Exemple #1
0
static void DtoCreateNestedContextType(FuncDeclaration* fd) {
    Logger::println("DtoCreateNestedContextType for %s", fd->toChars());
    LOG_SCOPE

    DtoDeclareFunction(fd);

    if (fd->ir.irFunc->nestedContextCreated)
        return;
    fd->ir.irFunc->nestedContextCreated = true;

    if (fd->nestedVars.empty()) {
        // fill nestedVars
        size_t nnest = fd->closureVars.dim;
        for (size_t i = 0; i < nnest; ++i)
        {
            VarDeclaration* vd = static_cast<VarDeclaration*>(fd->closureVars.data[i]);
            fd->nestedVars.insert(vd);
        }
    }

    // construct nested variables array
    if (!fd->nestedVars.empty())
    {
        Logger::println("has nested frame");
        // start with adding all enclosing parent frames until a static parent is reached

        LLStructType* innerFrameType = NULL;
        unsigned depth = -1;
        if (!fd->isStatic()) {
            if (FuncDeclaration* parfd = getParentFunc(fd, true)) {
                // Make sure the parent has already been analyzed.
                DtoCreateNestedContextType(parfd);

                innerFrameType = parfd->ir.irFunc->frameType;
                if (innerFrameType)
                    depth = parfd->ir.irFunc->depth;
            }
        }
        fd->ir.irFunc->depth = ++depth;

        Logger::cout() << "Function " << fd->toChars() << " has depth " << depth << '\n';

        typedef std::vector<LLType*> TypeVec;
        TypeVec types;
        if (depth != 0) {
            assert(innerFrameType);
            // Add frame pointer types for all but last frame
            if (depth > 1) {
                for (unsigned i = 0; i < (depth - 1); ++i) {
                    types.push_back(innerFrameType->getElementType(i));
                }
            }
            // Add frame pointer type for last frame
            types.push_back(LLPointerType::getUnqual(innerFrameType));
        }

        if (Logger::enabled() && depth != 0) {
            Logger::println("Frame types: ");
            LOG_SCOPE;
            for (TypeVec::iterator i = types.begin(); i != types.end(); ++i)
                Logger::cout() << **i << '\n';
        }

        // Add the direct nested variables of this function, and update their indices to match.
        // TODO: optimize ordering for minimal space usage?
        for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i)
        {
            VarDeclaration* vd = *i;
            if (!vd->ir.irLocal)
                vd->ir.irLocal = new IrLocal(vd);

            vd->ir.irLocal->nestedIndex = types.size();
            vd->ir.irLocal->nestedDepth = depth;
            if (vd->isParameter()) {
                // Parameters will have storage associated with them (to handle byref etc.),
                // so handle those cases specially by storing a pointer instead of a value.
                const IrParameter* irparam = vd->ir.irParam;
                const bool refout = vd->storage_class & (STCref | STCout);
                const bool lazy = vd->storage_class & STClazy;
                const bool byref = irparam->arg->byref;
                const bool isVthisPtr = irparam->isVthis && !byref;
                if (!(refout || (byref && !lazy)) || isVthisPtr) {
                    // This will be copied to the nesting frame.
                    if (lazy)
                        types.push_back(irparam->value->getType()->getContainedType(0));
                    else
                        types.push_back(DtoType(vd->type));
                } else {
                    types.push_back(irparam->value->getType());
                }
            } else if (isSpecialRefVar(vd)) {
                types.push_back(DtoType(vd->type->pointerTo()));
            } else {
                types.push_back(DtoType(vd->type));
            }
            if (Logger::enabled()) {
                Logger::cout() << "Nested var '" << vd->toChars() <<
                    "' of type " << *types.back() << "\n";
            }
        }

        LLStructType* frameType = LLStructType::create(gIR->context(), types,
                                                       std::string("nest.") + fd->toChars());

        Logger::cout() << "frameType = " << *frameType << '\n';

        // Store type in IrFunction
        fd->ir.irFunc->frameType = frameType;
    } else if (FuncDeclaration* parFunc = getParentFunc(fd, true)) {
        // Propagate context arg properties if the context arg is passed on unmodified.
        DtoCreateNestedContextType(parFunc);
        fd->ir.irFunc->frameType = parFunc->ir.irFunc->frameType;
        fd->ir.irFunc->depth = parFunc->ir.irFunc->depth;
    }
}
Exemple #2
0
void DtoCreateNestedContext(FuncDeclaration* fd) {
    Logger::println("DtoCreateNestedContext for %s", fd->toChars());
    LOG_SCOPE

    DtoCreateNestedContextType(fd);

    if (nestedCtx == NCArray) {
        // construct nested variables array
        if (!fd->nestedVars.empty())
        {
            Logger::println("has nested frame");
            // start with adding all enclosing parent frames until a static parent is reached
            int nparelems = 0;
            if (!fd->isStatic())
            {
                Dsymbol* par = fd->toParent2();
                while (par)
                {
                    if (FuncDeclaration* parfd = par->isFuncDeclaration())
                    {
                        nparelems += parfd->nestedVars.size();
                        // stop at first static
                        if (parfd->isStatic())
                            break;
                    }
                    else if (par->isClassDeclaration())
                    {
                        // nothing needed
                    }
                    else
                    {
                        break;
                    }

                    par = par->toParent2();
                }
            }
            int nelems = fd->nestedVars.size() + nparelems;

            // make array type for nested vars
            LLType* nestedVarsTy = LLArrayType::get(getVoidPtrType(), nelems);

            // alloca it
            // FIXME align ?
            LLValue* nestedVars = DtoRawAlloca(nestedVarsTy, 0, ".nested_vars");

            IrFunction* irfunction = fd->ir.irFunc;

            // copy parent frame into beginning
            if (nparelems)
            {
                LLValue* src = irfunction->nestArg;
                if (!src)
                {
                    assert(irfunction->thisArg);
                    assert(fd->isMember2());
                    LLValue* thisval = DtoLoad(irfunction->thisArg);
                    ClassDeclaration* cd = fd->isMember2()->isClassDeclaration();
                    assert(cd);
                    assert(cd->vthis);
                    src = DtoLoad(DtoGEPi(thisval, 0,cd->vthis->ir.irField->index, ".vthis"));
                } else {
                    src = DtoLoad(src);
                }
                DtoMemCpy(nestedVars, src, DtoConstSize_t(nparelems*PTRSIZE),
                    getABITypeAlign(getVoidPtrType()));
            }

            // store in IrFunction
            irfunction->nestedVar = nestedVars;

            // go through all nested vars and assign indices
            int idx = nparelems;
            for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i)
            {
                VarDeclaration* vd = *i;
                if (!vd->ir.irLocal)
                    vd->ir.irLocal = new IrLocal(vd);

                if (vd->isParameter())
                {
                    Logger::println("nested param: %s", vd->toChars());
                    LLValue* gep = DtoGEPi(nestedVars, 0, idx);
                    LLValue* val = DtoBitCast(vd->ir.irLocal->value, getVoidPtrType());
                    DtoAlignedStore(val, gep);
                }
                else
                {
                    Logger::println("nested var:   %s", vd->toChars());
                }

                vd->ir.irLocal->nestedIndex = idx++;
            }
        }
    }
    else if (nestedCtx == NCHybrid) {
        // construct nested variables array
        if (!fd->nestedVars.empty())
        {
            IrFunction* irfunction = fd->ir.irFunc;
            unsigned depth = irfunction->depth;
            LLStructType *frameType = irfunction->frameType;
            // Create frame for current function and append to frames list
            // FIXME: alignment ?
            LLValue* frame = 0;
#if DMDV2
            if (fd->needsClosure())
                frame = DtoGcMalloc(frameType, ".frame");
            else
#endif
            frame = DtoRawAlloca(frameType, 0, ".frame");


            // copy parent frames into beginning
            if (depth != 0) {
                LLValue* src = irfunction->nestArg;
                if (!src) {
                    assert(irfunction->thisArg);
                    assert(fd->isMember2());
                    LLValue* thisval = DtoLoad(irfunction->thisArg);
#if DMDV2
                    AggregateDeclaration* cd = fd->isMember2();
#else
                    ClassDeclaration* cd = fd->isMember2()->isClassDeclaration();
#endif
                    assert(cd);
                    assert(cd->vthis);
                    Logger::println("Indexing to 'this'");
#if DMDV2
                    if (cd->isStructDeclaration())
                        src = DtoExtractValue(thisval, cd->vthis->ir.irField->index, ".vthis");
                    else
#endif
                    src = DtoLoad(DtoGEPi(thisval, 0, cd->vthis->ir.irField->index, ".vthis"));
                } else {
                    src = DtoLoad(src);
                }
                if (depth > 1) {
                    src = DtoBitCast(src, getVoidPtrType());
                    LLValue* dst = DtoBitCast(frame, getVoidPtrType());
                    DtoMemCpy(dst, src, DtoConstSize_t((depth-1) * PTRSIZE),
                        getABITypeAlign(getVoidPtrType()));
                }
                // Copy nestArg into framelist; the outer frame is not in the list of pointers
                src = DtoBitCast(src, frameType->getContainedType(depth-1));
                LLValue* gep = DtoGEPi(frame, 0, depth-1);
                DtoAlignedStore(src, gep);
            }

            // store context in IrFunction
            irfunction->nestedVar = frame;

            // go through all nested vars and assign addresses where possible.
            for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i)
            {
                VarDeclaration* vd = *i;

                LLValue* gep = DtoGEPi(frame, 0, vd->ir.irLocal->nestedIndex, vd->toChars());
                if (vd->isParameter()) {
                    Logger::println("nested param: %s", vd->toChars());
                    LOG_SCOPE
                    LLValue* value = vd->ir.irLocal->value;
                    if (llvm::isa<llvm::AllocaInst>(llvm::GetUnderlyingObject(value))) {
                        Logger::println("Copying to nested frame");
                        // The parameter value is an alloca'd stack slot.
                        // Copy to the nesting frame and leave the alloca for
                        // the optimizers to clean up.
                        assert(!vd->ir.irLocal->byref);
                        DtoStore(DtoLoad(value), gep);
                        gep->takeName(value);
                        vd->ir.irLocal->value = gep;
                    } else {
                        Logger::println("Adding pointer to nested frame");
                        // The parameter value is something else, such as a
                        // passed-in pointer (for 'ref' or 'out' parameters) or
                        // a pointer arg with byval attribute.
                        // Store the address into the frame.
                        assert(vd->ir.irLocal->byref);
                        storeVariable(vd, gep);
                    }
                } else if (vd->isRef() || vd->isOut()) {
                    // This slot is initialized in DtoNestedInit, to handle things like byref foreach variables
                    // which move around in memory.
                    assert(vd->ir.irLocal->byref);
                } else {
                    Logger::println("nested var:   %s", vd->toChars());
                    if (vd->ir.irLocal->value)
                        Logger::cout() << "Pre-existing value: " << *vd->ir.irLocal->value << '\n';
                    assert(!vd->ir.irLocal->value);
                    vd->ir.irLocal->value = gep;
                    assert(!vd->ir.irLocal->byref);
                }

                if (global.params.symdebug) {
                    LLSmallVector<LLValue*, 2> addr;
                    dwarfOpOffset(addr, frameType, vd->ir.irLocal->nestedIndex);
                    DtoDwarfLocalVariable(frame, vd, addr);
                }
            }
        } else if (FuncDeclaration* parFunc = getParentFunc(fd, true)) {
            // Propagate context arg properties if the context arg is passed on unmodified.
            DtoDeclareFunction(parFunc);
            fd->ir.irFunc->frameType = parFunc->ir.irFunc->frameType;
            fd->ir.irFunc->depth = parFunc->ir.irFunc->depth;
        }
    }
    else {
        assert(0 && "Not implemented yet");
    }
}
Exemple #3
0
void DtoDefineFunction(FuncDeclaration* fd)
{
    IF_LOG Logger::println("DtoDefineFunction(%s): %s", fd->toPrettyChars(), fd->loc.toChars());
    LOG_SCOPE;

    if (fd->ir.isDefined()) return;

    if ((fd->type && fd->type->ty == Terror) ||
        (fd->type && fd->type->ty == Tfunction && static_cast<TypeFunction *>(fd->type)->next == NULL) ||
        (fd->type && fd->type->ty == Tfunction && static_cast<TypeFunction *>(fd->type)->next->ty == Terror))
    {
        IF_LOG Logger::println("Ignoring; has error type, no return type or returns error type");
        fd->ir.setDefined();
        return;
    }

    if (fd->semanticRun == PASSsemanticdone)
    {
        /* What happened is this function failed semantic3() with errors,
         * but the errors were gagged.
         * Try to reproduce those errors, and then fail.
         */
        error(fd->loc, "errors compiling function %s", fd->toPrettyChars());
        fd->ir.setDefined();
        return;
    }

    DtoResolveFunction(fd);

    if (fd->isUnitTestDeclaration() && !global.params.useUnitTests)
    {
        IF_LOG Logger::println("No code generation for unit test declaration %s", fd->toChars());
        fd->ir.setDefined();
        return;
    }

    // Skip array ops implemented in druntime
    if (fd->isArrayOp && isDruntimeArrayOp(fd))
    {
        IF_LOG Logger::println("No code generation for array op %s implemented in druntime", fd->toChars());
        fd->ir.setDefined();
        return;
    }

    // Check whether the frontend knows that the function is already defined
    // in some other module (see DMD's FuncDeclaration::toObjFile).
    for (FuncDeclaration *f = fd; f; )
    {
        if (!f->isInstantiated() && f->inNonRoot())
        {
            IF_LOG Logger::println("Skipping '%s'.", fd->toPrettyChars());
            // TODO: Emit as available_externally for inlining purposes instead
            // (see #673).
            fd->ir.setDefined();
            return;
        }
        if (f->isNested())
            f = f->toParent2()->isFuncDeclaration();
        else
            break;
    }

    DtoDeclareFunction(fd);
    assert(fd->ir.isDeclared());

    // DtoResolveFunction might also set the defined flag for functions we
    // should not touch.
    if (fd->ir.isDefined()) return;
    fd->ir.setDefined();

    // We cannot emit nested functions with parents that have not gone through
    // semantic analysis. This can happen as DMD leaks some template instances
    // from constraints into the module member list. DMD gets away with being
    // sloppy as functions in template contraints obviously never need to access
    // data from the template function itself, but it would still mess up our
    // nested context creation code.
    FuncDeclaration* parent = fd;
    while ((parent = getParentFunc(parent, true)))
    {
        if (parent->semanticRun != PASSsemantic3done || parent->semantic3Errors)
        {
            IF_LOG Logger::println("Ignoring nested function with unanalyzed parent.");
            return;
        }
    }

    assert(fd->semanticRun == PASSsemantic3done);
    assert(fd->ident != Id::empty);

    if (fd->isUnitTestDeclaration()) {
        gIR->unitTests.push_back(fd);
    } else if (fd->isSharedStaticCtorDeclaration()) {
        gIR->sharedCtors.push_back(fd);
    } else if (StaticDtorDeclaration *dtorDecl = fd->isSharedStaticDtorDeclaration()) {
        gIR->sharedDtors.push_front(fd);
        if (dtorDecl->vgate)
            gIR->sharedGates.push_front(dtorDecl->vgate);
    } else if (fd->isStaticCtorDeclaration()) {
        gIR->ctors.push_back(fd);
    } else if (StaticDtorDeclaration *dtorDecl = fd->isStaticDtorDeclaration()) {
        gIR->dtors.push_front(fd);
        if (dtorDecl->vgate)
            gIR->gates.push_front(dtorDecl->vgate);
    }


    // if this function is naked, we take over right away! no standard processing!
    if (fd->naked)
    {
        DtoDefineNakedFunction(fd);
        return;
    }

    IrFunction *irFunc = getIrFunc(fd);
    IrFuncTy &irFty = irFunc->irFty;

    // debug info
    irFunc->diSubprogram = gIR->DBuilder.EmitSubProgram(fd);

    Type* t = fd->type->toBasetype();
    TypeFunction* f = static_cast<TypeFunction*>(t);
    // assert(f->ctype);

    llvm::Function* func = irFunc->func;

    // is there a body?
    if (fd->fbody == NULL)
        return;

    IF_LOG Logger::println("Doing function body for: %s", fd->toChars());
    gIR->functions.push_back(irFunc);

    if (fd->isMain())
        gIR->emitMain = true;

    func->setLinkage(lowerFuncLinkage(fd));

    // On x86_64, always set 'uwtable' for System V ABI compatibility.
    // TODO: Find a better place for this.
    // TODO: Is this required for Win64 as well?
    if (global.params.targetTriple.getArch() == llvm::Triple::x86_64)
    {
        func->addFnAttr(LDC_ATTRIBUTE(UWTable));
    }
#if LDC_LLVM_VER >= 303
    if (opts::sanitize != opts::None) {
        // Set the required sanitizer attribute.
        if (opts::sanitize == opts::AddressSanitizer) {
            func->addFnAttr(LDC_ATTRIBUTE(SanitizeAddress));
        }

        if (opts::sanitize == opts::MemorySanitizer) {
            func->addFnAttr(LDC_ATTRIBUTE(SanitizeMemory));
        }

        if (opts::sanitize == opts::ThreadSanitizer) {
            func->addFnAttr(LDC_ATTRIBUTE(SanitizeThread));
        }
    }
#endif

    llvm::BasicBlock* beginbb = llvm::BasicBlock::Create(gIR->context(), "", func);
    llvm::BasicBlock* endbb = llvm::BasicBlock::Create(gIR->context(), "endentry", func);

    //assert(gIR->scopes.empty());
    gIR->scopes.push_back(IRScope(beginbb, endbb));

    // create alloca point
    // this gets erased when the function is complete, so alignment etc does not matter at all
    llvm::Instruction* allocaPoint = new llvm::AllocaInst(LLType::getInt32Ty(gIR->context()), "alloca point", beginbb);
    irFunc->allocapoint = allocaPoint;

    // debug info - after all allocas, but before any llvm.dbg.declare etc
    gIR->DBuilder.EmitFuncStart(fd);

    // this hack makes sure the frame pointer elimination optimization is disabled.
    // this this eliminates a bunch of inline asm related issues.
    if (fd->hasReturnExp & 8) // has inline asm
    {
        // emit a call to llvm_eh_unwind_init
        LLFunction* hack = GET_INTRINSIC_DECL(eh_unwind_init);
        gIR->ir->CreateCall(hack, "");
    }

    // give the 'this' argument storage and debug info
    if (irFty.arg_this)
    {
        LLValue* thisvar = irFunc->thisArg;
        assert(thisvar);

        LLValue* thismem = thisvar;
        if (!irFty.arg_this->byref)
        {
            thismem = DtoRawAlloca(thisvar->getType(), 0, "this"); // FIXME: align?
            DtoStore(thisvar, thismem);
            irFunc->thisArg = thismem;
        }

        assert(getIrParameter(fd->vthis)->value == thisvar);
        getIrParameter(fd->vthis)->value = thismem;

        gIR->DBuilder.EmitLocalVariable(thismem, fd->vthis);
    }

    // give the 'nestArg' storage
    if (irFty.arg_nest)
    {
        LLValue *nestArg = irFunc->nestArg;
        LLValue *val = DtoRawAlloca(nestArg->getType(), 0, "nestedFrame");
        DtoStore(nestArg, val);
        irFunc->nestArg = val;
    }

    // give arguments storage
    // and debug info
    if (fd->parameters)
    {
        size_t n = irFty.args.size();
        assert(n == fd->parameters->dim);
        for (size_t i=0; i < n; ++i)
        {
            Dsymbol* argsym = static_cast<Dsymbol*>(fd->parameters->data[i]);
            VarDeclaration* vd = argsym->isVarDeclaration();
            assert(vd);

            IrParameter* irparam = getIrParameter(vd);
            assert(irparam);

            bool refout = vd->storage_class & (STCref | STCout);
            bool lazy = vd->storage_class & STClazy;
            if (!refout && (!irparam->arg->byref || lazy))
            {
                // alloca a stack slot for this first class value arg
                LLValue* mem = DtoAlloca(irparam->arg->type, vd->ident->toChars());

                // let the abi transform the argument back first
                DImValue arg_dval(vd->type, irparam->value);
                irFty.getParam(vd->type, i, &arg_dval, mem);

                // set the arg var value to the alloca
                irparam->value = mem;
            }

            if (global.params.symdebug && !(isaArgument(irparam->value) && isaArgument(irparam->value)->hasByValAttr()) && !refout)
                gIR->DBuilder.EmitLocalVariable(irparam->value, vd);
        }
    }

    FuncGen fg;
    irFunc->gen = &fg;

    DtoCreateNestedContext(fd);

    if (fd->vresult && !
        fd->vresult->nestedrefs.dim // FIXME: not sure here :/
    )
    {
        DtoVarDeclaration(fd->vresult);
    }

    // D varargs: prepare _argptr and _arguments
    if (f->linkage == LINKd && f->varargs == 1)
    {
        // allocate _argptr (of type core.stdc.stdarg.va_list)
        LLValue* argptrmem = DtoAlloca(Type::tvalist, "_argptr_mem");
        irFunc->_argptr = argptrmem;

        // initialize _argptr with a call to the va_start intrinsic
        LLValue* vaStartArg = gABI->prepareVaStart(argptrmem);
        llvm::CallInst::Create(GET_INTRINSIC_DECL(vastart), vaStartArg, "", gIR->scopebb());

        // copy _arguments to a memory location
        LLType* argumentsType = irFunc->_arguments->getType();
        LLValue* argumentsmem = DtoRawAlloca(argumentsType, 0, "_arguments_mem");
        new llvm::StoreInst(irFunc->_arguments, argumentsmem, gIR->scopebb());
        irFunc->_arguments = argumentsmem;
    }

    // output function body
    codegenFunction(fd->fbody, gIR);
    irFunc->gen = 0;

    llvm::BasicBlock* bb = gIR->scopebb();
    if (pred_begin(bb) == pred_end(bb) && bb != &bb->getParent()->getEntryBlock()) {
        // This block is trivially unreachable, so just delete it.
        // (This is a common case because it happens when 'return'
        // is the last statement in a function)
        bb->eraseFromParent();
    } else if (!gIR->scopereturned()) {
        // llvm requires all basic blocks to end with a TerminatorInst but DMD does not put a return statement
        // in automatically, so we do it here.

        // pass the previous block into this block
        gIR->DBuilder.EmitFuncEnd(fd);
        if (func->getReturnType() == LLType::getVoidTy(gIR->context())) {
            llvm::ReturnInst::Create(gIR->context(), gIR->scopebb());
        }
        else if (!fd->isMain()) {
            AsmBlockStatement* asmb = fd->fbody->endsWithAsm();
            if (asmb) {
                assert(asmb->abiret);
                llvm::ReturnInst::Create(gIR->context(), asmb->abiret, bb);
            }
            else {
                llvm::ReturnInst::Create(gIR->context(), llvm::UndefValue::get(func->getReturnType()), bb);
            }
        }
        else
            llvm::ReturnInst::Create(gIR->context(), LLConstant::getNullValue(func->getReturnType()), bb);
    }

    // erase alloca point
    if (allocaPoint->getParent())
        allocaPoint->eraseFromParent();
    allocaPoint = 0;
    gIR->func()->allocapoint = 0;

    gIR->scopes.pop_back();

    // get rid of the endentry block, it's never used
    assert(!func->getBasicBlockList().empty());
    func->getBasicBlockList().pop_back();

    gIR->functions.pop_back();
}
Exemple #4
0
void DtoCreateNestedContext(FuncDeclaration* fd) {
    Logger::println("DtoCreateNestedContext for %s", fd->toChars());
    LOG_SCOPE

    DtoCreateNestedContextType(fd);

    // construct nested variables array
    if (!fd->nestedVars.empty())
    {
        IrFunction* irfunction = fd->ir.irFunc;
        unsigned depth = irfunction->depth;
        LLStructType *frameType = irfunction->frameType;
        // Create frame for current function and append to frames list
        // FIXME: alignment ?
        LLValue* frame = 0;
#if DMDV2
        if (fd->needsClosure())
            frame = DtoGcMalloc(frameType, ".frame");
        else
#endif
        frame = DtoRawAlloca(frameType, 0, ".frame");


        // copy parent frames into beginning
        if (depth != 0) {
            LLValue* src = irfunction->nestArg;
            if (!src) {
                assert(irfunction->thisArg);
                assert(fd->isMember2());
                LLValue* thisval = DtoLoad(irfunction->thisArg);
#if DMDV2
                AggregateDeclaration* cd = fd->isMember2();
#else
                ClassDeclaration* cd = fd->isMember2()->isClassDeclaration();
#endif
                assert(cd);
                assert(cd->vthis);
                Logger::println("Indexing to 'this'");
#if DMDV2
                if (cd->isStructDeclaration())
                    src = DtoExtractValue(thisval, cd->vthis->ir.irField->index, ".vthis");
                else
#endif
                src = DtoLoad(DtoGEPi(thisval, 0, cd->vthis->ir.irField->index, ".vthis"));
            } else {
                src = DtoLoad(src);
            }
            if (depth > 1) {
                src = DtoBitCast(src, getVoidPtrType());
                LLValue* dst = DtoBitCast(frame, getVoidPtrType());
                DtoMemCpy(dst, src, DtoConstSize_t((depth-1) * PTRSIZE),
                    getABITypeAlign(getVoidPtrType()));
            }
            // Copy nestArg into framelist; the outer frame is not in the list of pointers
            src = DtoBitCast(src, frameType->getContainedType(depth-1));
            LLValue* gep = DtoGEPi(frame, 0, depth-1);
            DtoAlignedStore(src, gep);
        }

        // store context in IrFunction
        irfunction->nestedVar = frame;

        // go through all nested vars and assign addresses where possible.
        for (std::set<VarDeclaration*>::iterator i=fd->nestedVars.begin(); i!=fd->nestedVars.end(); ++i)
        {
            VarDeclaration* vd = *i;

            LLValue* gep = DtoGEPi(frame, 0, vd->ir.irLocal->nestedIndex, vd->toChars());
            if (vd->isParameter()) {
                Logger::println("nested param: %s", vd->toChars());
                LOG_SCOPE
                IrParameter* parm = vd->ir.irParam;

                if (parm->arg->byref)
                {
                    storeVariable(vd, gep);
                }
                else
                {
                    Logger::println("Copying to nested frame");
                    // The parameter value is an alloca'd stack slot.
                    // Copy to the nesting frame and leave the alloca for
                    // the optimizers to clean up.
                    DtoStore(DtoLoad(parm->value), gep);
                    gep->takeName(parm->value);
                    parm->value = gep;
                }
            } else {
                Logger::println("nested var:   %s", vd->toChars());
                assert(!vd->ir.irLocal->value);
                vd->ir.irLocal->value = gep;
            }

            if (global.params.symdebug) {
                LLSmallVector<LLValue*, 2> addr;
                dwarfOpOffset(addr, frameType, vd->ir.irLocal->nestedIndex);
                DtoDwarfLocalVariable(frame, vd, addr);
            }
        }
    } else if (FuncDeclaration* parFunc = getParentFunc(fd, true)) {
        // Propagate context arg properties if the context arg is passed on unmodified.
        DtoDeclareFunction(parFunc);
        fd->ir.irFunc->frameType = parFunc->ir.irFunc->frameType;
        fd->ir.irFunc->depth = parFunc->ir.irFunc->depth;
    }
}
Exemple #5
0
void DtoResolveFunction(FuncDeclaration* fdecl)
{
    if ((!global.params.useUnitTests || !fdecl->type) && fdecl->isUnitTestDeclaration()) {
        IF_LOG Logger::println("Ignoring unittest %s", fdecl->toPrettyChars());
        return; // ignore declaration completely
    }

    if (fdecl->ir.isResolved()) return;
    fdecl->ir.setResolved();

    Type *type = fdecl->type;
    // If errors occurred compiling it, such as bugzilla 6118
    if (type && type->ty == Tfunction) {
        Type *next = static_cast<TypeFunction *>(type)->next;
        if (!next || next->ty == Terror)
            return;
    }

    //printf("resolve function: %s\n", fdecl->toPrettyChars());

    if (fdecl->parent)
    if (TemplateInstance* tinst = fdecl->parent->isTemplateInstance())
    {
        if (TemplateDeclaration* tempdecl = tinst->tempdecl->isTemplateDeclaration())
        {
            if (tempdecl->llvmInternal == LLVMva_arg)
            {
                Logger::println("magic va_arg found");
                fdecl->llvmInternal = LLVMva_arg;
                fdecl->ir.setDefined();
                return; // this gets mapped to an instruction so a declaration makes no sence
            }
            else if (tempdecl->llvmInternal == LLVMva_start)
            {
                Logger::println("magic va_start found");
                fdecl->llvmInternal = LLVMva_start;
            }
            else if (tempdecl->llvmInternal == LLVMintrinsic)
            {
                Logger::println("overloaded intrinsic found");
                assert(fdecl->llvmInternal == LLVMintrinsic);
                assert(fdecl->mangleOverride);
            }
            else if (tempdecl->llvmInternal == LLVMinline_asm)
            {
                Logger::println("magic inline asm found");
                TypeFunction* tf = static_cast<TypeFunction*>(fdecl->type);
                if (tf->varargs != 1 || (fdecl->parameters && fdecl->parameters->dim != 0))
                {
                    tempdecl->error("invalid __asm declaration, must be a D style variadic with no explicit parameters");
                    fatal();
                }
                fdecl->llvmInternal = LLVMinline_asm;
                fdecl->ir.setDefined();
                return; // this gets mapped to a special inline asm call, no point in going on.
            }
            else if (tempdecl->llvmInternal == LLVMinline_ir)
            {
                Logger::println("magic inline ir found");
                fdecl->llvmInternal = LLVMinline_ir;
                fdecl->linkage = LINKc;
                Type* type = fdecl->type;
                assert(type->ty == Tfunction);
                static_cast<TypeFunction*>(type)->linkage = LINKc;

                DtoFunctionType(fdecl);
                DtoDeclareFunction(fdecl);
                fdecl->ir.setDefined();
                return;
            }
        }
    }

    DtoFunctionType(fdecl);

    IF_LOG Logger::println("DtoResolveFunction(%s): %s", fdecl->toPrettyChars(), fdecl->loc.toChars());
    LOG_SCOPE;

    // queue declaration unless the function is abstract without body
    if (!fdecl->isAbstract() || fdecl->fbody)
    {
        DtoDeclareFunction(fdecl);
    }
}