Exemple #1
0
double E2()
{
	switch(expr[start])
	{
	case '+':start++;return T()+E2();
	case '-':start++;return -T()+E2();
	default:return 0;
	}
}
mat sift(const mat &H) {
  imgpyr2 blurred;
  imgpyr2 edges;
  // 1) SIFT Scale-space extrema
  int noctaves = 4, nscales = 5;
  double sigma2 = 1.6;
  lappyr2(blurred, edges, noctaves, nscales, sigma2);
  const int radius = 1;
  for (int i = 0; i < edges.size(); i++) {
    for (int j = 1; j < edges[i].size() - 1; j++) {
      // grab three blurred images from an octave
      mat E1 = edges[i][j];
      mat E0 = edges[i][j - 1];
      mat E2 = edges[i][j + 1];
      // for every pixel in E1, check to make sure that it
      // is larger or smaller than all neighbors (local extrema)
      bool max_ext = true;
      bool min_ext = true;
      for (int u = 0; u < E1.n_rows; u++) {
        for (int v = 0; v < E1.n_cols; v++) {
          if (u == 0 || v == 0 || u == E1.n_rows || v = E1.n_cols) {
            E1(u, v) = 0;
          }
          // find the extrema in the images
          for (int x = -radius; x <= radius; x++) {
            for (int y = -radius; y <= radius; y++) {
              if (E1(u, v) < E0(u + y, v + x) ||
                  E1(u, v) < E2(u + y, v + x) ||
                  E1(u, v) < E1(u + y, v + x)) {
                max_ext = false;
              }
              if (E1(u, v) > E0(u + y, v + x) ||
                  E1(u, v) > E2(u + y, v + x) ||
                  E1(u, v) > E1(u + y, v + x)) {
                min_ext = false;
              }
            }
          }
          E1(u, v) = max_ext || min_ext;
        }
      }
      // once we have the image pyramids, then we can
      // try to find the magnitude of the keypoint descriptor
    }
  }
  // 2) Accurate Keypoint Localization
  // use the Taylor method (later on)
  // for now just return everything
  
  // 3) Orientation Assignment
}
Exemple #3
0
HRESULT CTDSThrough7ParameterPositionVector::SetModelParameters2 (double ha, double f) 
{
	m_DstSys.m_HA	= ha;
	m_DstSys.m_f	= f;
	m_DstSys.m_HB	= HB(ha, f);
	m_DstSys.m_e2	= E2(f);
	m_DstSys.m_e12	= E12(f);
	m_DstSys.m_e22	= E22(ha, HB(ha, f));
	return S_OK;
}
static char *
rw_encrypt (const dckey *key, const char *msg)
{
  const rw_pub *pk = (const rw_pub *) key;
  mpz_t m;
  char *res = NULL;

  mpz_init (m);
  if (pre_encrypt (m, msg, pk->nbits)) {
    mpz_clear (m);
    return NULL;
  }
  E1 (m, m, pk->n);
  E2 (m, m, pk->n);
  cat_mpz (&res, m);
  mpz_clear (m);
  return res;
}
Exemple #5
0
		bool Plane::rayIntersects(const RayTracing::Ray_t &ray, const float t0, const float t1, RayTracing::HitInfo_t &hitinfo) const
		{
			gml::vec3_t E1(0.0f, 0.0f, 2.0f);
			gml::vec3_t E2(2.0f, 0.0f, 0.0f);

			gml::vec3_t P = gml::cross( ray.d, E2 );

			float detM = gml::dot(P, E1);

			if (fabs(detM) < 1e-4)
			{
				return false;
			}

			gml::vec3_t T = gml::sub( ray.o, _verts[0] );

			float u = gml::dot( P, T ) / detM;

			if ( u < 0.0f || 1.0f < u )
			{
				return false;
			}

			gml::vec3_t TxE1 = gml::cross(T, E1);
			float v = gml::dot( TxE1, ray.d ) / detM;
			if ( v < 0.0f || 1.0f < v)
			{
				return false;
			}

			float t = gml::dot( TxE1, E2 ) / detM;
			if (t < t0 || t1 < t)
			{
				return false;
			}

			hitinfo.hitDist =  t;

			hitinfo.plane.u = u;
			hitinfo.plane.v = v;

			return true;
		}
Exemple #6
0
//Spell3「交差弾」
void shot_E2(){
	int t=spcount;

	if(t>=120){
		if(t%70==0){
			E2();
			se_flag[0]=1;
		}
	}

	for(int i=0;i<BULLET_MAX;i++){//全弾分
		if(bullet[i].flag>0){//登録されている弾があれば
			if(30<bullet[i].cnt && bullet[i].cnt<120){//30〜120カウントなら
				bullet[i].spd-=1.7/90.0;//90カウントかけて1.7減らす
				bullet[i].angle+=(PI/4)/90.0*(bullet[i].state?-1:1);//90カウントかけて45°傾ける(stateで分離)
			}
			if(bullet[i].cnt==120)
				bullet[i].state=3;	//ダメージ減少補正
		}
	}
}
Exemple #7
0
		bool Plane::shadowsRay(const RayTracing::Ray_t &ray, const float t0, const float t1) const
		{
			gml::vec3_t E1(0.0f, 0.0f, 2.0f);
			gml::vec3_t E2(2.0f, 0.0f, 0.0f);

			gml::vec3_t P = gml::cross( ray.d, E2 );

			float detM = gml::dot(P, E1);

			if (fabs(detM) < 1e-4)
			{
				return false;
			}

			gml::vec3_t T = gml::sub( ray.o, _verts[0] );

			float u = gml::dot( P, T ) / detM;
			if ( u < 0.0f || 1.0f < u )
			{
				return false;
			}

			gml::vec3_t TxE1 = gml::cross(T, E1);
			float v = gml::dot( TxE1, ray.d ) / detM;
			if ( v < 0.0f || 1.0f < v)
			{
				return false;
			}

			float t = gml::dot( TxE1, E2 ) / detM;
			if (t < t0 || t1 < t)
			{
				return false;
			}

			return true;
		}
static int
rw_verify (const dckey *key, const char *msg, const char *sig)
{
  const rw_pub *pk = (const rw_pub *) key;
  sha1_ctx sc;
  mpz_t m,s;
  int ret;

  mpz_init (s);
  mpz_init (m);
  if (read_mpz (&sig, s)) {
    mpz_clear (s);
    return 0;
  }
  E2 (m, s, pk->n);
  D1 (m, m, pk->n);

  sha1_init (&sc);
  sha1_update (&sc, msg, strlen (msg));
  ret = post_verify (&sc, m, pk->nbits);
  mpz_clear (s);
  mpz_clear (m);
  return ret;
}
Exemple #9
0
int KinZfitter::PerZ1Likelihood(double & l1, double & l2, double & lph1, double & lph2)
{

    l1= 1.0; l2 = 1.0;
    lph1 = 1.0; lph2 = 1.0;

    if(debug_) cout<<"start Z1 refit"<<endl;

    TLorentzVector Z1_1 = p4sZ1_[0]; TLorentzVector Z1_2 = p4sZ1_[1];

    double RECOpT1 = Z1_1.Pt(); double RECOpT2 = Z1_2.Pt();
    double pTerrZ1_1 = pTerrsZ1_[0]; double pTerrZ1_2 = pTerrsZ1_[1];

    if(debug_)cout<<"pT1 "<<RECOpT1<<" pTerrZ1_1 "<<pTerrZ1_1<<endl;
    if(debug_)cout<<"pT2 "<<RECOpT2<<" pTerrZ1_2 "<<pTerrZ1_2<<endl;

    //////////////

    TLorentzVector Z1_ph1, Z1_ph2;
    double pTerrZ1_ph1, pTerrZ1_ph2;
    double RECOpTph1, RECOpTph2;

    TLorentzVector nullFourVector(0, 0, 0, 0);
    Z1_ph1=nullFourVector; Z1_ph2=nullFourVector;
    RECOpTph1 = 0; RECOpTph2 = 0;
    pTerrZ1_ph1 = 0; pTerrZ1_ph2 = 0;

    if(p4sZ1ph_.size()>=1){

      Z1_ph1 = p4sZ1ph_[0]; pTerrZ1_ph1 = pTerrsZ1ph_[0];
      RECOpTph1 = Z1_ph1.Pt();
      if(debug_) cout<<"put in Z1 fsr photon 1 pT "<<RECOpTph1<<" pT err "<<pTerrZ1_ph1<<endl; 
    }
    if(p4sZ1ph_.size()==2){
      //if(debug_) cout<<"put in Z1 fsr photon 2"<<endl;
      Z1_ph2 = p4sZ1ph_[1]; pTerrZ1_ph2 = pTerrsZ1ph_[1];
      RECOpTph2 = Z1_ph2.Pt();     
    }

    RooRealVar* pT1RECO = new RooRealVar("pT1RECO","pT1RECO", RECOpT1, 5, 500);
    RooRealVar* pT2RECO = new RooRealVar("pT2RECO","pT2RECO", RECOpT2, 5, 500);
   
    double RECOpT1min = max(5.0, RECOpT1-2*pTerrZ1_1);
    double RECOpT2min = max(5.0, RECOpT2-2*pTerrZ1_2);

    RooRealVar* pTph1RECO = new RooRealVar("pTph1RECO","pTph1RECO", RECOpTph1, 5, 500);
    RooRealVar* pTph2RECO = new RooRealVar("pTph2RECO","pTph2RECO", RECOpTph2, 5, 500);

    double RECOpTph1min = max(0.5, RECOpTph1-2*pTerrZ1_ph1);
    double RECOpTph2min = max(0.5, RECOpTph2-2*pTerrZ1_ph2);

    // observables pT1,2,ph1,ph2
    RooRealVar* pT1 = new RooRealVar("pT1", "pT1FIT", RECOpT1, RECOpT1min, RECOpT1+2*pTerrZ1_1 );
    RooRealVar* pT2 = new RooRealVar("pT2", "pT2FIT", RECOpT2, RECOpT2min, RECOpT2+2*pTerrZ1_2 );

    RooRealVar* m1 = new RooRealVar("m1","m1", Z1_1.M());
    RooRealVar* m2 = new RooRealVar("m2","m2", Z1_2.M());

    if(debug_) cout<<"m1 "<<m1->getVal()<<" m2 "<<m2->getVal()<<endl;

    double Vtheta1, Vphi1, Vtheta2, Vphi2;
    Vtheta1 = (Z1_1).Theta(); Vtheta2 = (Z1_2).Theta();
    Vphi1 = (Z1_1).Phi(); Vphi2 = (Z1_2).Phi();

    RooRealVar* theta1 = new RooRealVar("theta1","theta1",Vtheta1);
    RooRealVar* phi1   = new RooRealVar("phi1","phi1",Vphi1);
    RooRealVar* theta2 = new RooRealVar("theta2","theta2",Vtheta2);
    RooRealVar* phi2   = new RooRealVar("phi2","phi2",Vphi2);

    // dot product to calculate (p1+p2+ph1+ph2).M()
    RooFormulaVar E1("E1","TMath::Sqrt((@0*@0)/((TMath::Sin(@1))*(TMath::Sin(@1)))+@2*@2)",
                          RooArgList(*pT1,*theta1,*m1));
    RooFormulaVar E2("E2","TMath::Sqrt((@0*@0)/((TMath::Sin(@1))*(TMath::Sin(@1)))+@2*@2)",
                          RooArgList(*pT2,*theta2,*m2));
    if(debug_) cout<<"E1 "<<E1.getVal()<<"; E2 "<<E2.getVal()<<endl;

    /////

    RooRealVar* pTph1 = new RooRealVar("pTph1", "pTph1FIT", RECOpTph1, RECOpTph1min, RECOpTph1+2*pTerrZ1_ph1 );
    RooRealVar* pTph2 = new RooRealVar("pTph2", "pTph2FIT", RECOpTph2, RECOpTph2min, RECOpTph2+2*pTerrZ1_ph2 );

    double Vthetaph1, Vphiph1, Vthetaph2, Vphiph2;
    Vthetaph1 = (Z1_ph1).Theta(); Vthetaph2 = (Z1_ph2).Theta();
    Vphiph1 = (Z1_ph1).Phi(); Vphiph2 = (Z1_ph2).Phi();

    RooRealVar* thetaph1 = new RooRealVar("thetaph1","thetaph1",Vthetaph1);
    RooRealVar* phiph1   = new RooRealVar("phiph1","phiph1",Vphiph1);
    RooRealVar* thetaph2 = new RooRealVar("thetaph2","thetaph2",Vthetaph2);
    RooRealVar* phiph2   = new RooRealVar("phiph2","phi2",Vphiph2);

    RooFormulaVar Eph1("Eph1","TMath::Sqrt((@0*@0)/((TMath::Sin(@1))*(TMath::Sin(@1))))", 
                              RooArgList(*pTph1,*thetaph1));
    RooFormulaVar Eph2("Eph2","TMath::Sqrt((@0*@0)/((TMath::Sin(@1))*(TMath::Sin(@1))))", 
                              RooArgList(*pTph2,*thetaph2));

    //// dot products of 4-vectors

    // 3-vector DOT
    RooFormulaVar* p1v3D2 = new RooFormulaVar("p1v3D2",
         "@0*@1*( ((TMath::Cos(@2))*(TMath::Cos(@3)))/((TMath::Sin(@2))*(TMath::Sin(@3)))+(TMath::Cos(@4-@5)))",
         RooArgList(*pT1,*pT2,*theta1,*theta2,*phi1,*phi2));    
    if(debug_) cout<<"p1 DOT p2 is "<<p1v3D2->getVal()<<endl;
    // 4-vector DOT metric 1 -1 -1 -1
    RooFormulaVar p1D2("p1D2","@0*@1-@2",RooArgList(E1,E2,*p1v3D2));

    //lep DOT fsrPhoton1

    // 3-vector DOT
    RooFormulaVar* p1v3Dph1 = new RooFormulaVar("p1v3Dph1",
         "@0*@1*( (TMath::Cos(@2)*TMath::Cos(@3))/(TMath::Sin(@2)*TMath::Sin(@3))+TMath::Cos(@4-@5))",
         RooArgList(*pT1,*pTph1,*theta1,*thetaph1,*phi1,*phiph1));

    // 4-vector DOT metric 1 -1 -1 -1
    RooFormulaVar p1Dph1("p1Dph1","@0*@1-@2",RooArgList(E1,Eph1,*p1v3Dph1));

    // 3-vector DOT
    RooFormulaVar* p2v3Dph1 = new RooFormulaVar("p2v3Dph1",
         "@0*@1*( (TMath::Cos(@2)*TMath::Cos(@3))/(TMath::Sin(@2)*TMath::Sin(@3))+TMath::Cos(@4-@5))",
         RooArgList(*pT2,*pTph1,*theta2,*thetaph1,*phi2,*phiph1));
    // 4-vector DOT metric 1 -1 -1 -1
    RooFormulaVar p2Dph1("p2Dph1","@0*@1-@2",RooArgList(E2,Eph1,*p2v3Dph1));

    // lep DOT fsrPhoton2 

    // 3-vector DOT
    RooFormulaVar* p1v3Dph2 = new RooFormulaVar("p1v3Dph2",
         "@0*@1*( (TMath::Cos(@2)*TMath::Cos(@3))/(TMath::Sin(@2)*TMath::Sin(@3))+TMath::Cos(@4-@5))",
         RooArgList(*pT1,*pTph2,*theta1,*thetaph2,*phi1,*phiph2));

    // 4-vector DOT metric 1 -1 -1 -1
    RooFormulaVar p1Dph2("p1Dph2","@0*@1-@2",RooArgList(E1,Eph2,*p1v3Dph2));

    // 3-vector DOT
    RooFormulaVar* p2v3Dph2 = new RooFormulaVar("p2v3Dph2",
         "@0*@1*( (TMath::Cos(@2)*TMath::Cos(@3))/(TMath::Sin(@2)*TMath::Sin(@3))+TMath::Cos(@4-@5))",
         RooArgList(*pT2,*pTph2,*theta2,*thetaph2,*phi2,*phiph2));
    // 4-vector DOT metric 1 -1 -1 -1
    RooFormulaVar p2Dph2("p2Dph2","@0*@1-@2",RooArgList(E2,Eph2,*p2v3Dph2));

    // fsrPhoton1 DOT fsrPhoton2

    // 3-vector DOT
    RooFormulaVar* ph1v3Dph2 = new RooFormulaVar("ph1v3Dph2",
         "@0*@1*( (TMath::Cos(@2)*TMath::Cos(@3))/(TMath::Sin(@2)*TMath::Sin(@3))+TMath::Cos(@4-@5))",
         RooArgList(*pTph1,*pTph2,*thetaph1,*thetaph2,*phiph1,*phiph2));    
    // 4-vector DOT metric 1 -1 -1 -1
    RooFormulaVar ph1Dph2("ph1Dph2","@0*@1-@2",RooArgList(Eph1,Eph2,*ph1v3Dph2));

    // mZ1

    RooFormulaVar* mZ1;
    mZ1 = new RooFormulaVar("mZ1","TMath::Sqrt(2*@0+@1*@1+@2*@2)",RooArgList(p1D2,*m1,*m2));
    if(p4sZ1ph_.size()==1)
      mZ1 = new RooFormulaVar("mZ1","TMath::Sqrt(2*@0+2*@1+2*@2+@3*@3+@4*@4)",
                                    RooArgList(p1D2, p1Dph1, p2Dph1, *m1,*m2));
    if(p4sZ1ph_.size()==2)
      mZ1 = new RooFormulaVar("mZ1","TMath::Sqrt(2*@0+2*@1+2*@2+2*@3+2*@4+2*@5+@6*@6+@7*@7)",
                              RooArgList(p1D2,p1Dph1,p2Dph1,p1Dph2,p2Dph2,ph1Dph2, *m1,*m2));

    if(debug_) cout<<"mZ1 is "<<mZ1->getVal()<<endl;

    // pTerrs, 1,2,ph1,ph2
    RooRealVar sigmaZ1_1("sigmaZ1_1", "sigmaZ1_1", pTerrZ1_1);
    RooRealVar sigmaZ1_2("sigmaZ1_2", "sigmaZ1_2", pTerrZ1_2);

    RooRealVar sigmaZ1_ph1("sigmaZ1_ph1", "sigmaZ1_ph1", pTerrZ1_ph1);
    RooRealVar sigmaZ1_ph2("sigmaZ1_ph2", "sigmaZ1_ph2", pTerrZ1_ph2);

    // resolution for decay products
    RooGaussian gauss1("gauss1","gaussian PDF", *pT1RECO, *pT1, sigmaZ1_1);
    RooGaussian gauss2("gauss2","gaussian PDF", *pT2RECO, *pT2, sigmaZ1_2);

    RooGaussian gaussph1("gaussph1","gaussian PDF", *pTph1RECO, *pTph1, sigmaZ1_ph1);
    RooGaussian gaussph2("gaussph2","gaussian PDF", *pTph2RECO, *pTph2, sigmaZ1_ph2);

    RooRealVar bwMean("bwMean", "m_{Z^{0}}", 91.187);
    RooRealVar bwGamma("bwGamma", "#Gamma", 2.5);

    RooRealVar sg("sg", "sg", sgVal_);
    RooRealVar a("a", "a", aVal_);
    RooRealVar n("n", "n", nVal_);

    RooCBShape CB("CB","CB",*mZ1,bwMean,sg,a,n);
    RooRealVar f("f","f", fVal_);

    RooRealVar mean("mean","mean",meanVal_);
    RooRealVar sigma("sigma","sigma",sigmaVal_);
    RooRealVar f1("f1","f1",f1Val_);

    RooGenericPdf RelBW("RelBW","1/( pow(mZ1*mZ1-bwMean*bwMean,2)+pow(mZ1,4)*pow(bwGamma/bwMean,2) )", RooArgSet(*mZ1,bwMean,bwGamma) );

    RooAddPdf RelBWxCB("RelBWxCB","RelBWxCB", RelBW, CB, f);
    RooGaussian gauss("gauss","gauss",*mZ1,mean,sigma);
    RooAddPdf RelBWxCBxgauss("RelBWxCBxgauss","RelBWxCBxgauss", RelBWxCB, gauss, f1);

    RooProdPdf *PDFRelBWxCBxgauss;
    PDFRelBWxCBxgauss = new RooProdPdf("PDFRelBWxCBxgauss","PDFRelBWxCBxgauss", 
                                     RooArgList(gauss1, gauss2, RelBWxCBxgauss) );
    if(p4sZ1ph_.size()==1)    
      PDFRelBWxCBxgauss = new RooProdPdf("PDFRelBWxCBxgauss","PDFRelBWxCBxgauss", 
                                     RooArgList(gauss1, gauss2, gaussph1, RelBWxCBxgauss) );
    if(p4sZ1ph_.size()==2)
      PDFRelBWxCBxgauss = new RooProdPdf("PDFRelBWxCBxgauss","PDFRelBWxCBxgauss", 
                                     RooArgList(gauss1, gauss2, gaussph1, gaussph2, RelBWxCBxgauss) );

    // observable set
    RooArgSet *rastmp;
      rastmp = new RooArgSet(*pT1RECO,*pT2RECO);
    if(p4sZ1ph_.size()==1)
      rastmp = new RooArgSet(*pT1RECO,*pT2RECO,*pTph1RECO);
    if(p4sZ1ph_.size()>=2)
      rastmp = new RooArgSet(*pT1RECO,*pT2RECO,*pTph1RECO,*pTph2RECO);

    RooDataSet* pTs = new RooDataSet("pTs","pTs", *rastmp);
    pTs->add(*rastmp); 

    //RooAbsReal* nll;
    //nll = PDFRelBWxCBxgauss->createNLL(*pTs);
    //RooMinuit(*nll).migrad();

    RooFitResult* r = PDFRelBWxCBxgauss->fitTo(*pTs,RooFit::Save(),RooFit::PrintLevel(-1));
    const TMatrixDSym& covMatrix = r->covarianceMatrix();
   
    const RooArgList& finalPars = r->floatParsFinal();
    for (int i=0 ; i<finalPars.getSize(); i++){
        TString name = TString(((RooRealVar*)finalPars.at(i))->GetName());

        if(debug_) cout<<"name list of RooRealVar for covariance matrix "<<name<<endl;

    }

    int size = covMatrix.GetNcols();
    //TMatrixDSym covMatrixTest_(size);
    covMatrixZ1_.ResizeTo(size,size);
    covMatrixZ1_ = covMatrix;   

    if(debug_) cout<<"save the covariance matrix"<<endl;
    
    l1 = pT1->getVal()/RECOpT1; l2 = pT2->getVal()/RECOpT2;
    double pTerrZ1REFIT1 = pT1->getError(); double pTerrZ1REFIT2 = pT2->getError();

    pTerrsZ1REFIT_.push_back(pTerrZ1REFIT1);
    pTerrsZ1REFIT_.push_back(pTerrZ1REFIT2);

    if(p4sZ1ph_.size()>=1){

      if(debug_) cout<<"set refit result for Z1 fsr photon 1"<<endl;

      lph1 = pTph1->getVal()/RECOpTph1;
      double pTerrZ1phREFIT1 = pTph1->getError();
      if(debug_) cout<<"scale "<<lph1<<" pterr "<<pTerrZ1phREFIT1<<endl;  
   
      pTerrsZ1phREFIT_.push_back(pTerrZ1phREFIT1);

    } 
    if(p4sZ1ph_.size()==2){

      lph2 = pTph2->getVal()/RECOpTph2;
      double pTerrZ1phREFIT2 = pTph2->getError();
      pTerrsZ1phREFIT_.push_back(pTerrZ1phREFIT2);

    }

    //delete nll;
    delete r;
    delete mZ1;
    delete pT1; delete pT2; delete pTph1; delete pTph2;
    delete pT1RECO; delete pT2RECO; delete pTph1RECO; delete pTph2RECO;
    delete ph1v3Dph2; delete p1v3Dph1; delete p2v3Dph1; delete p1v3Dph2; delete p2v3Dph2;
    delete PDFRelBWxCBxgauss;
    delete pTs;
    delete rastmp;

    if(debug_) cout<<"end Z1 refit"<<endl;

    return 0;

}
size_t BadLineSegmentIntersection::calc( void *progress/*=0*/ )
{
	map<IntersectedPoint_Derived*,int,ComparePoint>::iterator it;

	double x,y;
	for(int i=0;i<m_lineSegs.size()-1;i++)
	{
		for(int j=i+1;j<m_lineSegs.size();j++)
		{
			int intersected = m_lineSegs[i]->Intersection2Segment(*m_lineSegs[j],x,y);

			//if(progress!=0) ;//progress->tick();

			if(intersected==1)
			{



				IntersectedPoint_Derived* tmp=new IntersectedPoint_Derived(x,y);
				it=m_mapPoints.find(tmp);	///Kiểm tra điểm này có trong danh sách giao điểm chưa
				if(it!=m_mapPoints.end())
				{	///Nếu đã tồn tại thì thêm 2 đoạn đang xét vào danh sách những đoạn đi qua điểm này
					it->first->AddLineToList(m_lineSegs[i]);
					it->first->AddLineToList(m_lineSegs[j]);
					delete tmp;
				}
				else
				{
					tmp->AddLineToList(m_lineSegs[i]);
					tmp->AddLineToList(m_lineSegs[j]);
					m_mapPoints.insert(pair<IntersectedPoint_Derived*,int>(tmp,0));
				}


			}	
			else
				if(intersected==-1)
					///Trường hợp 2 đoạn nằm trên 1 đường thẳng nhưng có  chung đầu mút
				{
					IntersectedPoint_Derived D1(m_lineSegs[i]->x1,m_lineSegs[i]->y1);
					IntersectedPoint_Derived D2(m_lineSegs[i]->x2,m_lineSegs[i]->y2);
					IntersectedPoint_Derived E1(m_lineSegs[j]->x1,m_lineSegs[j]->y1);
					IntersectedPoint_Derived E2(m_lineSegs[j]->x2,m_lineSegs[j]->y2);

					if(D1==E2 )
					{
						IntersectedPoint_Derived *tmp=new IntersectedPoint_Derived(D1.x,D1.y);
						tmp->AddLineToList(m_lineSegs[i]);
						tmp->AddLineToList(m_lineSegs[j]);
						m_mapPoints.insert(pair<IntersectedPoint_Derived*,int>(tmp,0));

					}
					if(D2==E1)
					{
						IntersectedPoint_Derived *tmp=new IntersectedPoint_Derived(D2.x,D2.y);
						tmp->AddLineToList(m_lineSegs[i]);
						tmp->AddLineToList(m_lineSegs[j]);
						m_mapPoints.insert(pair<IntersectedPoint_Derived*,int>(tmp,0));
					}
				}
		}
	};


	///copy cac diem tu Map tra ve vector
	map<IntersectedPoint_Derived*,int,ComparePoint>::iterator it_2=m_mapPoints.begin();

	while(it_2!=m_mapPoints.end())
	{
		m_IntersectedPoints.push_back(it_2->first);
		it_2++;
	}
	return m_IntersectedPoints.size();
}
Exemple #11
0
/// Adaptive Weights disparity computation.
///
/// The dissimilarity is computed putting adaptive weights on the raw cost.
/// \param im1,im2 the two color images
/// \param dMin,dMax disparity range
/// \param param raw cost computation parameters
/// \param disp1 output disparity map from image 1 to image 2
/// \param disp2 output disparity map from image 2 to image 1
void disparityAW(Image im1, Image im2,
                 int dMin, int dMax, const ParamDisparity& param,
                 Image& disp1, Image& disp2) {
    const int width=im1.width(), height=im1.height();
    const int r = param.radius;
#ifdef COMB_LEFT // Disparity range
    const int nd = 1; // Do not compute useless weights in target image
#else
    const int nd = dMax-dMin+1;
#endif

    // Tabulated proximity weights (color distance)
    const int maxL1 = im1.channels()*255; // Maximum L1 distance between colors
    float* distC = new float[maxL1+1];
    float e2=exp(-1/(im1.channels()*param.gammaCol));
    distC[0]=1.0f;
    for(int x=1; x<=maxL1; x++)
        distC[x] = e2*distC[x-1]; // distC[x] = exp(-x/(c*gamma))

    // Tabulated proximity weights (spatial distance)
    const int dim=2*r+1; // window dimension
    float *distP = new float[dim*dim], *d=distP;
    for(int y=-r; y<=r; y++)
    for(int x=-r; x<=r; x++)
        *d++ = exp(-2.0f*sqrt((float)(x*x+y*y))/param.gammaPos);

    Image* cost = costVolume(im1, im2, dMin, dMax, param);

    // Images of dissimilarity 1->2 and 2->1
    Image E1(width,height), E2(width,height);
    std::fill_n(&E1(0,0), width*height, std::numeric_limits<float>::max());
    std::fill_n(&E2(0,0), width*height, std::numeric_limits<float>::max());

#ifdef _OPENMP
#pragma omp parallel for
#endif
    for(int y=0; y<height; y++) {
        // Weight window in reference image
        Image W1(dim,dim);
        // Weight windows in target image for each disparity (useless for
        // COMB_LEFT, but better to have readable code than multiplying #ifdef)
        Image* weights2 = new Image[nd];
        for(int d=0; d<nd; d++) {
            weights2[d] = Image(dim,dim);
            if(d+1<nd) // Support for dMax computed later
                support(im2, d,y, r, distC, weights2[d]);
        }

        for(int x=0; x<width; x++) {
            // Reference window weights
            support(im1, x,y, r, distC, W1);
#ifndef COMB_LEFT // Weight window at disparity dMax in target image
            support(im2, x+dMax,y, r, distC, weights2[(x+dMax-dMin)%nd]);
#endif
            for(int d=dMin; d<=dMax; d++) {
                if(0<=x+d && x+d<width) {
                    const Image& e = cost[d-dMin]; // Raw cost for disp. d
                    const Image& W2 = weights2[(x+d-dMin)%nd];
                    float E = costCombined(x, x+d, y, r, W1, W2, distP, e);
                    if(E1(x,y) > E) {
                        E1(x,y) = E;
                        disp1(x,y) = static_cast<float>(d);
                    }
                    if(E2(x+d,y) > E) {
                        E2(x+d,y) = E;
                        disp2(x+d,y)= -static_cast<float>(d);
                    }
                }
            }
        }
        delete [] weights2;
    }
    delete [] cost;
    delete [] distC;
    delete [] distP;
}
Exemple #12
0
void TJerFile::GetDiffFile(const char *ASrcDir,const char *ADestDir,BList *Diff)
{
	//-----------------------------------------
	//	We are looking for files not found in Dest...
	//-----------------------------------------
	BList ASrcList;
	BList ADestList;
	char name1[B_FILE_NAME_LENGTH];
	char name2[B_FILE_NAME_LENGTH];
	off_t Size1;
	off_t Size2;
	int32 CRC1,CRC2;
	BPath P1;
	BPath P2;
	char *RelativePath1;
	char *RelativePath2;
	bool EntryFound = false;
	entry_ref *buf_entry,*buf_entry2,*copy_entry;
	BMessage *AMessage;
	BFile *file2;
	BFile *file1;	
	GetAllFile(ASrcDir,&ASrcList);
	GetAllFile(ADestDir,&ADestList);

	AMessage = new BMessage(B_RESET_STATUS_BAR);
	AMessage->AddFloat("maximum",ASrcList.CountItems());
	MyInvoker.Invoke(AMessage);		
	delete AMessage;				

	for (int ind=0;ind < ASrcList.CountItems();ind++ )
	{	
		buf_entry = (entry_ref *)(ASrcList.ItemAt(ind));
		if (buf_entry!=NULL)
		{
			BEntry E1(buf_entry);
			E1.GetName(name1);
			E1.GetPath(&P1);

			GetRelativePath(ASrcDir,P1.Path(),&RelativePath1);
			file1 = new BFile(buf_entry,B_READ_ONLY);
//			printf("Checking file ....%s \n",P1.Path());			
			// The Message is put here to update when the link files are found too.
			AMessage = new BMessage(B_UPDATE_STATUS_BAR);
			AMessage->AddFloat("delta",1.0);
			AMessage->AddString("text","Checking...");				
			AMessage->AddString("trailingtext",P1.Path());				
			MyInvoker.Invoke(AMessage);		
			delete AMessage;							

			if (file1->InitCheck()==B_NO_ERROR) //Because of linkfiles....
			{
				try
				{
					file1->GetSize(&Size1);			
					if (CalculateCRC==true) 
					{
						printf("CRC Calculation First File...\n");									
						CRC1 = CRCFile(file1);
					}
	//				printf("Checking file ....%s Size: %d CRC: %d \n",P1.Path(),Size1,CRC1);
					EntryFound = false;
				}
				catch(GeneralException &e)
				{
					delete file1;
					printf("Exception in File1...");
					throw;
				}
				delete file1;
				
				
				for (int ind2=0;ind2 < ADestList.CountItems();ind2++ )
				{
					buf_entry2 = (entry_ref *)(ADestList.ItemAt(ind2));
					if (buf_entry2!=NULL)
					{
						BEntry E2(buf_entry2);
						E2.GetName(name2);
						E2.GetPath(&P2);
						GetRelativePath(ADestDir,P2.Path(),&RelativePath2);					
						if ((strcmp(name1,name2)==0) && (strcmp(RelativePath1,RelativePath2)==0))
						{
	//						printf("name1 : %s, name2 : %s \n",name1,name2);
	//						printf("RP1 : %s, RP2 : %s \n",RelativePath1,RelativePath2);
	//						printf("PAth1 : %s, Path2 : %s \n",P1.Path(),P2.Path());
							file2 = new BFile(buf_entry2,B_READ_ONLY);
							file2->GetSize(&Size2);
	//						printf("Size2 %d\n",Size2);
							if (Size1==Size2)
							{						
							//CRC Test
								try
								{
									if (CalculateCRC==true) 
									{
										printf("CRC Calculation Second File...\n");									
										CRC2 = CRCFile(file2);
										if (CRC1==CRC2)	
										{
											EntryFound = true;
											delete file2;
											break; //Data found...								
										}
									}
								}
								catch(GeneralException &e)
								{
									printf("Error in GetDiffFile %s\n",P2.Path());
									throw;							
								}
							}
							delete file2;				
						}
					}				
				}	
				if (EntryFound==false)
				{
					copy_entry = new entry_ref;
					*copy_entry = *buf_entry;
					Diff->AddItem(copy_entry);
			
/*					BMessage AMessage(GET_FILES);
					AMessage.AddRef("ref",copy_entry);
					int result = MyInvoker.Invoke(&AMessage);		
					if (result!= B_OK)
					{
						if (result == B_BAD_PORT_ID)
						{
							ShowMessage("Bad Port");
						}
						else
						if (result == B_TIMED_OUT)
						{
							ShowMessage("TIMED_OUT");
						}
						else
							ShowMessage("Other Error");
					}
*/					
				}
			} // End of InitCheck
		}		
	}	
	// Just to let the main loop that we have finished checking... for the moment we only
	// use it to test if the OutLineList is void....
/*
	BMessage AMessage2(END_CHECKING);
	int result2 = MyInvoker.Invoke(&AMessage2);		
	if (result2!= B_OK)
	{
		if (result2 == B_BAD_PORT_ID)
		{
			ShowMessage("Bad Port");
		}
		else
			if (result2 == B_TIMED_OUT)
			{
				ShowMessage("TIMED_OUT");
			}
			else
				ShowMessage("Other Error");	
	}
*/	
}
Exemple #13
0
	DOUBLE check_tilt_pairs(DOUBLE rot1, DOUBLE tilt1, DOUBLE psi1,
			DOUBLE &alpha, DOUBLE &tilt_angle, DOUBLE &beta)
	{
	    // Transformation matrices
		Matrix1D<DOUBLE> axis(3);
	    Matrix2D<DOUBLE> E1, E2;
	    axis.resize(3);
	    DOUBLE aux, sine_tilt_angle;
	    DOUBLE rot2 = alpha, tilt2 = tilt_angle, psi2 = beta;

	    // Calculate the transformation from one setting to the second one.
	    Euler_angles2matrix(psi1, tilt1, rot1, E1);
	    Euler_angles2matrix(psi2, tilt2, rot2, E2);
	    E2 = E2 * E1.inv();

	    // Get the tilt angle (and its sine)
	    aux = ( E2(0,0) + E2(1,1) + E2(2,2) - 1. ) / 2.;
	    if (ABS(aux) - 1. > XMIPP_EQUAL_ACCURACY)
	    	REPORT_ERROR("BUG: aux>1");
	    tilt_angle = ACOSD(aux);
	    sine_tilt_angle = 2. * SIND(tilt_angle);

	    // Get the tilt axis direction in angles alpha and beta
	    if (sine_tilt_angle > XMIPP_EQUAL_ACCURACY)
	    {
	    	axis(0) = ( E2(2,1) - E2(1,2) ) / sine_tilt_angle;
	    	axis(1) = ( E2(0,2) - E2(2,0) ) / sine_tilt_angle;
	    	axis(2) = ( E2(1,0) - E2(0,1) ) / sine_tilt_angle;
	    }
	    else
	    {
	    	axis(0) = axis(1) = 0.;
	    	axis(2) = 1.;
	    }

	    // Apply E1.inv() to the axis to get everyone in the same coordinate system again
	    axis = E1.inv() * axis;

	    // Convert to alpha and beta angle
	    Euler_direction2angles(axis, alpha, beta);

	    // Enforce positive beta: choose the other Euler angle combination to express the same direction
	    if (beta < 0.)
	    {
	    	beta = -beta;
	    	alpha+= 180.;
	    }

	    // Let alpha go from 0 to 360 degrees
	    alpha = realWRAP(alpha, 0., 360.);


	    // Return the value that needs to be optimized
	    DOUBLE minimizer=0.;
	    if (exp_beta < 999.)
	    	minimizer = ABS(beta - exp_beta);
	    if (exp_tilt < 999.)
	    	minimizer += ABS(tilt_angle - exp_tilt);

	    return minimizer;

	}
Exemple #14
0
/* Subroutine */ int slaebz_(integer *ijob, integer *nitmax, integer *n, 
	integer *mmax, integer *minp, integer *nbmin, real *abstol, real *
	reltol, real *pivmin, real *d, real *e, real *e2, integer *nval, real 
	*ab, real *c, integer *mout, integer *nab, real *work, integer *iwork,
	 integer *info)
{
/*  -- LAPACK auxiliary routine (version 2.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    SLAEBZ contains the iteration loops which compute and use the   
    function N(w), which is the count of eigenvalues of a symmetric   
    tridiagonal matrix T less than or equal to its argument  w.  It   
    performs a choice of two types of loops:   

    IJOB=1, followed by   
    IJOB=2: It takes as input a list of intervals and returns a list of   
            sufficiently small intervals whose union contains the same   
            eigenvalues as the union of the original intervals.   
            The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.   
            The output interval (AB(j,1),AB(j,2)] will contain   
            eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.   

    IJOB=3: It performs a binary search in each input interval   
            (AB(j,1),AB(j,2)] for a point  w(j)  such that   
            N(w(j))=NVAL(j), and uses  C(j)  as the starting point of   
            the search.  If such a w(j) is found, then on output   
            AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output 
  
            (AB(j,1),AB(j,2)] will be a small interval containing the   
            point where N(w) jumps through NVAL(j), unless that point   
            lies outside the initial interval.   

    Note that the intervals are in all cases half-open intervals,   
    i.e., of the form  (a,b] , which includes  b  but not  a .   

    To avoid underflow, the matrix should be scaled so that its largest   
    element is no greater than  overflow**(1/2) * underflow**(1/4)   
    in absolute value.  To assure the most accurate computation   
    of small eigenvalues, the matrix should be scaled to be   
    not much smaller than that, either.   

    See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal   
    VISMatrix", Report CS41, Computer Science Dept., Stanford   
    University, July 21, 1966   

    Note: the arguments are, in general, *not* checked for unreasonable   
    values.   

    Arguments   
    =========   

    IJOB    (input) INTEGER   
            Specifies what is to be done:   
            = 1:  Compute NAB for the initial intervals.   
            = 2:  Perform bisection iteration to find eigenvalues of T.   
            = 3:  Perform bisection iteration to invert N(w), i.e.,   
                  to find a point which has a specified number of   
                  eigenvalues of T to its left.   
            Other values will cause SLAEBZ to return with INFO=-1.   

    NITMAX  (input) INTEGER   
            The maximum number of "levels" of bisection to be   
            performed, i.e., an interval of width W will not be made   
            smaller than 2^(-NITMAX) * W.  If not all intervals   
            have converged after NITMAX iterations, then INFO is set   
            to the number of non-converged intervals.   

    N       (input) INTEGER   
            The dimension n of the tridiagonal matrix T.  It must be at   
            least 1.   

    MMAX    (input) INTEGER   
            The maximum number of intervals.  If more than MMAX intervals 
  
            are generated, then SLAEBZ will quit with INFO=MMAX+1.   

    MINP    (input) INTEGER   
            The initial number of intervals.  It may not be greater than 
  
            MMAX.   

    NBMIN   (input) INTEGER   
            The smallest number of intervals that should be processed   
            using a vector loop.  If zero, then only the scalar loop   
            will be used.   

    ABSTOL  (input) REAL   
            The minimum (absolute) width of an interval.  When an   
            interval is narrower than ABSTOL, or than RELTOL times the   
            larger (in magnitude) endpoint, then it is considered to be   
            sufficiently small, i.e., converged.  This must be at least   
            zero.   

    RELTOL  (input) REAL   
            The minimum relative width of an interval.  When an interval 
  
            is narrower than ABSTOL, or than RELTOL times the larger (in 
  
            magnitude) endpoint, then it is considered to be   
            sufficiently small, i.e., converged.  Note: this should   
            always be at least radix*machine epsilon.   

    PIVMIN  (input) REAL   
            The minimum absolute value of a "pivot" in the Sturm   
            sequence loop.  This *must* be at least  max |e(j)**2| *   
            safe_min  and at least safe_min, where safe_min is at least   
            the smallest number that can divide one without overflow.   

    D       (input) REAL array, dimension (N)   
            The diagonal elements of the tridiagonal matrix T.   

    E       (input) REAL array, dimension (N)   
            The offdiagonal elements of the tridiagonal matrix T in   
            positions 1 through N-1.  E(N) is arbitrary.   

    E2      (input) REAL array, dimension (N)   
            The squares of the offdiagonal elements of the tridiagonal   
            matrix T.  E2(N) is ignored.   

    NVAL    (input/output) INTEGER array, dimension (MINP)   
            If IJOB=1 or 2, not referenced.   
            If IJOB=3, the desired values of N(w).  The elements of NVAL 
  
            will be reordered to correspond with the intervals in AB.   
            Thus, NVAL(j) on output will not, in general be the same as   
            NVAL(j) on input, but it will correspond with the interval   
            (AB(j,1),AB(j,2)] on output.   

    AB      (input/output) REAL array, dimension (MMAX,2)   
            The endpoints of the intervals.  AB(j,1) is  a(j), the left   
            endpoint of the j-th interval, and AB(j,2) is b(j), the   
            right endpoint of the j-th interval.  The input intervals   
            will, in general, be modified, split, and reordered by the   
            calculation.   

    C       (input/output) REAL array, dimension (MMAX)   
            If IJOB=1, ignored.   
            If IJOB=2, workspace.   
            If IJOB=3, then on input C(j) should be initialized to the   
            first search point in the binary search.   

    MOUT    (output) INTEGER   
            If IJOB=1, the number of eigenvalues in the intervals.   
            If IJOB=2 or 3, the number of intervals output.   
            If IJOB=3, MOUT will equal MINP.   

    NAB     (input/output) INTEGER array, dimension (MMAX,2)   
            If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)). 
  
            If IJOB=2, then on input, NAB(i,j) should be set.  It must   
               satisfy the condition:   
               N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),   
               which means that in interval i only eigenvalues   
               NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,   
               NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with   
               IJOB=1.   
               On output, NAB(i,j) will contain   
               max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of 
  
               the input interval that the output interval   
               (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the   
               the input values of NAB(k,1) and NAB(k,2).   
            If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),   
               unless N(w) > NVAL(i) for all search points  w , in which 
  
               case NAB(i,1) will not be modified, i.e., the output   
               value will be the same as the input value (modulo   
               reorderings -- see NVAL and AB), or unless N(w) < NVAL(i) 
  
               for all search points  w , in which case NAB(i,2) will   
               not be modified.  Normally, NAB should be set to some   
               distinctive value(s) before SLAEBZ is called.   

    WORK    (workspace) REAL array, dimension (MMAX)   
            Workspace.   

    IWORK   (workspace) INTEGER array, dimension (MMAX)   
            Workspace.   

    INFO    (output) INTEGER   
            = 0:       All intervals converged.   
            = 1--MMAX: The last INFO intervals did not converge.   
            = MMAX+1:  More than MMAX intervals were generated.   

    Further Details   
    ===============   

        This routine is intended to be called only by other LAPACK   
    routines, thus the interface is less user-friendly.  It is intended   
    for two purposes:   

    (a) finding eigenvalues.  In this case, SLAEBZ should have one or   
        more initial intervals set up in AB, and SLAEBZ should be called 
  
        with IJOB=1.  This sets up NAB, and also counts the eigenvalues. 
  
        Intervals with no eigenvalues would usually be thrown out at   
        this point.  Also, if not all the eigenvalues in an interval i   
        are desired, NAB(i,1) can be increased or NAB(i,2) decreased.   
        For example, set NAB(i,1)=NAB(i,2)-1 to get the largest   
        eigenvalue.  SLAEBZ is then called with IJOB=2 and MMAX   
        no smaller than the value of MOUT returned by the call with   
        IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1   
        through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the   
        tolerance specified by ABSTOL and RELTOL.   

    (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l). 
  
        In this case, start with a Gershgorin interval  (a,b).  Set up   
        AB to contain 2 search intervals, both initially (a,b).  One   
        NVAL element should contain  f-1  and the other should contain  l 
  
        , while C should contain a and b, resp.  NAB(i,1) should be -1   
        and NAB(i,2) should be N+1, to flag an error if the desired   
        interval does not lie in (a,b).  SLAEBZ is then called with   
        IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals -- 
  
        j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while   
        if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r   
        >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and   
        N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and   
        w(l-r)=...=w(l+k) are handled similarly.   

    ===================================================================== 
  


       Check for Errors   

    
   Parameter adjustments   
       Function Body */
    /* System generated locals */
    integer nab_dim1, nab_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4, 
	    i__5, i__6;
    real r__1, r__2, r__3, r__4;
    /* Local variables */
    static integer itmp1, itmp2, j, kfnew, klnew, kf, ji, kl, jp, jit;
    static real tmp1, tmp2;


#define D(I) d[(I)-1]
#define E(I) e[(I)-1]
#define E2(I) e2[(I)-1]
#define NVAL(I) nval[(I)-1]
#define C(I) c[(I)-1]
#define WORK(I) work[(I)-1]
#define IWORK(I) iwork[(I)-1]

#define NAB(I,J) nab[(I)-1 + ((J)-1)* ( *mmax)]
#define AB(I,J) ab[(I)-1 + ((J)-1)* ( *mmax)]

    *info = 0;
    if (*ijob < 1 || *ijob > 3) {
	*info = -1;
	return 0;
    }

/*     Initialize NAB */

    if (*ijob == 1) {

/*        Compute the number of eigenvalues in the initial intervals. 
*/

	*mout = 0;
	i__1 = *minp;
	for (ji = 1; ji <= *minp; ++ji) {
	    for (jp = 1; jp <= 2; ++jp) {
		tmp1 = D(1) - AB(ji,jp);
		if (dabs(tmp1) < *pivmin) {
		    tmp1 = -(doublereal)(*pivmin);
		}
		NAB(ji,jp) = 0;
		if (tmp1 <= 0.f) {
		    NAB(ji,jp) = 1;
		}

		i__2 = *n;
		for (j = 2; j <= *n; ++j) {
		    tmp1 = D(j) - E2(j - 1) / tmp1 - AB(ji,jp);
		    if (dabs(tmp1) < *pivmin) {
			tmp1 = -(doublereal)(*pivmin);
		    }
		    if (tmp1 <= 0.f) {
			++NAB(ji,jp);
		    }
/* L10: */
		}
/* L20: */
	    }
	    *mout = *mout + NAB(ji,2) - NAB(ji,1);
/* L30: */
	}
	return 0;
    }

/*     Initialize for loop   

       KF and KL have the following meaning:   
          Intervals 1,...,KF-1 have converged.   
          Intervals KF,...,KL  still need to be refined. */

    kf = 1;
    kl = *minp;

/*     If IJOB=2, initialize C.   
       If IJOB=3, use the user-supplied starting point. */

    if (*ijob == 2) {
	i__1 = *minp;
	for (ji = 1; ji <= *minp; ++ji) {
	    C(ji) = (AB(ji,1) + AB(ji,2)) * .5f;
/* L40: */
	}
    }

/*     Iteration loop */

    i__1 = *nitmax;
    for (jit = 1; jit <= *nitmax; ++jit) {

/*        Loop over intervals */

	if (kl - kf + 1 >= *nbmin && *nbmin > 0) {

/*           Begin of Parallel Version of the loop */

	    i__2 = kl;
	    for (ji = kf; ji <= kl; ++ji) {

/*              Compute N(c), the number of eigenvalues less t
han c */

		WORK(ji) = D(1) - C(ji);
		IWORK(ji) = 0;
		if (WORK(ji) <= *pivmin) {
		    IWORK(ji) = 1;
/* Computing MIN */
		    r__1 = WORK(ji), r__2 = -(doublereal)(*pivmin);
		    WORK(ji) = dmin(r__1,r__2);
		}

		i__3 = *n;
		for (j = 2; j <= *n; ++j) {
		    WORK(ji) = D(j) - E2(j - 1) / WORK(ji) - C(ji);
		    if (WORK(ji) <= *pivmin) {
			++IWORK(ji);
/* Computing MIN */
			r__1 = WORK(ji), r__2 = -(doublereal)(*pivmin);
			WORK(ji) = dmin(r__1,r__2);
		    }
/* L50: */
		}
/* L60: */
	    }

	    if (*ijob <= 2) {

/*              IJOB=2: Choose all intervals containing eigenv
alues. */

		klnew = kl;
		i__2 = kl;
		for (ji = kf; ji <= kl; ++ji) {

/*                 Insure that N(w) is monotone   

   Computing MIN   
   Computing MAX */
		    i__5 = NAB(ji,1), i__6 = IWORK(ji);
		    i__3 = NAB(ji,2), i__4 = max(i__5,i__6);
		    IWORK(ji) = min(i__3,i__4);

/*                 Update the Queue -- add intervals if bo
th halves   
                   contain eigenvalues. */

		    if (IWORK(ji) == NAB(ji,2)) {

/*                    No eigenvalue in the upper inter
val:   
                      just use the lower interval. */

			AB(ji,2) = C(ji);

		    } else if (IWORK(ji) == NAB(ji,1)) {

/*                    No eigenvalue in the lower inter
val:   
                      just use the upper interval. */

			AB(ji,1) = C(ji);
		    } else {
			++klnew;
			if (klnew <= *mmax) {

/*                       Eigenvalue in both interv
als -- add upper to   
                         queue. */

			    AB(klnew,2) = AB(ji,2);
			    NAB(klnew,2) = NAB(ji,2);
			    AB(klnew,1) = C(ji);
			    NAB(klnew,1) = IWORK(ji);
			    AB(ji,2) = C(ji);
			    NAB(ji,2) = IWORK(ji);
			} else {
			    *info = *mmax + 1;
			}
		    }
/* L70: */
		}
		if (*info != 0) {
		    return 0;
		}
		kl = klnew;
	    } else {

/*              IJOB=3: Binary search.  Keep only the interval
 containing   
                        w   s.t. N(w) = NVAL */

		i__2 = kl;
		for (ji = kf; ji <= kl; ++ji) {
		    if (IWORK(ji) <= NVAL(ji)) {
			AB(ji,1) = C(ji);
			NAB(ji,1) = IWORK(ji);
		    }
		    if (IWORK(ji) >= NVAL(ji)) {
			AB(ji,2) = C(ji);
			NAB(ji,2) = IWORK(ji);
		    }
/* L80: */
		}
	    }

	} else {

/*           End of Parallel Version of the loop   

             Begin of Serial Version of the loop */

	    klnew = kl;
	    i__2 = kl;
	    for (ji = kf; ji <= kl; ++ji) {

/*              Compute N(w), the number of eigenvalues less t
han w */

		tmp1 = C(ji);
		tmp2 = D(1) - tmp1;
		itmp1 = 0;
		if (tmp2 <= *pivmin) {
		    itmp1 = 1;
/* Computing MIN */
		    r__1 = tmp2, r__2 = -(doublereal)(*pivmin);
		    tmp2 = dmin(r__1,r__2);
		}

/*              A series of compiler directives to defeat vect
orization   
                for the next loop   

   $PL$ CMCHAR=' '   
   DIR$          NEXTSCALAR   
   $DIR          SCALAR   
   DIR$          NEXT SCALAR   
   VD$L          NOVECTOR   
   DEC$          NOVECTOR   
   VD$           NOVECTOR   
   VDIR          NOVECTOR   
   VOCL          LOOP,SCALAR   
   IBM           PREFER SCALAR   
   $PL$ CMCHAR='*' */

		i__3 = *n;
		for (j = 2; j <= *n; ++j) {
		    tmp2 = D(j) - E2(j - 1) / tmp2 - tmp1;
		    if (tmp2 <= *pivmin) {
			++itmp1;
/* Computing MIN */
			r__1 = tmp2, r__2 = -(doublereal)(*pivmin);
			tmp2 = dmin(r__1,r__2);
		    }
/* L90: */
		}

		if (*ijob <= 2) {

/*                 IJOB=2: Choose all intervals containing
 eigenvalues.   

                   Insure that N(w) is monotone   

   Computing MIN   
   Computing MAX */
		    i__5 = NAB(ji,1);
		    i__3 = NAB(ji,2), i__4 = max(i__5,itmp1);
		    itmp1 = min(i__3,i__4);

/*                 Update the Queue -- add intervals if bo
th halves   
                   contain eigenvalues. */

		    if (itmp1 == NAB(ji,2)) {

/*                    No eigenvalue in the upper inter
val:   
                      just use the lower interval. */

			AB(ji,2) = tmp1;

		    } else if (itmp1 == NAB(ji,1)) {

/*                    No eigenvalue in the lower inter
val:   
                      just use the upper interval. */

			AB(ji,1) = tmp1;
		    } else if (klnew < *mmax) {

/*                    Eigenvalue in both intervals -- 
add upper to queue. */

			++klnew;
			AB(klnew,2) = AB(ji,2);
			NAB(klnew,2) = NAB(ji,2);
			AB(klnew,1) = tmp1;
			NAB(klnew,1) = itmp1;
			AB(ji,2) = tmp1;
			NAB(ji,2) = itmp1;
		    } else {
			*info = *mmax + 1;
			return 0;
		    }
		} else {

/*                 IJOB=3: Binary search.  Keep only the i
nterval   
                           containing  w  s.t. N(w) = NVAL
 */

		    if (itmp1 <= NVAL(ji)) {
			AB(ji,1) = tmp1;
			NAB(ji,1) = itmp1;
		    }
		    if (itmp1 >= NVAL(ji)) {
			AB(ji,2) = tmp1;
			NAB(ji,2) = itmp1;
		    }
		}
/* L100: */
	    }
	    kl = klnew;

/*           End of Serial Version of the loop */

	}

/*        Check for convergence */

	kfnew = kf;
	i__2 = kl;
	for (ji = kf; ji <= kl; ++ji) {
	    tmp1 = (r__1 = AB(ji,2) - AB(ji,1), dabs(
		    r__1));
/* Computing MAX */
	    r__3 = (r__1 = AB(ji,2), dabs(r__1)), r__4 = (r__2 
		    = AB(ji,1), dabs(r__2));
	    tmp2 = dmax(r__3,r__4);
/* Computing MAX */
	    r__1 = max(*abstol,*pivmin), r__2 = *reltol * tmp2;
	    if (tmp1 < dmax(r__1,r__2) || NAB(ji,1) >= NAB(ji,2)) {

/*              Converged -- Swap with position KFNEW,   
                             then increment KFNEW */

		if (ji > kfnew) {
		    tmp1 = AB(ji,1);
		    tmp2 = AB(ji,2);
		    itmp1 = NAB(ji,1);
		    itmp2 = NAB(ji,2);
		    AB(ji,1) = AB(kfnew,1);
		    AB(ji,2) = AB(kfnew,2);
		    NAB(ji,1) = NAB(kfnew,1);
		    NAB(ji,2) = NAB(kfnew,2);
		    AB(kfnew,1) = tmp1;
		    AB(kfnew,2) = tmp2;
		    NAB(kfnew,1) = itmp1;
		    NAB(kfnew,2) = itmp2;
		    if (*ijob == 3) {
			itmp1 = NVAL(ji);
			NVAL(ji) = NVAL(kfnew);
			NVAL(kfnew) = itmp1;
		    }
		}
		++kfnew;
	    }
/* L110: */
	}
	kf = kfnew;

/*        Choose Midpoints */

	i__2 = kl;
	for (ji = kf; ji <= kl; ++ji) {
	    C(ji) = (AB(ji,1) + AB(ji,2)) * .5f;
/* L120: */
	}

/*        If no more intervals to refine, quit. */

	if (kf > kl) {
	    goto L140;
	}
/* L130: */
    }

/*     Converged */

L140:
/* Computing MAX */
    i__1 = kl + 1 - kf;
    *info = max(i__1,0);
    *mout = kl;

    return 0;

/*     End of SLAEBZ */

} /* slaebz_ */
Exemple #15
0
double E()
{
	return T()+E2();
}