Exemple #1
0
// 3D simplex noise
float noise(float x, float y, float z) {

// Simple skewing factors for the 3D case
#define F3 0.333333333
#define G3 0.166666667

    float n0, n1, n2, n3; // Noise contributions from the four corners

    // Skew the input space to determine which simplex cell we're in
    float s = (x+y+z)*F3; // Very nice and simple skew factor for 3D
    float xs = x+s;
    float ys = y+s;
    float zs = z+s;
    int i = FASTFLOOR(xs);
    int j = FASTFLOOR(ys);
    int k = FASTFLOOR(zs);

    float t = (float)(i+j+k)*G3; 
    float X0 = i-t; // Unskew the cell origin back to (x,y,z) space
    float Y0 = j-t;
    float Z0 = k-t;
    float x0 = x-X0; // The x,y,z distances from the cell origin
    float y0 = y-Y0;
    float z0 = z-Z0;

    // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
    // Determine which simplex we are in.
    int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
    int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords

/* This code would benefit from a backport from the GLSL version! */
    if(x0>=y0) {
      if(y0>=z0)
        { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order
        else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order
        else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order
      }
    else { // x0<y0
      if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order
      else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order
      else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order
    }

    // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
    // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
    // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
    // c = 1/6.

    float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
    float y1 = y0 - j1 + G3;
    float z1 = z0 - k1 + G3;
    float x2 = x0 - i2 + 2.0f*G3; // Offsets for third corner in (x,y,z) coords
    float y2 = y0 - j2 + 2.0f*G3;
    float z2 = z0 - k2 + 2.0f*G3;
    float x3 = x0 - 1.0f + 3.0f*G3; // Offsets for last corner in (x,y,z) coords
    float y3 = y0 - 1.0f + 3.0f*G3;
    float z3 = z0 - 1.0f + 3.0f*G3;

    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
    int ii = i % 256;
    int jj = j % 256;
    int kk = k % 256;

    // Calculate the contribution from the four corners
    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
    if(t0 < 0.0f) n0 = 0.0f;
    else {
      t0 *= t0;
      n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk]]], x0, y0, z0);
    }

    float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
    if(t1 < 0.0f) n1 = 0.0f;
    else {
      t1 *= t1;
      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1]]], x1, y1, z1);
    }

    float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
    if(t2 < 0.0f) n2 = 0.0f;
    else {
      t2 *= t2;
      n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2]]], x2, y2, z2);
    }

    float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
    if(t3<0.0f) n3 = 0.0f;
    else {
      t3 *= t3;
      n3 = t3 * t3 * grad(perm[ii+1+perm[jj+1+perm[kk+1]]], x3, y3, z3);
    }

    // Add contributions from each corner to get the final noise value.
    // The result is scaled to stay just inside [-1,1]
    return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary!
  }
// 4D simplex noise
float SimplexNoise1234::noise(float x, float y, float z, float w) {
  
  // The skewing and unskewing factors are hairy again for the 4D case
#define F4 0.309016994f // F4 = (Math.sqrt(5.0)-1.0)/4.0
#define G4 0.138196601f // G4 = (5.0-Math.sqrt(5.0))/20.0

    float n0, n1, n2, n3, n4; // Noise contributions from the five corners

    // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
    float s = (x + y + z + w) * F4; // Factor for 4D skewing
    float xs = x + s;
    float ys = y + s;
    float zs = z + s;
    float ws = w + s;
    int i = FASTFLOOR(xs);
    int j = FASTFLOOR(ys);
    int k = FASTFLOOR(zs);
    int l = FASTFLOOR(ws);

    float t = (i + j + k + l) * G4; // Factor for 4D unskewing
    float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
    float Y0 = j - t;
    float Z0 = k - t;
    float W0 = l - t;

    float x0 = x - X0;  // The x,y,z,w distances from the cell origin
    float y0 = y - Y0;
    float z0 = z - Z0;
    float w0 = w - W0;

    // For the 4D case, the simplex is a 4D shape I won't even try to describe.
    // To find out which of the 24 possible simplices we're in, we need to
    // determine the magnitude ordering of x0, y0, z0 and w0.
    // The method below is a good way of finding the ordering of x,y,z,w and
    // then find the correct traversal order for the simplex we’re in.
    // First, six pair-wise comparisons are performed between each possible pair
    // of the four coordinates, and the results are used to add up binary bits
    // for an integer index.
    int c1 = (x0 > y0) ? 32 : 0;
    int c2 = (x0 > z0) ? 16 : 0;
    int c3 = (y0 > z0) ? 8 : 0;
    int c4 = (x0 > w0) ? 4 : 0;
    int c5 = (y0 > w0) ? 2 : 0;
    int c6 = (z0 > w0) ? 1 : 0;
    int c = c1 + c2 + c3 + c4 + c5 + c6;

    int i1, j1, k1, l1; // The integer offsets for the second simplex corner
    int i2, j2, k2, l2; // The integer offsets for the third simplex corner
    int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner

    // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
    // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
    // impossible. Only the 24 indices which have non-zero entries make any sense.
    // We use a thresholding to set the coordinates in turn from the largest magnitude.
    // The number 3 in the "simplex" array is at the position of the largest coordinate.
    i1 = simplex[c][0]>=3 ? 1 : 0;
    j1 = simplex[c][1]>=3 ? 1 : 0;
    k1 = simplex[c][2]>=3 ? 1 : 0;
    l1 = simplex[c][3]>=3 ? 1 : 0;
    // The number 2 in the "simplex" array is at the second largest coordinate.
    i2 = simplex[c][0]>=2 ? 1 : 0;
    j2 = simplex[c][1]>=2 ? 1 : 0;
    k2 = simplex[c][2]>=2 ? 1 : 0;
    l2 = simplex[c][3]>=2 ? 1 : 0;
    // The number 1 in the "simplex" array is at the second smallest coordinate.
    i3 = simplex[c][0]>=1 ? 1 : 0;
    j3 = simplex[c][1]>=1 ? 1 : 0;
    k3 = simplex[c][2]>=1 ? 1 : 0;
    l3 = simplex[c][3]>=1 ? 1 : 0;
    // The fifth corner has all coordinate offsets = 1, so no need to look that up.

    float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
    float y1 = y0 - j1 + G4;
    float z1 = z0 - k1 + G4;
    float w1 = w0 - l1 + G4;
    float x2 = x0 - i2 + 2.0f*G4; // Offsets for third corner in (x,y,z,w) coords
    float y2 = y0 - j2 + 2.0f*G4;
    float z2 = z0 - k2 + 2.0f*G4;
    float w2 = w0 - l2 + 2.0f*G4;
    float x3 = x0 - i3 + 3.0f*G4; // Offsets for fourth corner in (x,y,z,w) coords
    float y3 = y0 - j3 + 3.0f*G4;
    float z3 = z0 - k3 + 3.0f*G4;
    float w3 = w0 - l3 + 3.0f*G4;
    float x4 = x0 - 1.0f + 4.0f*G4; // Offsets for last corner in (x,y,z,w) coords
    float y4 = y0 - 1.0f + 4.0f*G4;
    float z4 = z0 - 1.0f + 4.0f*G4;
    float w4 = w0 - 1.0f + 4.0f*G4;

    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
    int ii = i & 0xff;
    int jj = j & 0xff;
    int kk = k & 0xff;
    int ll = l & 0xff;

    // Calculate the contribution from the five corners
    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
    if(t0 < 0.0f) n0 = 0.0f;
    else {
      t0 *= t0;
      n0 = t0 * t0 * grad(perm[ii+perm[jj+perm[kk+perm[ll]]]], x0, y0, z0, w0);
    }

   float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
    if(t1 < 0.0f) n1 = 0.0f;
    else {
      t1 *= t1;
      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], x1, y1, z1, w1);
    }

   float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
    if(t2 < 0.0f) n2 = 0.0f;
    else {
      t2 *= t2;
      n2 = t2 * t2 * grad(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], x2, y2, z2, w2);
    }

   float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
    if(t3 < 0.0f) n3 = 0.0f;
    else {
      t3 *= t3;
      n3 = t3 * t3 * grad(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], x3, y3, z3, w3);
    }

   float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
    if(t4 < 0.0f) n4 = 0.0f;
    else {
      t4 *= t4;
      n4 = t4 * t4 * grad(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], x4, y4, z4, w4);
    }

    // Sum up and scale the result to cover the range [-1,1]
    return 27.0f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!
  }
Exemple #3
0
// 2D simplex noise
float noise(float x, float y) {

#define F2 0.366025403 // F2 = 0.5*(sqrt(3.0)-1.0)
#define G2 0.211324865 // G2 = (3.0-Math.sqrt(3.0))/6.0

    float n0, n1, n2; // Noise contributions from the three corners

    // Skew the input space to determine which simplex cell we're in
    float s = (x+y)*F2; // Hairy factor for 2D
    float xs = x + s;
    float ys = y + s;
    int i = FASTFLOOR(xs);
    int j = FASTFLOOR(ys);

    float t = (float)(i+j)*G2;
    float X0 = i-t; // Unskew the cell origin back to (x,y) space
    float Y0 = j-t;
    float x0 = x-X0; // The x,y distances from the cell origin
    float y0 = y-Y0;

    // For the 2D case, the simplex shape is an equilateral triangle.
    // Determine which simplex we are in.
    int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
    if(x0>y0) {i1=1; j1=0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
    else {i1=0; j1=1;}      // upper triangle, YX order: (0,0)->(0,1)->(1,1)

    // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
    // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
    // c = (3-sqrt(3))/6

    float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
    float y1 = y0 - j1 + G2;
    float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords
    float y2 = y0 - 1.0f + 2.0f * G2;

    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
    int ii = i % 256;
    int jj = j % 256;

    // Calculate the contribution from the three corners
    float t0 = 0.5f - x0*x0-y0*y0;
    if(t0 < 0.0f) n0 = 0.0f;
    else {
      t0 *= t0;
      n0 = t0 * t0 * grad(perm[ii+perm[jj]], x0, y0); 
    }

    float t1 = 0.5f - x1*x1-y1*y1;
    if(t1 < 0.0f) n1 = 0.0f;
    else {
      t1 *= t1;
      n1 = t1 * t1 * grad(perm[ii+i1+perm[jj+j1]], x1, y1);
    }

    float t2 = 0.5f - x2*x2-y2*y2;
    if(t2 < 0.0f) n2 = 0.0f;
    else {
      t2 *= t2;
      n2 = t2 * t2 * grad(perm[ii+1+perm[jj+1]], x2, y2);
    }

    // Add contributions from each corner to get the final noise value.
    // The result is scaled to return values in the interval [-1,1].
    return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary!
  }
Exemple #4
0
static double _simplex_noise(double xin, double yin, double zin)
{
  double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
  double F3 = 1.0/3.0;
  double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D
  int i = FASTFLOOR(xin+s);
  int j = FASTFLOOR(yin+s);
  int k = FASTFLOOR(zin+s);
  double G3 = 1.0/6.0; // Very nice and simple unskew factor, too
  double t = (i+j+k)*G3;
  double X0 = i-t; // Unskew the cell origin back to (x,y,z) space
  double Y0 = j-t;
  double Z0 = k-t;
  double x0 = xin-X0; // The x,y,z distances from the cell origin
  double y0 = yin-Y0;
  double z0 = zin-Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
  int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
  int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
  if(x0>=y0)
  {
    if(y0>=z0)
    {
      i1=1;  // X Y Z order
      j1=0;
      k1=0;
      i2=1;
      j2=1;
      k2=0;
    }
    else if(x0>=z0)
    {
      i1=1;  // X Z Y order
      j1=0;
      k1=0;
      i2=1;
      j2=0;
      k2=1;
    }
    else
    {
      i1=0;  // Z X Y order
      j1=0;
      k1=1;
      i2=1;
      j2=0;
      k2=1;
    }
  }
  else   // x0<y0
  {
    if(y0<z0)
    {
      i1=0;  // Z Y X order
      j1=0;
      k1=1;
      i2=0;
      j2=1;
      k2=1;
    }
    else if(x0<z0)
    {
      i1=0;  // Y Z X order
      j1=1;
      k1=0;
      i2=0;
      j2=1;
      k2=1;
    }
    else
    {
      i1=0;  // Y X Z order
      j1=1;
      k1=0;
      i2=1;
      j2=1;
      k2=0;
    }
  }
//  A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
//  a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
//  a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
//  c = 1/6.
  double   x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
  double   y1 = y0 - j1 + G3;
  double   z1 = z0 - k1 + G3;
  double   x2 = x0 - i2 + 2.0*G3; // Offsets for third corner in (x,y,z) coords
  double   y2 = y0 - j2 + 2.0*G3;
  double   z2 = z0 - k2 + 2.0*G3;
  double   x3 = x0 - 1.0 + 3.0*G3; // Offsets for last corner in (x,y,z) coords
  double   y3 = y0 - 1.0 + 3.0*G3;
  double   z3 = z0 - 1.0 + 3.0*G3;
  // Work out the hashed gradient indices of the four simplex corners
  int ii = i & 255;
  int jj = j & 255;
  int kk = k & 255;
  int gi0 = perm[ii+perm[jj+perm[kk]]] % 12;
  int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1]]] % 12;
  int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2]]] % 12;
  int gi3 = perm[ii+1+perm[jj+1+perm[kk+1]]] % 12;
  // Calculate the contribution from the four corners
  double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
  if(t0<0) n0 = 0.0;
  else
  {
    t0 *= t0;
    n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
  }
  double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
  if(t1<0) n1 = 0.0;
  else
  {
    t1 *= t1;
    n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
  }
  double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
  if(t2<0) n2 = 0.0;
  else
  {
    t2 *= t2;
    n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
  }
  double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
  if(t3<0) n3 = 0.0;
  else
  {
    t3 *= t3;
    n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
  }
  // Add contributions from each corner to get the final noise value.
  // The result is scaled to stay just inside [-1,1]
  return 32.0*(n0 + n1 + n2 + n3);
}
Exemple #5
0
float Noise1234::pnoise( float x, float y, float z, float w,
                            int px, int py, int pz, int pw )
{
    int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1;
    float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1;
    float s, t, r, q;
    float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1;

    ix0 = FASTFLOOR( x ); // Integer part of x
    iy0 = FASTFLOOR( y ); // Integer part of y
    iz0 = FASTFLOOR( z ); // Integer part of y
    iw0 = FASTFLOOR( w ); // Integer part of w
    fx0 = x - ix0;        // Fractional part of x
    fy0 = y - iy0;        // Fractional part of y
    fz0 = z - iz0;        // Fractional part of z
    fw0 = w - iw0;        // Fractional part of w
    fx1 = fx0 - 1.0f;
    fy1 = fy0 - 1.0f;
    fz1 = fz0 - 1.0f;
    fw1 = fw0 - 1.0f;
    ix1 = (( ix0 + 1 ) % px ) & 0xff;  // Wrap to 0..px-1 and wrap to 0..255
    iy1 = (( iy0 + 1 ) % py ) & 0xff;  // Wrap to 0..py-1 and wrap to 0..255
    iz1 = (( iz0 + 1 ) % pz ) & 0xff;  // Wrap to 0..pz-1 and wrap to 0..255
    iw1 = (( iw0 + 1 ) % pw ) & 0xff;  // Wrap to 0..pw-1 and wrap to 0..255
    ix0 = ( ix0 % px ) & 0xff;
    iy0 = ( iy0 % py ) & 0xff;
    iz0 = ( iz0 % pz ) & 0xff;
    iw0 = ( iw0 % pw ) & 0xff;

    q = FADE( fw0 );
    r = FADE( fz0 );
    t = FADE( fy0 );
    s = FADE( fx0 );

    nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0);
    nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );
        
    nxyz0 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0);
    nxyz1 = grad(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );
        
    nx0 = LERP ( r, nxy0, nxy1 );

    nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0);
    nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );
        
    nxyz0 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0);
    nxyz1 = grad(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );

    nx1 = LERP ( r, nxy0, nxy1 );

    n0 = LERP( t, nx0, nx1 );

    nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0);
    nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );
        
    nxyz0 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0);
    nxyz1 = grad(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );

    nx0 = LERP ( r, nxy0, nxy1 );

    nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0);
    nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );
        
    nxyz0 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0);
    nxyz1 = grad(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );

    nx1 = LERP ( r, nxy0, nxy1 );

    n1 = LERP( t, nx0, nx1 );

    return 0.87f * ( LERP( s, n0, n1 ) );
}
Exemple #6
0
/** 2D simplex noise */
GLfloat
_mesa_noise2(GLfloat x, GLfloat y)
{
#define F2 0.366025403f         /* F2 = 0.5*(sqrt(3.0)-1.0) */
#define G2 0.211324865f         /* G2 = (3.0-Math.sqrt(3.0))/6.0 */

   float n0, n1, n2;            /* Noise contributions from the three corners */

   /* Skew the input space to determine which simplex cell we're in */
   float s = (x + y) * F2;      /* Hairy factor for 2D */
   float xs = x + s;
   float ys = y + s;
   int i = FASTFLOOR(xs);
   int j = FASTFLOOR(ys);

   float t = (float) (i + j) * G2;
   float X0 = i - t;            /* Unskew the cell origin back to (x,y) space */
   float Y0 = j - t;
   float x0 = x - X0;           /* The x,y distances from the cell origin */
   float y0 = y - Y0;

   float x1, y1, x2, y2;
   int ii, jj;
   float t0, t1, t2;

   /* For the 2D case, the simplex shape is an equilateral triangle. */
   /* Determine which simplex we are in. */
   int i1, j1;                  /* Offsets for second (middle) corner of simplex in (i,j) coords */
   if (x0 > y0) {
      i1 = 1;
      j1 = 0;
   }                            /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
   else {
      i1 = 0;
      j1 = 1;
   }                            /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */

   /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */
   /* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */
   /* c = (3-sqrt(3))/6 */

   x1 = x0 - i1 + G2;           /* Offsets for middle corner in (x,y) unskewed coords */
   y1 = y0 - j1 + G2;
   x2 = x0 - 1.0f + 2.0f * G2;  /* Offsets for last corner in (x,y) unskewed coords */
   y2 = y0 - 1.0f + 2.0f * G2;

   /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
   ii = i % 256;
   jj = j % 256;

   /* Calculate the contribution from the three corners */
   t0 = 0.5f - x0 * x0 - y0 * y0;
   if (t0 < 0.0f)
      n0 = 0.0f;
   else {
      t0 *= t0;
      n0 = t0 * t0 * grad2(perm[ii + perm[jj]], x0, y0);
   }

   t1 = 0.5f - x1 * x1 - y1 * y1;
   if (t1 < 0.0f)
      n1 = 0.0f;
   else {
      t1 *= t1;
      n1 = t1 * t1 * grad2(perm[ii + i1 + perm[jj + j1]], x1, y1);
   }

   t2 = 0.5f - x2 * x2 - y2 * y2;
   if (t2 < 0.0f)
      n2 = 0.0f;
   else {
      t2 *= t2;
      n2 = t2 * t2 * grad2(perm[ii + 1 + perm[jj + 1]], x2, y2);
   }

   /* Add contributions from each corner to get the final noise value. */
   /* The result is scaled to return values in the interval [-1,1]. */
   return 40.0f * (n0 + n1 + n2);       /* TODO: The scale factor is preliminary! */
}
float noise4( float x, float y, float z, float w )
{
    int ix0, iy0, iz0, iw0, ix1, iy1, iz1, iw1;
    float fx0, fy0, fz0, fw0, fx1, fy1, fz1, fw1;
    float s, t, r, q;
    float nxyz0, nxyz1, nxy0, nxy1, nx0, nx1, n0, n1;

    ix0 = FASTFLOOR( x ); // Integer part of x
    iy0 = FASTFLOOR( y ); // Integer part of y
    iz0 = FASTFLOOR( z ); // Integer part of y
    iw0 = FASTFLOOR( w ); // Integer part of w
    fx0 = x - ix0;        // Fractional part of x
    fy0 = y - iy0;        // Fractional part of y
    fz0 = z - iz0;        // Fractional part of z
    fw0 = w - iw0;        // Fractional part of w
    fx1 = fx0 - 1.0f;
    fy1 = fy0 - 1.0f;
    fz1 = fz0 - 1.0f;
    fw1 = fw0 - 1.0f;
    ix1 = ( ix0 + 1 ) & 0xff;  // Wrap to 0..255
    iy1 = ( iy0 + 1 ) & 0xff;
    iz1 = ( iz0 + 1 ) & 0xff;
    iw1 = ( iw0 + 1 ) & 0xff;
    ix0 = ix0 & 0xff;
    iy0 = iy0 & 0xff;
    iz0 = iz0 & 0xff;
    iw0 = iw0 & 0xff;

    q = FADE( fw0 );
    r = FADE( fz0 );
    t = FADE( fy0 );
    s = FADE( fx0 );

    nxyz0 = grad4(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx0, fy0, fz0, fw0);
    nxyz1 = grad4(perm[ix0 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx0, fy0, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );

    nxyz0 = grad4(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx0, fy0, fz1, fw0);
    nxyz1 = grad4(perm[ix0 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx0, fy0, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );

    nx0 = LERP ( r, nxy0, nxy1 );

    nxyz0 = grad4(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx0, fy1, fz0, fw0);
    nxyz1 = grad4(perm[ix0 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx0, fy1, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );

    nxyz0 = grad4(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx0, fy1, fz1, fw0);
    nxyz1 = grad4(perm[ix0 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx0, fy1, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );

    nx1 = LERP ( r, nxy0, nxy1 );

    n0 = LERP( t, nx0, nx1 );

    nxyz0 = grad4(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw0]]]], fx1, fy0, fz0, fw0);
    nxyz1 = grad4(perm[ix1 + perm[iy0 + perm[iz0 + perm[iw1]]]], fx1, fy0, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );

    nxyz0 = grad4(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw0]]]], fx1, fy0, fz1, fw0);
    nxyz1 = grad4(perm[ix1 + perm[iy0 + perm[iz1 + perm[iw1]]]], fx1, fy0, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );

    nx0 = LERP ( r, nxy0, nxy1 );

    nxyz0 = grad4(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw0]]]], fx1, fy1, fz0, fw0);
    nxyz1 = grad4(perm[ix1 + perm[iy1 + perm[iz0 + perm[iw1]]]], fx1, fy1, fz0, fw1);
    nxy0 = LERP( q, nxyz0, nxyz1 );

    nxyz0 = grad4(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw0]]]], fx1, fy1, fz1, fw0);
    nxyz1 = grad4(perm[ix1 + perm[iy1 + perm[iz1 + perm[iw1]]]], fx1, fy1, fz1, fw1);
    nxy1 = LERP( q, nxyz0, nxyz1 );

    nx1 = LERP ( r, nxy0, nxy1 );

    n1 = LERP( t, nx0, nx1 );

    return 0.87f * ( LERP( s, n0, n1 ) );
}
Exemple #8
0
/** 4D simplex noise with derivatives.
 * If the last four arguments are not null, the analytic derivative
 * (the 4D gradient of the scalar noise field) is also calculated.
 */
float sdnoise4( float x, float y, float z, float w,
                float *dnoise_dx, float *dnoise_dy,
                float *dnoise_dz, float *dnoise_dw)
{
    float n0, n1, n2, n3, n4; // Noise contributions from the five corners
    float noise; // Return value
    float gx0, gy0, gz0, gw0, gx1, gy1, gz1, gw1; /* Gradients at simplex corners */
    float gx2, gy2, gz2, gw2, gx3, gy3, gz3, gw3, gx4, gy4, gz4, gw4;
    float t20, t21, t22, t23, t24;
    float t40, t41, t42, t43, t44;

    // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
    float s = (x + y + z + w) * F4; // Factor for 4D skewing
    float xs = x + s;
    float ys = y + s;
    float zs = z + s;
    float ws = w + s;
    int i = FASTFLOOR(xs);
    int j = FASTFLOOR(ys);
    int k = FASTFLOOR(zs);
    int l = FASTFLOOR(ws);

    float t = (i + j + k + l) * G4; // Factor for 4D unskewing
    float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
    float Y0 = j - t;
    float Z0 = k - t;
    float W0 = l - t;

    float x0 = x - X0;  // The x,y,z,w distances from the cell origin
    float y0 = y - Y0;
    float z0 = z - Z0;
    float w0 = w - W0;

    // For the 4D case, the simplex is a 4D shape I won't even try to describe.
    // To find out which of the 24 possible simplices we're in, we need to
    // determine the magnitude ordering of x0, y0, z0 and w0.
    // The method below is a reasonable way of finding the ordering of x,y,z,w
    // and then find the correct traversal order for the simplex we’re in.
    // First, six pair-wise comparisons are performed between each possible pair
    // of the four coordinates, and then the results are used to add up binary
    // bits for an integer index into a precomputed lookup table, simplex[].
    int c1 = (x0 > y0) ? 32 : 0;
    int c2 = (x0 > z0) ? 16 : 0;
    int c3 = (y0 > z0) ? 8 : 0;
    int c4 = (x0 > w0) ? 4 : 0;
    int c5 = (y0 > w0) ? 2 : 0;
    int c6 = (z0 > w0) ? 1 : 0;
    int c = c1 & c2 & c3 & c4 & c5 & c6; // '&' is mostly faster than '+'

    int i1, j1, k1, l1; // The integer offsets for the second simplex corner
    int i2, j2, k2, l2; // The integer offsets for the third simplex corner
    int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner

    // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
    // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
    // impossible. Only the 24 indices which have non-zero entries make any sense.
    // We use a thresholding to set the coordinates in turn from the largest magnitude.
    // The number 3 in the "simplex" array is at the position of the largest coordinate.
    i1 = simplex[c][0]>=3 ? 1 : 0;
    j1 = simplex[c][1]>=3 ? 1 : 0;
    k1 = simplex[c][2]>=3 ? 1 : 0;
    l1 = simplex[c][3]>=3 ? 1 : 0;
    // The number 2 in the "simplex" array is at the second largest coordinate.
    i2 = simplex[c][0]>=2 ? 1 : 0;
    j2 = simplex[c][1]>=2 ? 1 : 0;
    k2 = simplex[c][2]>=2 ? 1 : 0;
    l2 = simplex[c][3]>=2 ? 1 : 0;
    // The number 1 in the "simplex" array is at the second smallest coordinate.
    i3 = simplex[c][0]>=1 ? 1 : 0;
    j3 = simplex[c][1]>=1 ? 1 : 0;
    k3 = simplex[c][2]>=1 ? 1 : 0;
    l3 = simplex[c][3]>=1 ? 1 : 0;
    // The fifth corner has all coordinate offsets = 1, so no need to look that up.

    float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
    float y1 = y0 - j1 + G4;
    float z1 = z0 - k1 + G4;
    float w1 = w0 - l1 + G4;
    float x2 = x0 - i2 + 2.0f * G4; // Offsets for third corner in (x,y,z,w) coords
    float y2 = y0 - j2 + 2.0f * G4;
    float z2 = z0 - k2 + 2.0f * G4;
    float w2 = w0 - l2 + 2.0f * G4;
    float x3 = x0 - i3 + 3.0f * G4; // Offsets for fourth corner in (x,y,z,w) coords
    float y3 = y0 - j3 + 3.0f * G4;
    float z3 = z0 - k3 + 3.0f * G4;
    float w3 = w0 - l3 + 3.0f * G4;
    float x4 = x0 - 1.0f + 4.0f * G4; // Offsets for last corner in (x,y,z,w) coords
    float y4 = y0 - 1.0f + 4.0f * G4;
    float z4 = z0 - 1.0f + 4.0f * G4;
    float w4 = w0 - 1.0f + 4.0f * G4;

    // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds
    int ii = i & 0xff;
    int jj = j & 0xff;
    int kk = k & 0xff;
    int ll = l & 0xff;

    // Calculate the contribution from the five corners
    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0;
    if(t0 < 0.0f) n0 = t0 = t20 = t40 = gx0 = gy0 = gz0 = gw0 = 0.0f;
    else {
      t20 = t0 * t0;
      t40 = t20 * t20;
      grad4(perm[ii+perm[jj+perm[kk+perm[ll]]]], &gx0, &gy0, &gz0, &gw0);
      n0 = t40 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 );
    }

   float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1;
    if(t1 < 0.0f) n1 = t1 = t21 = t41 = gx1 = gy1 = gz1 = gw1 = 0.0f;
    else {
      t21 = t1 * t1;
      t41 = t21 * t21;
      grad4(perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]], &gx1, &gy1, &gz1, &gw1);
      n1 = t41 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 );
    }

   float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2;
    if(t2 < 0.0f) n2 = t2 = t22 = t42 = gx2 = gy2 = gz2 = gw2 = 0.0f;
    else {
      t22 = t2 * t2;
      t42 = t22 * t22;
      grad4(perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]], &gx2, &gy2, &gz2, &gw2);
      n2 = t42 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 );
   }

   float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3;
    if(t3 < 0.0f) n3 = t3 = t23 = t43 = gx3 = gy3 = gz3 = gw3 = 0.0f;
    else {
      t23 = t3 * t3;
      t43 = t23 * t23;
      grad4(perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]], &gx3, &gy3, &gz3, &gw3);
      n3 = t43 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 );
    }

   float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4;
    if(t4 < 0.0f) n4 = t4 = t24 = t44 = gx4 = gy4 = gz4 = gw4 = 0.0f;
    else {
      t24 = t4 * t4;
      t44 = t24 * t24;
      grad4(perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]], &gx4, &gy4, &gz4, &gw4);
      n4 = t44 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 );
    }

    // Sum up and scale the result to cover the range [-1,1]
    noise = 27.0f * (n0 + n1 + n2 + n3 + n4); // TODO: The scale factor is preliminary!

    /* Compute derivative, if requested by supplying non-null pointers
     * for the last four arguments */
    if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) && ( dnoise_dz != 0 ) && ( dnoise_dw != 0 ) )
      {
	/*  A straight, unoptimised calculation would be like:
     *     *dnoise_dx = -8.0f * t20 * t0 * x0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gx0;
     *    *dnoise_dy = -8.0f * t20 * t0 * y0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gy0;
     *    *dnoise_dz = -8.0f * t20 * t0 * z0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gz0;
     *    *dnoise_dw = -8.0f * t20 * t0 * w0 * dot(gx0, gy0, gz0, gw0, x0, y0, z0, w0) + t40 * gw0;
     *    *dnoise_dx += -8.0f * t21 * t1 * x1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gx1;
     *    *dnoise_dy += -8.0f * t21 * t1 * y1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gy1;
     *    *dnoise_dz += -8.0f * t21 * t1 * z1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gz1;
     *    *dnoise_dw = -8.0f * t21 * t1 * w1 * dot(gx1, gy1, gz1, gw1, x1, y1, z1, w1) + t41 * gw1;
     *    *dnoise_dx += -8.0f * t22 * t2 * x2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gx2;
     *    *dnoise_dy += -8.0f * t22 * t2 * y2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gy2;
     *    *dnoise_dz += -8.0f * t22 * t2 * z2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gz2;
     *    *dnoise_dw += -8.0f * t22 * t2 * w2 * dot(gx2, gy2, gz2, gw2, x2, y2, z2, w2) + t42 * gw2;
     *    *dnoise_dx += -8.0f * t23 * t3 * x3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gx3;
     *    *dnoise_dy += -8.0f * t23 * t3 * y3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gy3;
     *    *dnoise_dz += -8.0f * t23 * t3 * z3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gz3;
     *    *dnoise_dw += -8.0f * t23 * t3 * w3 * dot(gx3, gy3, gz3, gw3, x3, y3, z3, w3) + t43 * gw3;
     *    *dnoise_dx += -8.0f * t24 * t4 * x4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gx4;
     *    *dnoise_dy += -8.0f * t24 * t4 * y4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gy4;
     *    *dnoise_dz += -8.0f * t24 * t4 * z4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gz4;
     *    *dnoise_dw += -8.0f * t24 * t4 * w4 * dot(gx4, gy4, gz4, gw4, x4, y4, z4, w4) + t44 * gw4;
     */
        float temp0 = t20 * t0 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 + gw0 * w0 );
        *dnoise_dx = temp0 * x0;
        *dnoise_dy = temp0 * y0;
        *dnoise_dz = temp0 * z0;
        *dnoise_dw = temp0 * w0;
        float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 + gw1 * w1 );
        *dnoise_dx += temp1 * x1;
        *dnoise_dy += temp1 * y1;
        *dnoise_dz += temp1 * z1;
        *dnoise_dw += temp1 * w1;
        float temp2 = t22 * t2 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 + gw2 * w2 );
        *dnoise_dx += temp2 * x2;
        *dnoise_dy += temp2 * y2;
        *dnoise_dz += temp2 * z2;
        *dnoise_dw += temp2 * w2;
        float temp3 = t23 * t3 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 + gw3 * w3 );
        *dnoise_dx += temp3 * x3;
        *dnoise_dy += temp3 * y3;
        *dnoise_dz += temp3 * z3;
        *dnoise_dw += temp3 * w3;
        float temp4 = t24 * t4 * ( gx4 * x4 + gy4 * y4 + gz4 * z4 + gw4 * w4 );
        *dnoise_dx += temp4 * x4;
        *dnoise_dy += temp4 * y4;
        *dnoise_dz += temp4 * z4;
        *dnoise_dw += temp4 * w4;
        *dnoise_dx *= -8.0f;
        *dnoise_dy *= -8.0f;
        *dnoise_dz *= -8.0f;
        *dnoise_dw *= -8.0f;
        *dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2 + t43 * gx3 + t44 * gx4;
        *dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2 + t43 * gy3 + t44 * gy4;
        *dnoise_dz += t40 * gz0 + t41 * gz1 + t42 * gz2 + t43 * gz3 + t44 * gz4;
        *dnoise_dw += t40 * gw0 + t41 * gw1 + t42 * gw2 + t43 * gw3 + t44 * gw4;

        *dnoise_dx *= 27.0f; /* Scale derivative to match the noise scaling */
        *dnoise_dy *= 27.0f;
        *dnoise_dz *= 27.0f;
        *dnoise_dw *= 27.0f;
      }

    return noise;
}
Exemple #9
0
/** 3D simplex noise with derivatives.
 * If the last tthree arguments are not null, the analytic derivative
 * (the 3D gradient of the scalar noise field) is also calculated.
 */
float sdnoise3( float x, float y, float z,
                float *dnoise_dx, float *dnoise_dy, float *dnoise_dz )
{
    float n0, n1, n2, n3; /* Noise contributions from the four simplex corners */
    float noise;          /* Return value */
    float gx0, gy0, gz0, gx1, gy1, gz1; /* Gradients at simplex corners */
    float gx2, gy2, gz2, gx3, gy3, gz3;

    /* Skew the input space to determine which simplex cell we're in */
    float s = (x+y+z)*F3; /* Very nice and simple skew factor for 3D */
    float xs = x+s;
    float ys = y+s;
    float zs = z+s;
    int i = FASTFLOOR(xs);
    int j = FASTFLOOR(ys);
    int k = FASTFLOOR(zs);

    float t = (float)(i+j+k)*G3; 
    float X0 = i-t; /* Unskew the cell origin back to (x,y,z) space */
    float Y0 = j-t;
    float Z0 = k-t;
    float x0 = x-X0; /* The x,y,z distances from the cell origin */
    float y0 = y-Y0;
    float z0 = z-Z0;

    /* For the 3D case, the simplex shape is a slightly irregular tetrahedron.
     * Determine which simplex we are in. */
    int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
    int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */

    /* TODO: This code would benefit from a backport from the GLSL version! */
    if(x0>=y0) {
      if(y0>=z0)
        { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } /* X Y Z order */
        else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } /* X Z Y order */
        else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } /* Z X Y order */
      }
    else { // x0<y0
      if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } /* Z Y X order */
      else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } /* Y Z X order */
      else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } /* Y X Z order */
    }

    /* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
     * a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
     * a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
     * c = 1/6.   */

    float x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */
    float y1 = y0 - j1 + G3;
    float z1 = z0 - k1 + G3;
    float x2 = x0 - i2 + 2.0f * G3; /* Offsets for third corner in (x,y,z) coords */
    float y2 = y0 - j2 + 2.0f * G3;
    float z2 = z0 - k2 + 2.0f * G3;
    float x3 = x0 - 1.0f + 3.0f * G3; /* Offsets for last corner in (x,y,z) coords */
    float y3 = y0 - 1.0f + 3.0f * G3;
    float z3 = z0 - 1.0f + 3.0f * G3;

    /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
    int ii = i % 256;
    int jj = j % 256;
    int kk = k % 256;

    /* Calculate the contribution from the four corners */
    float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0;
    float t20, t40;
    if(t0 < 0.0f) n0 = t0 = t20 = t40 = gx0 = gy0 = gz0 = 0.0f;
    else {
      grad3( perm[ii + perm[jj + perm[kk]]], &gx0, &gy0, &gz0 );
      t20 = t0 * t0;
      t40 = t20 * t20;
      n0 = t40 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 );
    }

    float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1;
    float t21, t41;
    if(t1 < 0.0f) n1 = t1 = t21 = t41 = gx1 = gy1 = gz1 = 0.0f;
    else {
      grad3( perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], &gx1, &gy1, &gz1 );
      t21 = t1 * t1;
      t41 = t21 * t21;
      n1 = t41 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 );
    }

    float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2;
    float t22, t42;
    if(t2 < 0.0f) n2 = t2 = t22 = t42 = gx2 = gy2 = gz2 = 0.0f;
    else {
      grad3( perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], &gx2, &gy2, &gz2 );
      t22 = t2 * t2;
      t42 = t22 * t22;
      n2 = t42 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 );
    }

    float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3;
    float t23, t43;
    if(t3 < 0.0f) n3 = t3 = t23 = t43 = gx3 = gy3 = gz3 = 0.0f;
    else {
      grad3( perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], &gx3, &gy3, &gz3 );
      t23 = t3 * t3;
      t43 = t23 * t23;
      n3 = t43 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 );
    }

    /*  Add contributions from each corner to get the final noise value.
     * The result is scaled to return values in the range [-1,1] */
    noise = 28.0f * (n0 + n1 + n2 + n3);

    /* Compute derivative, if requested by supplying non-null pointers
     * for the last three arguments */
    if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) && ( dnoise_dz != 0 ))
      {
	/*  A straight, unoptimised calculation would be like:
     *     *dnoise_dx = -8.0f * t20 * t0 * x0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gx0;
     *    *dnoise_dy = -8.0f * t20 * t0 * y0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gy0;
     *    *dnoise_dz = -8.0f * t20 * t0 * z0 * dot(gx0, gy0, gz0, x0, y0, z0) + t40 * gz0;
     *    *dnoise_dx += -8.0f * t21 * t1 * x1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gx1;
     *    *dnoise_dy += -8.0f * t21 * t1 * y1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gy1;
     *    *dnoise_dz += -8.0f * t21 * t1 * z1 * dot(gx1, gy1, gz1, x1, y1, z1) + t41 * gz1;
     *    *dnoise_dx += -8.0f * t22 * t2 * x2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gx2;
     *    *dnoise_dy += -8.0f * t22 * t2 * y2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gy2;
     *    *dnoise_dz += -8.0f * t22 * t2 * z2 * dot(gx2, gy2, gz2, x2, y2, z2) + t42 * gz2;
     *    *dnoise_dx += -8.0f * t23 * t3 * x3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gx3;
     *    *dnoise_dy += -8.0f * t23 * t3 * y3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gy3;
     *    *dnoise_dz += -8.0f * t23 * t3 * z3 * dot(gx3, gy3, gz3, x3, y3, z3) + t43 * gz3;
     */
        float temp0 = t20 * t0 * ( gx0 * x0 + gy0 * y0 + gz0 * z0 );
        *dnoise_dx = temp0 * x0;
        *dnoise_dy = temp0 * y0;
        *dnoise_dz = temp0 * z0;
        float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 + gz1 * z1 );
        *dnoise_dx += temp1 * x1;
        *dnoise_dy += temp1 * y1;
        *dnoise_dz += temp1 * z1;
        float temp2 = t22 * t2 * ( gx2 * x2 + gy2 * y2 + gz2 * z2 );
        *dnoise_dx += temp2 * x2;
        *dnoise_dy += temp2 * y2;
        *dnoise_dz += temp2 * z2;
        float temp3 = t23 * t3 * ( gx3 * x3 + gy3 * y3 + gz3 * z3 );
        *dnoise_dx += temp3 * x3;
        *dnoise_dy += temp3 * y3;
        *dnoise_dz += temp3 * z3;
        *dnoise_dx *= -8.0f;
        *dnoise_dy *= -8.0f;
        *dnoise_dz *= -8.0f;
        *dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2 + t43 * gx3;
        *dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2 + t43 * gy3;
        *dnoise_dz += t40 * gz0 + t41 * gz1 + t42 * gz2 + t43 * gz3;
        *dnoise_dx *= 28.0f; /* Scale derivative to match the noise scaling */
        *dnoise_dy *= 28.0f;
        *dnoise_dz *= 28.0f;
      }
    return noise;
}
Exemple #10
0
/** 2D simplex noise with derivatives.
 * If the last two arguments are not null, the analytic derivative
 * (the 2D gradient of the scalar noise field) is also calculated.
 */
float sdnoise2( float x, float y, float *dnoise_dx, float *dnoise_dy )
  {
    float n0, n1, n2; /* Noise contributions from the three simplex corners */
    float gx0, gy0, gx1, gy1, gx2, gy2; /* Gradients at simplex corners */

    /* Skew the input space to determine which simplex cell we're in */
    float s = ( x + y ) * F2; /* Hairy factor for 2D */
    float xs = x + s;
    float ys = y + s;
    int i = FASTFLOOR( xs );
    int j = FASTFLOOR( ys );

    float t = ( float ) ( i + j ) * G2;
    float X0 = i - t; /* Unskew the cell origin back to (x,y) space */
    float Y0 = j - t;
    float x0 = x - X0; /* The x,y distances from the cell origin */
    float y0 = y - Y0;

    /* For the 2D case, the simplex shape is an equilateral triangle.
     * Determine which simplex we are in. */
    int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
    if( x0 > y0 ) { i1 = 1; j1 = 0; } /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
    else { i1 = 0; j1 = 1; }      /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */

    /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
     * a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
     * c = (3-sqrt(3))/6   */
    float x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */
    float y1 = y0 - j1 + G2;
    float x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */
    float y2 = y0 - 1.0f + 2.0f * G2;

    /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */
    int ii = i % 256;
    int jj = j % 256;

    /* Calculate the contribution from the three corners */
    float t0 = 0.5f - x0 * x0 - y0 * y0;
    float t20, t40;
    if( t0 < 0.0f ) t40 = t20 = t0 = n0 = gx0 = gy0 = 0.0f; /* No influence */
    else {
      grad2( perm[ii + perm[jj]], &gx0, &gy0 );
      t20 = t0 * t0;
      t40 = t20 * t20;
      n0 = t40 * ( gx0 * x0 + gy0 * y0 );
    }

    float t1 = 0.5f - x1 * x1 - y1 * y1;
    float t21, t41;
    if( t1 < 0.0f ) t21 = t41 = t1 = n1 = gx1 = gy1 = 0.0f; /* No influence */
    else {
      grad2( perm[ii + i1 + perm[jj + j1]], &gx1, &gy1 );
      t21 = t1 * t1;
      t41 = t21 * t21;
      n1 = t41 * ( gx1 * x1 + gy1 * y1 );
    }

    float t2 = 0.5f - x2 * x2 - y2 * y2;
    float t22, t42;
    if( t2 < 0.0f ) t42 = t22 = t2 = n2 = gx2 = gy2 = 0.0f; /* No influence */
    else {
      grad2( perm[ii + 1 + perm[jj + 1]], &gx2, &gy2 );
      t22 = t2 * t2;
      t42 = t22 * t22;
      n2 = t42 * ( gx2 * x2 + gy2 * y2 );
    }

    /* Add contributions from each corner to get the final noise value.
     * The result is scaled to return values in the interval [-1,1]. */
    float noise = 40.0f * ( n0 + n1 + n2 );

    /* Compute derivative, if requested by supplying non-null pointers
     * for the last two arguments */
    if( ( dnoise_dx != 0 ) && ( dnoise_dy != 0 ) )
      {
	/*  A straight, unoptimised calculation would be like:
     *    *dnoise_dx = -8.0f * t20 * t0 * x0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gx0;
     *    *dnoise_dy = -8.0f * t20 * t0 * y0 * ( gx0 * x0 + gy0 * y0 ) + t40 * gy0;
     *    *dnoise_dx += -8.0f * t21 * t1 * x1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gx1;
     *    *dnoise_dy += -8.0f * t21 * t1 * y1 * ( gx1 * x1 + gy1 * y1 ) + t41 * gy1;
     *    *dnoise_dx += -8.0f * t22 * t2 * x2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gx2;
     *    *dnoise_dy += -8.0f * t22 * t2 * y2 * ( gx2 * x2 + gy2 * y2 ) + t42 * gy2;
	 */
        float temp0 = t20 * t0 * ( gx0* x0 + gy0 * y0 );
        *dnoise_dx = temp0 * x0;
        *dnoise_dy = temp0 * y0;
        float temp1 = t21 * t1 * ( gx1 * x1 + gy1 * y1 );
        *dnoise_dx += temp1 * x1;
        *dnoise_dy += temp1 * y1;
        float temp2 = t22 * t2 * ( gx2* x2 + gy2 * y2 );
        *dnoise_dx += temp2 * x2;
        *dnoise_dy += temp2 * y2;
        *dnoise_dx *= -8.0f;
        *dnoise_dy *= -8.0f;
        *dnoise_dx += t40 * gx0 + t41 * gx1 + t42 * gx2;
        *dnoise_dy += t40 * gy0 + t41 * gy1 + t42 * gy2;
        *dnoise_dx *= 40.0f; /* Scale derivative to match the noise scaling */
        *dnoise_dy *= 40.0f;
      }
    return noise;
  }