncol);
    ierr = PetscPrintf(PETSC_COMM_SELF,"  L\\U MB %.3f\ttotal MB needed %.3f\n",
	       lu->mem_usage.for_lu/1e6, lu->mem_usage.total_needed/1e6);
  }

  lu->flg = SAME_NONZERO_PATTERN;
  F->ops->solve          = MatSolve_SuperLU;
  F->ops->solvetranspose = MatSolveTranspose_SuperLU;
  F->ops->matsolve       = MatMatSolve_SuperLU;
  PetscFunctionReturn(0);
}
Exemple #22
0
int main ( int argc, char *argv[] )

/**********************************************************************/
/*
  Purpose:

    SUPER_LU_S3 solves a sparse system read from a file using SGSSVX.

  Discussion:

    The sparse matrix is stored in a file using the Harwell-Boeing
    sparse matrix format.  The file should be assigned to the standard
    input of this program.  For instance, if the matrix is stored
    in the file "g10_rua.txt", the execution command might be:

      super_lu_s3 < g10_rua.txt

  Modified:

    25 April 2004

  Reference:

    James Demmel, John Gilbert, Xiaoye Li,
    SuperLU Users's Guide,
    Sections 1 and 2.

  Local parameters:

    SuperMatrix L, the computed L factor.

    int *perm_c, the column permutation vector.

    int *perm_r, the row permutations from partial pivoting.

    SuperMatrix U, the computed U factor.
*/
{
  SuperMatrix A;
  NCformat *Astore;
  float *a;
  int *asub;
  SuperMatrix B;
  float *berr;
  float *C;
  char equed[1];
  yes_no_t equil;
  int *etree;
  float *ferr;
  int i;
  int info;
  SuperMatrix L;
  int ldx;
  SCformat *Lstore;
  int lwork;
  int m;
  mem_usage_t mem_usage;
  int n;
  int nnz;
  int nrhs;
  superlu_options_t options;
  int *perm_c;
  int *perm_r;
  float *R;
  float rcond;
  float *rhsb;
  float *rhsx;
  float rpg;
  float *sol;
  SuperLUStat_t stat;
  trans_t trans;
  SuperMatrix U;
  float u;
  NCformat *Ustore;
  void *work;
  SuperMatrix X;
  int *xa;
  float *xact;
/*
  Say hello.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_S3:\n" );
  printf ( "  Read a sparse matrix A from standard input,\n");
  printf ( "  stored in Harwell-Boeing Sparse Matrix format.\n" );
  printf ( "\n" );
  printf ( "  Solve a linear system A * X = B using SGSSVX.\n" );
/* 
  Defaults 
*/
  lwork = 0;
  nrhs = 1;
  equil = YES;	
  u = 1.0;
  trans = NOTRANS;
/* 
  Set the default input options:
  options.Fact = DOFACT;
  options.Equil = YES;
  options.ColPerm = COLAMD;
  options.DiagPivotThresh = 1.0;
  options.Trans = NOTRANS;
  options.IterRefine = NOREFINE;
  options.SymmetricMode = NO;
  options.PivotGrowth = NO;
  options.ConditionNumber = NO;
  options.PrintStat = YES;
*/
  set_default_options ( &options );
/*
  Can use command line input to modify the defaults. 
*/
  parse_command_line ( argc, argv, &lwork, &u, &equil, &trans );

  options.Equil = equil;
  options.DiagPivotThresh = u;
  options.Trans = trans;

  printf ( "\n" );
  printf ( "  Length of work array LWORK = %d\n", lwork );
  printf ( "  Equilibration option EQUIL = %d\n", equil );
  printf ( "  Diagonal pivot threshhold value U = %f\n", u );
  printf ( "  Tranpose option TRANS = %d\n", trans );
/*
  Add more functionalities that the defaults. 

  Compute reciprocal pivot growth 
*/
  options.PivotGrowth = YES;    
/* 
  Compute reciprocal condition number 
*/
  options.ConditionNumber = YES;
/* 
  Perform single-precision refinement 
*/
  options.IterRefine = SINGLE;  
    
  if ( 0 < lwork ) 
  {
    work = SUPERLU_MALLOC(lwork);
    if ( !work ) 
    {
      ABORT ( "SUPERLU_MALLOC cannot allocate work[]" );
    }
  }
/* 
  Read matrix A from a file in Harwell-Boeing format.
*/
  sreadhb ( &m, &n, &nnz, &a, &asub, &xa );
/*
  Create storage for a compressed column matrix.
*/
  sCreate_CompCol_Matrix ( &A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE );
  Astore = A.Store;

  printf ( "\n" );
  printf ( "  Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz );
    
  rhsb = floatMalloc ( m * nrhs );
  if ( !rhsb ) 
  {
    ABORT ( "Malloc fails for rhsb[]." );
  }

  rhsx = floatMalloc ( m * nrhs );
  if ( !rhsx ) 
  {
    ABORT ( "Malloc fails for rhsx[]." );
  }

  sCreate_Dense_Matrix ( &B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE );

  sCreate_Dense_Matrix ( &X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE );

  xact = floatMalloc ( n * nrhs );
  if ( !xact ) 
  {
    ABORT ( "SUPERLU_MALLOC cannot allocate xact[]" );
  }
  ldx = n;
  sGenXtrue ( n, nrhs, xact, ldx );
  sFillRHS ( trans, nrhs, xact, ldx, &A, &B );
    
  etree = intMalloc ( n );
  if ( !etree )
  {
    ABORT ( "Malloc fails for etree[]." );
  }

  perm_c = intMalloc ( n );
  if ( !perm_c ) 
  {
    ABORT ( "Malloc fails for perm_c[]." );
  }

  perm_r = intMalloc ( m );
  if ( !perm_r )
  {
    ABORT ( "Malloc fails for perm_r[]." );
  }

  R = (float *) SUPERLU_MALLOC ( A.nrow * sizeof(float) );
  if ( !R ) 
  {
    ABORT ( "SUPERLU_MALLOC fails for R[]." );
  }

  C = (float *) SUPERLU_MALLOC ( A.ncol * sizeof(float) );
  if ( !C )
  {
    ABORT ( "SUPERLU_MALLOC fails for C[]." );
  }

  ferr = (float *) SUPERLU_MALLOC ( nrhs * sizeof(float) );
  if ( !ferr )
  {
    ABORT ( "SUPERLU_MALLOC fails for ferr[]." );
  }

  berr = (float *) SUPERLU_MALLOC ( nrhs * sizeof(float) );
  if ( !berr ) 
  {
    ABORT ( "SUPERLU_MALLOC fails for berr[]." );
  }
/* 
  Initialize the statistics variables. 
*/
  StatInit(&stat);
/* 
  Solve the system and compute the condition number and error bounds using SGSSVX.      
*/
  sgssvx ( &options, &A, perm_c, perm_r, etree, equed, R, C,
    &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
    &mem_usage, &stat, &info );

  printf ( "\n" );
  printf ( "  SGSSVX returns INFO = %d\n", info );

  if ( info == 0 || info == n+1 )
  {
    sol = (float*) ((DNformat*) X.Store)->nzval; 

    if ( options.PivotGrowth == YES )
    {
      printf ( "\n" );
      printf ( "  Reciprocal pivot growth = %e\n", rpg);
    }

    if ( options.ConditionNumber == YES )
    {
      printf ( "\n" );
      printf ( "  Reciprocal condition number = %e\n", rcond);
    }

    if ( options.IterRefine != NOREFINE )
    {
      printf ( "\n" );
      printf ( "  Iterative Refinement:\n");
      printf ( "%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
      for ( i = 0; i < nrhs; i++ )
      {
        printf ( "%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
      }
    }

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;

    printf ( "\n" );
    printf ( "  Number of nonzeros in factor L = %d\n", Lstore->nnz );
    printf ( "  Number of nonzeros in factor U = %d\n", Ustore->nnz );
    printf ( "  Number of nonzeros in L+U = %d\n", 
      Lstore->nnz + Ustore->nnz - n );

    printf ( "\n" );
    printf ( "  L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n", 
      mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
      mem_usage.expansions );
	     
    fflush ( stdout );

  } 
  else if ( info > 0 && lwork == -1 )
  {
    printf ( "\n" );
    printf ( "  Estimated memory: %d bytes\n", info - n );
  }

  if ( options.PrintStat ) 
  {
    StatPrint ( &stat );
  }

  StatFree ( &stat );

  SUPERLU_FREE ( rhsb );
  SUPERLU_FREE ( rhsx );
  SUPERLU_FREE ( xact );
  SUPERLU_FREE ( etree );
  SUPERLU_FREE ( perm_r );
  SUPERLU_FREE ( perm_c );
  SUPERLU_FREE ( R );
  SUPERLU_FREE ( C );
  SUPERLU_FREE ( ferr );
  SUPERLU_FREE ( berr );
  Destroy_CompCol_Matrix ( &A );
  Destroy_SuperMatrix_Store ( &B );
  Destroy_SuperMatrix_Store ( &X );

  if ( 0 <= lwork )
  {
    Destroy_SuperNode_Matrix ( &L );
    Destroy_CompCol_Matrix ( &U );
  }
/*
  Say goodbye.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_S3:\n" );
  printf ( "  Normal end of execution.\n");

  return 0;
}
main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    doublecomplex   *a;
    int      *asub, *xa;
    int      *perm_r; /* row permutations from partial pivoting */
    int      *perm_c; /* column permutation vector */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, panel_size, m, n, nnz, permc_spec;
    char     trans[1];
    doublecomplex   *xact, *rhs;
    mem_usage_t   mem_usage;

    nrhs   = 1;
    *trans = 'N';
    
    zreadhb(&m, &n, &nnz, &a, &asub, &xa);

    zCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_Z, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhs = doublecomplexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    zCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_Z, SLU_GE);
    xact = doublecomplexMalloc(n * nrhs);
    ldx = n;
    zGenXtrue(n, nrhs, xact, ldx);
    zFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");

    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = 0: natural ordering 
     *   permc_spec = 1: minimum degree on structure of A'*A
     *   permc_spec = 2: minimum degree on structure of A'+A
     *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
     */    	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    panel_size = sp_ienv(1);
    
    zgssv(&A, perm_c, perm_r, &L, &U, &B, &info);
    
    if ( info == 0 ) {

	zinf_norm_error(nrhs, &B, xact); /* Inf. norm of the error */

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	
	zQuerySpace(&L, &U, panel_size, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	
    } else {
	printf("zgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    zQuerySpace(&L, &U, panel_size, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
		   mem_usage.expansions);
	}
    }

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);
}
Exemple #24
0
int main(int argc, char *argv[])
{
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, L, U;
    SuperMatrix    B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    float         *a;
    int            *asub, *xa;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, m, n, nnz;
    float         *rhsb, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void  parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;
    
    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
    */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    /* Add more functionalities that the defaults. */
    options.PivotGrowth = YES;    /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */
    options.IterRefine = SLU_SINGLE;  /* Perform single-precision refinement */
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("SLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    sreadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    
    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* Solve the system and compute the condition number
       and error bounds using dgssvx.      */
    
    sgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("sgssvx(): info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        float *sol = (float*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth == YES )
            printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);
	if ( options.IterRefine != NOREFINE ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	     
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Exemple #25
0
main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * SDRIVE is the main test program for the FLOAT linear 
 * equation driver routines SGSSV and SGSSVX.
 * 
 * The program is invoked by a shell script file -- stest.csh.
 * The output from the tests are written into a file -- stest.out.
 *
 * =====================================================================
 */
    float         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    GlobalLU_t   Glu; /* Not needed on return. */
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    float  zero = 0.0;
    float         *R, *C;
    float         *ferr, *berr;
    float         *rwork;
    float	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    float         *xact;
    float         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    float         rpg, rcond;
    int            i, j, k1;
    float         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    double         u;
    float         anorm, cndnum;
    float         *Afull;
    float         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[4], sym[1], dist[1];
    FILE           *fp;

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
			      SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */ 
    extern int sgst01(int, int, SuperMatrix *, SuperMatrix *, 
		      SuperMatrix *, int *, int *, float *);
    extern int sgst02(trans_t, int, int, int, SuperMatrix *, float *,
                      int, float *, int, float *resid);
    extern int sgst04(int, int, float *, int, 
                      float *, int, float rcond, float *resid);
    extern int sgst07(trans_t, int, int, SuperMatrix *, float *, int,
                         float *, int, float *, int, 
                         float *, float *, float *);
    extern int slatb4_slu(char *, int *, int *, int *, char *, int *, int *, 
	               float *, int *, float *, char *);
    extern int slatms_slu(int *, int *, char *, int *, char *, float *d,
                       int *, float *, float *, int *, int *,
                       char *, float *, int *, float *, int *);
    extern int sp_sconvert(int, int, float *, int, int, int,
	                   float *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "SGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork, &u, &fp);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = SLU_SINGLE;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = floatCalloc(lda * n);
	sallocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
    }

    sallocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = floatMalloc(m * nrhs);
    bsav = floatMalloc(m * nrhs);
    solx = floatMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (float *) SUPERLU_MALLOC(m*sizeof(float));
    C       = (float *) SUPERLU_MALLOC(n*sizeof(float));
    ferr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    berr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (float *) SUPERLU_MALLOC(j*sizeof(float));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = floatCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with SLATB4 and generate a test matrix
	       with SLATMS.  */
	    slatb4_slu(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    slatms_slu(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "SLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_sconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_S, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	sCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_S, SLU_GE);
	sCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	sGenXtrue(n, nrhs, xact, ldx);
	
	StatInit(&stat);

	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 4;
	    else nfact = 1; /* Only test factored, pre-equilibrated matrix */

	    for (ifact = 0; ifact < nfact; ++ifact) {
		fact = facts[ifact];
		options.Fact = fact;

		for (equil = 0; equil < 2; ++equil) {
		    options.Equil = equil;
		    prefact   = ( options.Fact == FACTORED ||
				  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
		    nofact    = (options.Fact != FACTORED);  /* Not factored */

		    /* Restore the matrix A. */
		    sCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
                        if ( prefact ) continue;
		    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    sgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( strncmp(equed, "R", 1)==0 ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( strncmp(equed, "C", 1)==0 ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( strncmp(equed, "B", 1)==0 ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) { /* Need a factor for the first time */
			
		        /* Save Fact option. */
		        fact = options.Fact;
			options.Fact = DOFACT;

			/* Preorder the matrix, obtain the column etree. */
			sp_preorder(&options, &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			sgstrf(&options, &AC, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &Glu, &stat, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			
		        /* Restore Fact option. */
			options.Fact = fact;
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			trans = transs[itran];
                        options.Trans = trans;

			/* Restore the matrix A. */
			sCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			sFillRHS(trans, nrhs, xact, ldx, &A, &B);
			sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test sgssv
			 *----------------*/
			if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    sgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "sgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                sgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    sCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    sgst02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "sgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing sgssv */
    
			/*----------------
			 * Test sgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = FACTORED and
			   equed = 'R', 'C', or 'B'.   */
			if ( options.Fact == FACTORED &&
			     (equil || iequed) && n > 0 ) {
			    slaqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using sgssvx.      */
			sgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &Glu,
			       &mem_usage, &stat, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "sgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                sgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				sCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				sgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				sgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				sgst07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "sgssvx",
					       options.Fact, trans, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing sgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for equil ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif
        Destroy_SuperMatrix_Store(&A);
        Destroy_SuperMatrix_Store(&ASAV);
        StatFree(&stat);

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("SGE", nfail, nrun, nerrs);

    if ( strcmp(matrix_type, "LA") == 0 ) SUPERLU_FREE (Afull);
    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
#if 0
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
#else
    SUPERLU_FREE(a); SUPERLU_FREE(asub); SUPERLU_FREE(xa);
    SUPERLU_FREE(a_save); SUPERLU_FREE(asub_save); SUPERLU_FREE(xa_save);
#endif
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }

    return 0;
}
main(int argc, char *argv[])
{
    char           fact[1], equed[1], trans[1], refact[1];
    SuperMatrix  A, L, U;
    SuperMatrix  B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    complex         *a;
    int            *asub, *xa;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    factor_param_t iparam;
    int            info, lwork, nrhs, ldx, panel_size, relax;
    int            m, n, nnz, permc_spec;
    complex         *rhsb, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    int            i, firstfact;
    mem_usage_t    mem_usage;
    void    parse_command_line();

    /* Defaults */
    lwork = 0;
    *fact      = 'E';
    *equed     = 'N';
    *trans     = 'N';
    *refact    = 'N';
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    parse_command_line(argc, argv, &lwork, &panel_size, &relax, &u,
		       fact, trans, refact);
    firstfact = lsame_(fact, "F") || lsame_(refact, "Y");

    iparam.panel_size        = panel_size;
    iparam.relax             = relax;
    iparam.diag_pivot_thresh = u;
    iparam.drop_tol          = -1;
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("CLINSOLX: cannot allocate work[]");
	}
    }

    
    creadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    cCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    ldx = n;
    cGenXtrue(n, nrhs, xact, ldx);
    cFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");

    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = 0: natural ordering 
     *   permc_spec = 1: minimum degree on structure of A'*A
     *   permc_spec = 2: minimum degree on structure of A'+A
     *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
     */    	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    
    /* Solve the system and compute the condition number
       and error bounds using dgssvx.      */
    
    cgssvx(fact, trans, refact, &A, &iparam, perm_c, perm_r, etree,
	   equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond,
	   ferr, berr, &mem_usage, &info);

    printf("cgssvx(): info %d\n", info);

    if ( info == 0 || info == n+1 ) {

	printf("Recip. pivot growth = %e\n", rpg);
	printf("Recip. condition number = %e\n", rcond);
	printf("%8s%16s%16s\n", "rhs", "FERR", "BERR");
	for (i = 0; i < nrhs; ++i) {
	    printf("%8d%16e%16e\n", i+1, ferr[i], berr[i]);
	}
	       
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	     
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }
}
Exemple #27
0
    bool SuperLUSolver::Solve(SparseMatrixType& rA, VectorType& rX, VectorType& rB)
    {
        //std::cout << "matrix size in solver:  " << rA.size1() << std::endl;
        //std::cout << "RHS size in solver SLU: " << rB.size() << std::endl;

//               typedef ublas::compressed_matrix<double, ublas::row_major, 0,
//                 ublas::unbounded_array<int>, ublas::unbounded_array<double> > cm_t;

	    //make a copy of the RHS
	    VectorType rC = rB;

        superlu_options_t options;
        SuperLUStat_t stat;

        /* Set the default input options:
            options.Fact = DOFACT;
            options.Equil = YES;
            options.ColPerm = COLAMD;
            options.DiagPivotThresh = 1.0;
            options.Trans = NOTRANS;
            options.IterRefine = NOREFINE;
            options.SymmetricMode = NO;
            options.PivotGrowth = NO;
            options.ConditionNumber = NO;
            options.PrintStat = YES;
        */
        set_default_options(&options);
        options.IterRefine = SLU_DOUBLE;
// 		options.ColPerm = MMD_AT_PLUS_A;

        //Fill the SuperLU matrices
        SuperMatrix Aslu, B, L, U;

        //create a copy of the matrix
        int *index1_vector = new (std::nothrow) int[rA.index1_data().size()];
        int *index2_vector = new (std::nothrow) int[rA.index2_data().size()];
// 		double *values_vector = new (std::nothrow) double[rA.value_data().size()];

        for( int unsigned i = 0; i < rA.index1_data().size(); i++ )
            index1_vector[i] = (int)rA.index1_data()[i];

        for( unsigned int i = 0; i < rA.index2_data().size(); i++ )
            index2_vector[i] = (int)rA.index2_data()[i];

        /*		for( unsigned int i = 0; i < rA.value_data().size(); i++ )
        		    values_vector[i] = (double)rA.value_data()[i];*/

        //create a copy of the rhs vector (it will be overwritten with the solution)
        /*		double *b_vector = new (std::nothrow) double[rB.size()];
        		for( unsigned int i = 0; i < rB.size(); i++ )
        		    b_vector[i] = rB[i];*/
        /*
        		dCreate_CompCol_Matrix (&Aslu, rA.size1(), rA.size2(),
        					       rA.nnz(),
        					      values_vector,
        					      index2_vector,
         					      index1_vector,
        					      SLU_NR, SLU_D, SLU_GE
        					      );*/

        //works also with dCreate_CompCol_Matrix
        dCreate_CompRow_Matrix (&Aslu, rA.size1(), rA.size2(),
                                rA.nnz(),
                                rA.value_data().begin(),
                                index2_vector, //can not avoid a copy as ublas uses unsigned int internally
                                index1_vector, //can not avoid a copy as ublas uses unsigned int internally
                                SLU_NR, SLU_D, SLU_GE
                               );

        dCreate_Dense_Matrix (&B, rB.size(), 1,&rB[0],rB.size(),SLU_DN, SLU_D, SLU_GE);

        //allocate memory for permutation arrays
        int* perm_c;
        int* perm_r;
        if ( !(perm_c = intMalloc(rA.size1())) ) ABORT("Malloc fails for perm_c[].");
        if ( !(perm_r = intMalloc(rA.size2())) ) ABORT("Malloc fails for perm_r[].");


        //initialize container for statistical data
        StatInit(&stat);

        //call solver routine
        int info;
        dgssv(&options, &Aslu, perm_c, perm_r, &L, &U, &B, &stat, &info);

        //print output
        if (options.PrintStat) {
        StatPrint(&stat);
        }

        //resubstitution of results
        #pragma omp parallel for
        for(int i=0; i<static_cast<int>(rB.size()); i++ )
            rX[i] = rB[i]; // B(i,0);

	    //recover the RHS
	    rB=rC;

        //deallocate memory used
        StatFree(&stat);
        SUPERLU_FREE (perm_r);
        SUPERLU_FREE (perm_c);
        Destroy_SuperMatrix_Store(&Aslu); //note that by using the "store" function we will take care of deallocation ourselves
        Destroy_SuperMatrix_Store(&B);
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);

        delete [] index1_vector;
        delete [] index2_vector;
// 		delete [] b_vector;

        //CHECK WITH VALGRIND IF THIS IS NEEDED ...or if it is done by the lines above
        //deallocate tempory storage used for the matrix
//                 if(b_vector!=NULL) delete [] index1_vector;
// //   		if(b_vector!=NULL) delete [] index2_vector;
//   		if(b_vector!=NULL) delete [] values_vector;
// 		if(b_vector!=NULL) delete [] b_vector;

        return true;
    }
Exemple #28
0
static PyObject *Py_sgssv (PyObject *self, PyObject *args, PyObject *kwdict)
{
  PyObject *Py_B=NULL, *Py_X=NULL;
  PyArrayObject *nzvals=NULL;
  PyArrayObject *colind=NULL, *rowptr=NULL;
  int N, nnz;
  int info;
  int csc=0, permc_spec=2;
  int *perm_r=NULL, *perm_c=NULL;
  SuperMatrix A, B, L, U;
  superlu_options_t options;
  SuperLUStat_t stat;

  static char *kwlist[] = {"N","nnz","nzvals","colind","rowptr","B", "csc", "permc_spec",NULL};

  /* Get input arguments */
  if (!PyArg_ParseTupleAndKeywords(args, kwdict, "iiO!O!O!O|ii", kwlist, &N, &nnz, &PyArray_Type, &nzvals, &PyArray_Type, &colind, &PyArray_Type, &rowptr, &Py_B, &csc, &permc_spec))
    return NULL;

  if (!_CHECK_INTEGER(colind) || !_CHECK_INTEGER(rowptr)) {
          PyErr_SetString(PyExc_TypeError, "colind and rowptr must be of type cint");
          return NULL;
  }

  /* Create Space for output */
  Py_X = PyArray_CopyFromObject(Py_B,PyArray_FLOAT,1,2);

  if (Py_X == NULL) return NULL;

  if (csc) {
      if (NCFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr, PyArray_FLOAT)) {
          Py_DECREF(Py_X);
          return NULL;
      }
  }
  else {
      if (NRFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr, PyArray_FLOAT)) {
          Py_DECREF(Py_X);
          return NULL;
      }
  }
  
  if (DenseSuper_from_Numeric(&B, Py_X)) {
          Destroy_SuperMatrix_Store(&A);  
          Py_DECREF(Py_X);
          return NULL;
  }
  /* B and Py_X  share same data now but Py_X "owns" it */
    
  /* Setup options */
  
  if (setjmp(_superlu_py_jmpbuf)) goto fail;
  else {
      perm_c = intMalloc(N);
      perm_r = intMalloc(N);
      set_default_options(&options);
      options.ColPerm=superlu_module_getpermc(permc_spec);
      StatInit(&stat);

  /* Compute direct inverse of sparse Matrix */
      sgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
  }

  SUPERLU_FREE(perm_r);
  SUPERLU_FREE(perm_c);
  Destroy_SuperMatrix_Store(&A);
  Destroy_SuperMatrix_Store(&B);
  Destroy_SuperNode_Matrix(&L);
  Destroy_CompCol_Matrix(&U);
  StatFree(&stat);

  return Py_BuildValue("Ni", Py_X, info);

 fail:
  SUPERLU_FREE(perm_r);
  SUPERLU_FREE(perm_c);
  Destroy_SuperMatrix_Store(&A);
  Destroy_SuperMatrix_Store(&B);
  Destroy_SuperNode_Matrix(&L);
  Destroy_CompCol_Matrix(&U);
  StatFree(&stat);

  Py_XDECREF(Py_X);
  return NULL;
}
Exemple #29
0
int main(int argc, char *argv[])
{
    void smatvec_mult(float alpha, float x[], float beta, float y[]);
    void spsolve(int n, float x[], float y[]);
    extern int sfgmr( int n,
	void (*matvec_mult)(float, float [], float, float []),
	void (*psolve)(int n, float [], float[]),
	float *rhs, float *sol, double tol, int restrt, int *itmax,
	FILE *fits);
    extern int sfill_diag(int n, NCformat *Astore);

    char     equed[1] = {'B'};
    yes_no_t equil;
    trans_t  trans;
    SuperMatrix A, L, U;
    SuperMatrix B, X;
    NCformat *Astore;
    NCformat *Ustore;
    SCformat *Lstore;
    GlobalLU_t	   Glu; /* facilitate multiple factorizations with 
                           SamePattern_SameRowPerm                  */
    float   *a;
    int      *asub, *xa;
    int      *etree;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    int      nrhs, ldx, lwork, info, m, n, nnz;
    float   *rhsb, *rhsx, *xact;
    float   *work = NULL;
    float   *R, *C;
    float   u, rpg, rcond;
    float zero = 0.0;
    float one = 1.0;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    FILE 	  *fp = stdin;

    int restrt, iter, maxit, i;
    double resid;
    float *x, *b;

#ifdef DEBUG
    extern int num_drop_L, num_drop_U;
#endif

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
	options.Equil = YES;
	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 0.1; //different from complete LU
	options.Trans = NOTRANS;
	options.IterRefine = NOREFINE;
	options.SymmetricMode = NO;
	options.PivotGrowth = NO;
	options.ConditionNumber = NO;
	options.PrintStat = YES;
	options.RowPerm = LargeDiag;
	options.ILU_DropTol = 1e-4;
	options.ILU_FillTol = 1e-2;
	options.ILU_FillFactor = 10.0;
	options.ILU_DropRule = DROP_BASIC | DROP_AREA;
	options.ILU_Norm = INF_NORM;
	options.ILU_MILU = SILU;
     */
    ilu_set_default_options(&options);

    /* Modify the defaults. */
    options.PivotGrowth = YES;	  /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) ABORT("Malloc fails for work[].");
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
	printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
		"-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
		"-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
		"-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
		argv[0]);
	return 0;
    }
    else
    {
	switch (argv[1][1])
	{
	    case 'H':
	    case 'h':
		printf("Input a Harwell-Boeing format matrix:\n");
		sreadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'R':
	    case 'r':
		printf("Input a Rutherford-Boeing format matrix:\n");
		sreadrb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'T':
	    case 't':
		printf("Input a triplet format matrix:\n");
		sreadtriple(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    default:
		printf("Unrecognized format.\n");
		return 0;
	}
    }

    sCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa,
                                SLU_NC, SLU_S, SLU_GE);
    Astore = A.Store;
    sfill_diag(n, Astore);
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    fflush(stdout);

    /* Generate the right-hand side */
    if ( !(rhsb = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = floatMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    sCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_S, SLU_GE);
    sCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_S, SLU_GE);
    xact = floatMalloc(n * nrhs);
    ldx = n;
    sGenXtrue(n, nrhs, xact, ldx);
    sFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) )
	ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
	ABORT("SUPERLU_MALLOC fails for C[].");

    info = 0;
#ifdef DEBUG
    num_drop_L = 0;
    num_drop_U = 0;
#endif

    /* Initialize the statistics variables. */
    StatInit(&stat);

    /* Compute the incomplete factorization and compute the condition number
       and pivot growth using dgsisx. */
    B.ncol = 0;  /* not to perform triangular solution */
    sgsisx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work,
	   lwork, &B, &X, &rpg, &rcond, &Glu, &mem_usage, &stat, &info);

    /* Set RHS for GMRES. */
    if (!(b = floatMalloc(m))) ABORT("Malloc fails for b[].");
    if (*equed == 'R' || *equed == 'B') {
	for (i = 0; i < n; ++i) b[i] = rhsb[i] * R[i];
    } else {
	for (i = 0; i < m; i++) b[i] = rhsb[i];
    }

    printf("sgsisx(): info %d, equed %c\n", info, equed[0]);
    if (info > 0 || rcond < 1e-8 || rpg > 1e8)
	printf("WARNING: This preconditioner might be unstable.\n");

    if ( info == 0 || info == n+1 ) {
	if ( options.PivotGrowth == YES )
	    printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);
    } else if ( info > 0 && lwork == -1 ) {
	printf("** Estimated memory: %d bytes\n", info - n);
    }

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;
    printf("n(A) = %d, nnz(A) = %d\n", n, Astore->nnz);
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    printf("Fill ratio: nnz(F)/nnz(A) = %.3f\n",
	    ((double)(Lstore->nnz) + (double)(Ustore->nnz) - (double)n)
	    / (double)Astore->nnz);
    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
    fflush(stdout);

    /* Set the global variables. */
    GLOBAL_A = &A;
    GLOBAL_L = &L;
    GLOBAL_U = &U;
    GLOBAL_STAT = &stat;
    GLOBAL_PERM_C = perm_c;
    GLOBAL_PERM_R = perm_r;
    GLOBAL_OPTIONS = &options;
    GLOBAL_R = R;
    GLOBAL_C = C;
    GLOBAL_MEM_USAGE = &mem_usage;

    /* Set the options to do solve-only. */
    options.Fact = FACTORED;
    options.PivotGrowth = NO;
    options.ConditionNumber = NO;

    /* Set the variables used by GMRES. */
    restrt = SUPERLU_MIN(n / 3 + 1, 50);
    maxit = 1000;
    iter = maxit;
    resid = 1e-8;
    if (!(x = floatMalloc(n))) ABORT("Malloc fails for x[].");

    if (info <= n + 1)
    {
	int i_1 = 1;
	double maxferr = 0.0, nrmA, nrmB, res, t;
        float temp;
	extern float snrm2_(int *, float [], int *);
	extern void saxpy_(int *, float *, float [], int *, float [], int *);

	/* Initial guess */
	for (i = 0; i < n; i++) x[i] = zero;

	t = SuperLU_timer_();

	/* Call GMRES */
	sfgmr(n, smatvec_mult, spsolve, b, x, resid, restrt, &iter, stdout);

	t = SuperLU_timer_() - t;

	/* Output the result. */
	nrmA = snrm2_(&(Astore->nnz), (float *)((DNformat *)A.Store)->nzval,
		&i_1);
	nrmB = snrm2_(&m, b, &i_1);
	sp_sgemv("N", -1.0, &A, x, 1, 1.0, b, 1);
	res = snrm2_(&m, b, &i_1);
	resid = res / nrmB;
	printf("||A||_F = %.1e, ||B||_2 = %.1e, ||B-A*X||_2 = %.1e, "
		"relres = %.1e\n", nrmA, nrmB, res, resid);

	if (iter >= maxit)
	{
	    if (resid >= 1.0) iter = -180;
	    else if (resid > 1e-8) iter = -111;
	}
	printf("iteration: %d\nresidual: %.1e\nGMRES time: %.2f seconds.\n",
		iter, resid, t);

	/* Scale the solution back if equilibration was performed. */
	if (*equed == 'C' || *equed == 'B') 
	    for (i = 0; i < n; i++) x[i] *= C[i];

	for (i = 0; i < m; i++) {
	    maxferr = SUPERLU_MAX(maxferr, fabs(x[i] - xact[i]));
        }
	printf("||X-X_true||_oo = %.1e\n", maxferr);
    }
#ifdef DEBUG
    printf("%d entries in L and %d entries in U dropped.\n",
	    num_drop_L, num_drop_U);
#endif
    fflush(stdout);

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
	Destroy_SuperNode_Matrix(&L);
	Destroy_CompCol_Matrix(&U);
    }
    SUPERLU_FREE(b);
    SUPERLU_FREE(x);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif

    return 0;
}
Exemple #30
0
int main ( int argc, char *argv[] )

/**********************************************************************/
/*
  Purpose:

    SUPER_LU_D0 runs a small 5 by 5 example of the use of SUPER_LU.

  Modified:

    23 April 2004

  Reference:

    James Demmel, John Gilbert, Xiaoye Li,
    SuperLU Users's Guide,
    Sections 1 and 2.
*/
{
  double *a;
  SuperMatrix A;
  int *asub;
  SuperMatrix B;
  int i;
  int info;
  SuperMatrix L;
  int m;
  int n;
  int nnz;
  int nrhs;
  superlu_options_t options;
  int *perm_c;
  int *perm_r;
  int permc_spec;
  double *rhs;
  double sol[5];
  SuperLUStat_t stat;
  SuperMatrix U;
  int *xa;
/*
  Say hello.
*/
  printf ( "\n" );
  printf ( "SUPER_LU_D0:\n" );
  printf ( "  Simple 5 by 5 example of SUPER_LU solver.\n" );
/* 
  Initialize parameters. 
*/
  m = 5;
  n = 5;
  nnz = 12;
/* 
  Set aside space for the arrays. 
*/
  a = doubleMalloc ( nnz );
  if ( !a ) 
  {
    ABORT ( "Malloc fails for a[]." );
  }

  asub = intMalloc ( nnz );
  if ( !asub ) 
  {
    ABORT ( "Malloc fails for asub[]." );
  }

  xa = intMalloc ( n+1 );
  if ( !xa ) 
  { 
    ABORT ( "Malloc fails for xa[]." );
  }
/* 
  Initialize matrix A. 
*/
  a[0] = 19.0; 
  a[1] = 12.0; 
  a[2] = 12.0; 
  a[3] = 21.0; 
  a[4] = 12.0; 
  a[5] = 12.0;
  a[6] = 21.0; 
  a[7] = 16.0; 
  a[8] = 21.0; 
  a[9] =  5.0; 
  a[10]= 21.0; 
  a[11]= 18.0;

  asub[0] = 0; 
  asub[1] = 1; 
  asub[2] = 4; 
  asub[3] = 1;
  asub[4] = 2; 
  asub[5] = 4; 
  asub[6] = 0; 
  asub[7] = 2;
  asub[8] = 0; 
  asub[9] = 3; 
  asub[10]= 3; 
  asub[11]= 4;

  xa[0] = 0; 
  xa[1] = 3; 
  xa[2] = 6; 
  xa[3] = 8; 
  xa[4] = 10; 
  xa[5] = 12;

  sol[0] = -0.031250000;
  sol[1] =  0.065476190;
  sol[2] =  0.013392857;
  sol[3] =  0.062500000;
  sol[4] =  0.032738095;
/* 
  Create matrix A in the format expected by SuperLU. 
*/
  dCreate_CompCol_Matrix ( &A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE );
/* 
  Create the right-hand side matrix B. 
*/
  nrhs = 1;
  rhs = doubleMalloc ( m * nrhs );
  if ( !rhs ) 
  {
    ABORT("Malloc fails for rhs[].");
  }

  for ( i = 0; i < m; i++ ) 
  {
    rhs[i] = 1.0;
  }

  dCreate_Dense_Matrix ( &B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE );
/* 
  Set up the arrays for the permutations. 
*/
  perm_r = intMalloc ( m );
  if ( !perm_r ) 
  {
    ABORT ( "Malloc fails for perm_r[]." );
  }

  perm_c = intMalloc ( n );
  if ( !perm_c ) 
  {
    ABORT ( "Malloc fails for perm_c[]." );
  }
/* 
  Set the default input options, and then adjust some of them.
*/
  set_default_options ( &options );
  options.ColPerm = NATURAL;
/* 
  Initialize the statistics variables. 
*/
  StatInit ( &stat );
/*
  Factor the matrix and solve the linear system.
*/
  dgssv ( &options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info );
/*
  Print some of the results.
*/
  dPrint_CompCol_Matrix ( "Matrix A", &A );
  dPrint_SuperNode_Matrix ( "Factor L", &L );
  dPrint_CompCol_Matrix ( "Factor U", &U );
  dPrint_Dense_Matrix ( "Solution X", &B );

  printf ( "\n" );
  printf ( "  The exact solution:\n" );
  printf ( "\n" );
  for ( i = 0; i < n; i++ )
  {
    printf ( "%d  %f\n", i, sol[i] );
  }

  printf ( "\n" );
  print_int_vec ( "perm_r", m, perm_r );
/* 
  De-allocate storage.
*/
  SUPERLU_FREE ( rhs );
  SUPERLU_FREE ( perm_r );
  SUPERLU_FREE ( perm_c );
  Destroy_CompCol_Matrix ( &A );
  Destroy_SuperMatrix_Store ( &B );
  Destroy_SuperNode_Matrix ( &L );
  Destroy_CompCol_Matrix ( &U );
  StatFree ( &stat );

  printf ( "\n" );
  printf ( "SUPER_LU_D0:\n" );
  printf ( "  Normal end of execution.\n" );

  return 0;
}