Exemple #1
0
void ExpandUniforms(const std::vector<Uniform> &compact,
                    std::vector<ShaderVariable> *expanded)
{
    for (size_t variableIndex = 0; variableIndex < compact.size(); variableIndex++)
    {
        const ShaderVariable &variable = compact[variableIndex];
        ExpandVariable(variable, variable.name, variable.mappedName, variable.staticUse, expanded);
    }
}
Exemple #2
0
char* word_to_string(word_t* wd, BOOL ghil)
{
	char* first_word = strdup(wd->string);
	char* ret;
	DIE(!first_word, "No memory in word_to_string()");

	if (wd->expand) {
		free(first_word);
		first_word = ExpandVariable(wd->string);
	}
	if (ghil) {
		char* tmp;
		ret = calloc(strlen(first_word) + 5, 1); 
		DIE(!ret, "No memory in word_to_string()");

		tmp = first_word;
		first_word = escape_quotes(first_word);
		free(tmp);

		_snprintf_s(ret, strlen(first_word) + 5, strlen(first_word) + 5, "\"%s\"", first_word);
		free(first_word);
	}
	else 
		ret = first_word;
	if (wd->next_word) {
		char* next_word = word_to_string(wd->next_word, ghil);
		DIE(!next_word, "No memory in word_to_string()");
		append(&ret, next_word);
		free(next_word);
	}

	if (wd->next_part) {
		char* next_part = word_to_string(wd->next_part, FALSE);
		char* tmp = malloc(strlen(ret) + strlen(next_part) + 1);
		if (!strcmp(next_part, "="))
			printf("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\n");

		memcpy(tmp, ret, strlen(ret));
		memcpy(tmp + strlen(ret), next_part, strlen(next_part) + 1);
		free(next_part);
		ret = tmp;
	}

	return ret;
}
bool VariablePacker::CheckVariablesWithinPackingLimits(
    unsigned int maxVectors,
    const std::vector<sh::ShaderVariable> &in_variables)
{
    ASSERT(maxVectors > 0);
    maxRows_ = maxVectors;
    topNonFullRow_ = 0;
    bottomNonFullRow_ = maxRows_ - 1;
    std::vector<sh::ShaderVariable> variables;

    for (const auto &variable : in_variables)
    {
        ExpandVariable(variable, variable.name, variable.mappedName, variable.staticUse,
                       &variables);
    }

    // Check whether each variable fits in the available vectors.
    for (size_t i = 0; i < variables.size(); i++) {
        const sh::ShaderVariable &variable = variables[i];
        if (variable.elementCount() > maxVectors / GetNumRows(variable.type)) {
            return false;
        }
    }

    // As per GLSL 1.017 Appendix A, Section 7 variables are packed in specific
    // order by type, then by size of array, largest first.
    std::sort(variables.begin(), variables.end(), TVariableInfoComparer());
    rows_.clear();
    rows_.resize(maxVectors, 0);

    // Packs the 4 column variables.
    size_t ii = 0;
    for (; ii < variables.size(); ++ii) {
        const sh::ShaderVariable &variable = variables[ii];
        if (GetNumComponentsPerRow(variable.type) != 4) {
            break;
        }
        topNonFullRow_ += GetNumRows(variable.type) * variable.elementCount();
    }

    if (topNonFullRow_ > maxRows_) {
        return false;
    }

    // Packs the 3 column variables.
    int num3ColumnRows = 0;
    for (; ii < variables.size(); ++ii) {
        const sh::ShaderVariable &variable = variables[ii];
        if (GetNumComponentsPerRow(variable.type) != 3) {
            break;
        }
        num3ColumnRows += GetNumRows(variable.type) * variable.elementCount();
    }

    if (topNonFullRow_ + num3ColumnRows > maxRows_) {
        return false;
    }

    fillColumns(topNonFullRow_, num3ColumnRows, 0, 3);

    // Packs the 2 column variables.
    int top2ColumnRow = topNonFullRow_ + num3ColumnRows;
    int twoColumnRowsAvailable = maxRows_ - top2ColumnRow;
    int rowsAvailableInColumns01 = twoColumnRowsAvailable;
    int rowsAvailableInColumns23 = twoColumnRowsAvailable;
    for (; ii < variables.size(); ++ii) {
        const sh::ShaderVariable &variable = variables[ii];
        if (GetNumComponentsPerRow(variable.type) != 2) {
            break;
        }
        int numRows = GetNumRows(variable.type) * variable.elementCount();
        if (numRows <= rowsAvailableInColumns01) {
            rowsAvailableInColumns01 -= numRows;
        } else if (numRows <= rowsAvailableInColumns23) {
            rowsAvailableInColumns23 -= numRows;
        } else {
            return false;
        }
    }

    int numRowsUsedInColumns01 =
        twoColumnRowsAvailable - rowsAvailableInColumns01;
    int numRowsUsedInColumns23 =
        twoColumnRowsAvailable - rowsAvailableInColumns23;
    fillColumns(top2ColumnRow, numRowsUsedInColumns01, 0, 2);
    fillColumns(maxRows_ - numRowsUsedInColumns23, numRowsUsedInColumns23,
                2, 2);

    // Packs the 1 column variables.
    for (; ii < variables.size(); ++ii) {
        const sh::ShaderVariable &variable = variables[ii];
        ASSERT(1 == GetNumComponentsPerRow(variable.type));
        int numRows = GetNumRows(variable.type) * variable.elementCount();
        int smallestColumn = -1;
        int smallestSize = maxRows_ + 1;
        int topRow = -1;
        for (int column = 0; column < kNumColumns; ++column) {
            int row = 0;
            int size = 0;
            if (searchColumn(column, numRows, &row, &size)) {
                if (size < smallestSize) {
                    smallestSize = size;
                    smallestColumn = column;
                    topRow = row;
                }
            }
        }

        if (smallestColumn < 0) {
            return false;
        }

        fillColumns(topRow, numRows, smallestColumn, 1);
    }

    ASSERT(variables.size() == ii);

    return true;
}