FLA_Error FLA_Random_herm_matrix( FLA_Uplo uplo, FLA_Obj A )
{
  if ( FLA_Check_error_level() >= FLA_MIN_ERROR_CHECKING )
    FLA_Random_herm_matrix_check( uplo, A );

  FLA_Random_tri_matrix( uplo, FLA_NONUNIT_DIAG, A );

  FLA_Hermitianize( uplo, A );

  return FLA_SUCCESS;
}
Exemple #2
0
int main(int argc, char *argv[])
{
  int 
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    n_repeats,
    variant,
    i, j,
    datatype,
    n_variants = N_VARIANTS;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, C, C_ref;
  
  /* Initialize FLAME */
  FLA_Init( );


  fprintf( stdout, "%c number of repeats: ", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size: ", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc: ", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  /* Delete all existing data structures */
  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }



  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    /* Allocate space for the matrices */
    FLA_Obj_create( datatype, m, m, &A );
    FLA_Obj_create( datatype, m, n, &C );
    FLA_Obj_create( datatype, m, n, &C_ref );

    /* Generate random matrices A, C */
    FLA_Random_tri_matrix( FLA_LOWER_TRIANGULAR, FLA_UNIT_DIAG, A );
    FLA_Random_matrix( C );

    FLA_Copy_external( C, C_ref );


    /* Time the reference implementation */
    time_Trmm_luh( 0, FLA_ALG_REFERENCE, n_repeats, p, nb_alg,
                  A, B, C, C_ref, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      //fprintf( stdout, "data_var%d( %d, 1:7 ) = [ %d  ", variant, i, p );
      fprintf( stdout, "data_var%d( %d, 1:5 ) = [ %d  ", variant, i, p );
      fflush( stdout );


      time_Trmm_luh( variant, FLA_ALG_UNBLOCKED, n_repeats, p, nb_alg,
                    A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Trmm_luh( variant, FLA_ALG_BLOCKED, n_repeats, p, nb_alg,
                    A, B, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      //time_Trmm_luh( variant, FLA_ALG_OPTIMIZED, n_repeats, p, nb_alg,
      //              A, B, C, C_ref, &dtime, &diff, &gflops );

      //fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      //fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }
    fprintf( stdout, "\n" );

    FLA_Obj_free( &A );
    FLA_Obj_free( &C );
    FLA_Obj_free( &C_ref );
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  fprintf( stdout, "figure;\n" );

  /* Plot the performance of the reference implementation */
  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  /* Indicate that you want to add to the existing plot */
  fprintf( stdout, "hold on;\n" );

  /* Plot the data for the other numbers of threads */
  for ( i = 1; i <= n_variants; i++ ) {
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 4 ), '%c-.%c' ); \n",
            i, i, colors[ i-1 ], ticks[ i-1 ] );
    //fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 6 ), '%c--%c' ); \n",
    //        i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i < n_variants; i++ )
    //fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', 'opt\\_var%d', ... \n", i, i, i );
    fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d', ... \n", i, i );

  i = n_variants;
  fprintf( stdout, "'unb\\_var%d', 'blk\\_var%d' ); \n", i, i );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME trmm\\_luc performance (%s, %s)' );\n", 
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc trmm_luc_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );
}
Exemple #3
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    variant,
    n_repeats,
    i, j,
    n_variants = N_VARIANTS;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;
  

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, b, b_orig, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / f2c_abs(m_input);

    FLA_Obj_create( datatype, m, m, 0, 0, &A );
    FLA_Obj_create( datatype, m, 1, 0, 0, &b );
    FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );
/*
    FLA_Obj_create( datatype, m, m, m, 1, &A );
    FLA_Obj_create( datatype, m, 1, 1, 1, &b );
    FLA_Obj_create( datatype, m, 1, 1, 1, &b_orig );
*/

    if ( FLA_Obj_is_single_precision( A ) )
      FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
    else
      FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );

    FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
    FLA_Random_matrix( b );
    FLA_Copy_external( b, b_orig );

/*
    time_Trinv_un( 0, FLA_ALG_REFERENCE, n_repeats, m, nb_alg,
                   A, b, b_orig, norm, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );
*/

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:7 ) = [ %d  ", variant, i, p );
      fflush( stdout );

      time_Trinv_un( variant, FLA_ALG_UNBLOCKED, n_repeats, m, nb_alg,
                     A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Trinv_un( variant, FLA_ALG_UNB_OPT, n_repeats, m, nb_alg,
                     A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Trinv_un( variant, FLA_ALG_BLOCKED, n_repeats, m, nb_alg,
                     A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    FLA_Obj_free( &A );
    FLA_Obj_free( &b );
    FLA_Obj_free( &b_orig );
    FLA_Obj_free( &norm );

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  for ( i = 1; i <= n_variants; i++ ){
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n", 
             variant, variant, colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i <= n_variants; i++ )
    fprintf( stdout, "'FLAME var%d', ... \n", i );

  fprintf( stdout, "'Location', 'SouthWest' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME trinv\\_u performance (%s)' );\n", 
           m_dim_desc );
  fprintf( stdout, "print -depsc trinv_l_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );
}
Exemple #4
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    precision,
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;
  
  char *colors = "brkgmcbrkgmcbrkgmc";
  char *ticks  = "o+*xso+*xso+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, C, C_ref;
  
  FLA_Init( );


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d%d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  //precision = FLA_SINGLE_PRECISION;
  precision = FLA_DOUBLE_PRECISION;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      // Determine datatype based on trans argument.
      if ( pc_str[param_combo][2] == 'h' )
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_COMPLEX;
        else
          datatype = FLA_DOUBLE_COMPLEX;
      }
      else
      {
        if ( precision == FLA_SINGLE_PRECISION )
          datatype = FLA_FLOAT;
        else
          datatype = FLA_DOUBLE;
      }

      // If multiplying A on the left, A is m x m; ...on the right, A is n x n.
      if ( pc_str[param_combo][0] == 'l' )
        FLA_Obj_create( datatype, m, m, 0, 0, &A );
      else
        FLA_Obj_create( datatype, n, n, 0, 0, &A );

      FLA_Obj_create( datatype, m, n, 0, 0, &C );
      FLA_Obj_create( datatype, m, n, 0, 0, &C_ref );

      if ( pc_str[param_combo][1] == 'l' )
      {
        FLA_Random_tri_matrix( FLA_LOWER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
        FLA_Random_matrix( C );
      }
      else
      {
        FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
        FLA_Random_matrix( C );
      }

      fprintf( stdout, "data_trsm_%s( %d, 1:3 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

      time_Trsm( param_combo, FLA_ALG_REFERENCE, n_repeats, m, n,
                 A, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );
/*
      time_Trsm( param_combo, FLA_ALG_FRONT, n_repeats, m, n,
                 A, C, C_ref, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );
*/

      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &C );
      FLA_Obj_free( &C_ref );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_trsm_%s( :,1 ), data_trsm_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_trsm_%s( :,1 ), data_trsm_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_trsm\\_%s', 'fla\\_trsm\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );


  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME trsm front-end performance (%s, %s)' );\n",
           m_dim_desc, n_dim_desc );
  fprintf( stdout, "print -depsc trsm_front_%s_%s.eps\n", m_dim_tag, n_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Exemple #5
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i, j,
    n_param_combos = N_PARAM_COMBOS;

  int sign;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, C, C_ref, scale, isgn, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter sign (-1 or 1):", '%' );
  scanf( "%d", &sign );
  fprintf( stdout, "%c %d\n", '%', sign );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

  if ( 0 < sign )
    isgn = FLA_ONE;
  else
    isgn = FLA_MINUS_ONE;

  //datatype = FLA_FLOAT;
  datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  //datatype = FLA_DOUBLE_COMPLEX;


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){

      FLA_Obj_create( datatype, m, m, 0, 0, &A );
      FLA_Obj_create( datatype, m, m, 0, 0, &C );
      FLA_Obj_create( datatype, m, m, 0, 0, &C_ref );

      FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &scale );
      FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

      FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
      FLA_Triangularize( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
      FLA_Norm1( A, norm );
      FLA_Shift_diag( FLA_NO_CONJUGATE, norm, A );

      FLA_Random_matrix( C );
      FLA_Hermitianize( FLA_UPPER_TRIANGULAR, C );

      fprintf( stdout, "data_lyap_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );


      time_Lyap( param_combo, FLA_ALG_REFERENCE, n_repeats, m,
                 isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Lyap( param_combo, FLA_ALG_FRONT, n_repeats, m,
                 isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );


      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &C );
      FLA_Obj_free( &C_ref );
      FLA_Obj_free( &scale );
      FLA_Obj_free( &norm );
    }

    fprintf( stdout, "\n" );
  }


/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_lyap_%s( :,1 ), data_lyap_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_lyap_%s( :,1 ), data_lyap_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_lyap\\_%s', 'fla\\_lyap\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME lyap front-end performance (%s)' );\n", m_dim_desc );
  fprintf( stdout, "print -depsc lyap_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Exemple #6
0
int main(int argc, char *argv[])
{
  int 
    m_input, n_input,
    m, n,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    variant,
    n_repeats,
    i, j,
    datatype,
    n_variants = 18;

  int  sign;
  
  int  blocksize[16];

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, B, C, C_ref, scale, isgn, norm;
  

  /* Initialize FLAME */
  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c Enter sign (-1 or 1):", '%' );
  scanf( "%d", &sign );
  fprintf( stdout, "%c %d\n", '%', sign );

  fprintf( stdout, "%c enter m n (-1 means bind to problem size): ", '%' );
  scanf( "%d %d", &m_input, &n_input );
  fprintf( stdout, "%c %d %d\n", '%', m_input, n_input );


  /* Delete all existing data structures */
  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }
  if     ( n_input >  0 ) {
    sprintf( n_dim_desc, "n = %d", n_input );
    sprintf( n_dim_tag,  "n%dc", n_input);
  }
  else if( n_input <  -1 ) {
    sprintf( n_dim_desc, "n = p/%d", -n_input );
    sprintf( n_dim_tag,  "n%dp", -n_input );
  }
  else if( n_input == -1 ) {
    sprintf( n_dim_desc, "n = p" );
    sprintf( n_dim_tag,  "n%dp", 1 );
  }

  if ( 0 < sign )
    isgn = FLA_ONE;
  else
    isgn = FLA_MINUS_ONE;


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;
    n = n_input;

    if( m < 0 ) m = p / abs(m_input);
    if( n < 0 ) n = p / abs(n_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype, m, m, 0, 0, &A );
    FLA_Obj_create( datatype, n, n, 0, 0, &B );
    FLA_Obj_create( datatype, m, n, 0, 0, &C );
    FLA_Obj_create( datatype, m, n, 0, 0, &C_ref );

    if ( datatype == FLA_DOUBLE || datatype == FLA_DOUBLE_COMPLEX )
    {
      FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &scale );
      FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );
    }
    else if ( datatype == FLA_FLOAT || datatype == FLA_COMPLEX )
    {
      FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &scale );
      FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
    }

    FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
    FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, B );
    FLA_Random_matrix( C );

    FLA_Norm1( A, norm );
    FLA_Shift_diag( FLA_NO_CONJUGATE, norm, A );

    FLA_Norm1( B, norm );
    if ( FLA_Obj_is( isgn, FLA_MINUS_ONE ) )
      FLA_Negate( norm );
    FLA_Shift_diag( FLA_NO_CONJUGATE, norm, B );


    time_Sylv_nn( 0, FLA_ALG_REFERENCE, n_repeats, m, n, nb_alg,
                  isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );

    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:3 ) = [ %d  ", variant, i, p );
      fflush( stdout );

      time_Sylv_nn( variant, FLA_ALG_UNB_OPT, n_repeats, m, n, nb_alg,
                    isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Sylv_nn( variant, FLA_ALG_BLOCKED, n_repeats, m, n, nb_alg,
                    isgn, A, B, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    FLA_Obj_free( &A );
    FLA_Obj_free( &B );
    FLA_Obj_free( &C );
    FLA_Obj_free( &C_ref );
    FLA_Obj_free( &scale );
    FLA_Obj_free( &norm );
    fprintf( stdout, "\n" );
  }

  /* Print the MATLAB commands to plot the data */

  /* Delete all existing figures */
  fprintf( stdout, "figure;\n" );

  /* Plot the performance of the reference implementation */
  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  /* Indicate that you want to add to the existing plot */
  fprintf( stdout, "hold on;\n" );

  /* Plot the data for the other numbers of threads */
  for ( i = 1; i <= n_variants; i++ ){
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n", 
             i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i <= n_variants; i++ )
    fprintf( stdout, "'FLAME var%d', ... \n", i );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME sylv\\_nn performance (%s)' );\n", 
           m_dim_desc );
  fprintf( stdout, "print -depsc sylv_nn_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );

  FLA_Finalize( );
}
Exemple #7
0
int main(int argc, char *argv[])
{
  int 
    datatype,
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    n_repeats,
    param_combo,
    i,
    n_param_combos = N_PARAM_COMBOS;

  FLA_Uplo uplo;
  FLA_Diag diag;
  
  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char m_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, b, b_orig, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\nclear all;\n\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }

  //datatype = FLA_FLOAT;
  //datatype = FLA_DOUBLE;
  //datatype = FLA_COMPLEX;
  datatype = FLA_DOUBLE_COMPLEX;

  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {
    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    for ( param_combo = 0; param_combo < n_param_combos; param_combo++ ){
      
      //FLA_Obj_create( datatype, m, m, 0, 0, &A );
      FLA_Obj_create( datatype, m, m, m, 1, &A );
      FLA_Obj_create( datatype, m, 1, 0, 0, &b );
      FLA_Obj_create( datatype, m, 1, 0, 0, &b_orig );

      if ( FLA_Obj_is_single_precision( A ) )
        FLA_Obj_create( FLA_FLOAT, 1, 1, 0, 0, &norm );
      else
        FLA_Obj_create( FLA_DOUBLE, 1, 1, 0, 0, &norm );

      FLA_Param_map_netlib_to_flame_uplo( &pc_str[param_combo][0], &uplo );
      FLA_Param_map_netlib_to_flame_diag( &pc_str[param_combo][1], &diag );

      FLA_Random_tri_matrix( uplo, diag, A );
      FLA_Random_matrix( b );
      FLA_Copy_external( b, b_orig );

      fprintf( stdout, "data_trinv_%s( %d, 1:5 ) = [ %d  ", pc_str[param_combo], i, p );
      fflush( stdout );

/*
      time_Trinv( param_combo, FLA_ALG_REFERENCE, n_repeats, m, uplo, diag,
                  A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );
*/

      time_Trinv( param_combo, FLA_ALG_FRONT, n_repeats, m, uplo, diag,
                  A, b, b_orig, norm, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );

      FLA_Obj_free( &A );
      FLA_Obj_free( &b );
      FLA_Obj_free( &b_orig );
      FLA_Obj_free( &norm );
    }

    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 0; i < n_param_combos; i++ ) {
    fprintf( stdout, "plot( data_trinv_%s( :,1 ), data_trinv_%s( :, 2 ), '%c:%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
    fprintf( stdout, "plot( data_trinv_%s( :,1 ), data_trinv_%s( :, 4 ), '%c-.%c' ); \n",
            pc_str[i], pc_str[i], colors[ i ], ticks[ i ] );
  }

  fprintf( stdout, "legend( ... \n" );

  for ( i = 0; i < n_param_combos; i++ )
    fprintf( stdout, "'ref\\_trinv\\_%s', 'fla\\_trinv\\_%s', ... \n", pc_str[i], pc_str[i] );

  fprintf( stdout, "'Location', 'SouthWest' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME trinv front-end performance (%s)' );\n", m_dim_desc );
  fprintf( stdout, "print -depsc trinv_front_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/

  FLA_Finalize( );

  return 0;
}
Exemple #8
0
int main(int argc, char *argv[])
{
  int 
    m_input,
    m,
    p_first, p_last, p_inc,
    p,
    nb_alg,
    variant,
    n_repeats,
    i, j,
    datatype,
    n_variants = 4;

  int  sign;
  
  int  blocksize[16];

  char *colors = "brkgmcbrkg";
  char *ticks  = "o+*xso+*xs";
  char m_dim_desc[14];
  char n_dim_desc[14];
  char m_dim_tag[10];
  char n_dim_tag[10];

  double max_gflops=6.0;

  double
    dtime,
    gflops,
    diff;

  FLA_Obj
    A, C, C_ref, scale, isgn, norm;
  

  FLA_Init();


  fprintf( stdout, "%c number of repeats:", '%' );
  scanf( "%d", &n_repeats );
  fprintf( stdout, "%c %d\n", '%', n_repeats );

  fprintf( stdout, "%c Enter sign (-1 or 1):", '%' );
  scanf( "%d", &sign );
  fprintf( stdout, "%c %d\n", '%', sign );

  fprintf( stdout, "%c Enter blocking size:", '%' );
  scanf( "%d", &nb_alg );
  fprintf( stdout, "%c %d\n", '%', nb_alg );

  fprintf( stdout, "%c enter problem size first, last, inc:", '%' );
  scanf( "%d%d%d", &p_first, &p_last, &p_inc );
  fprintf( stdout, "%c %d %d %d\n", '%', p_first, p_last, p_inc );

  fprintf( stdout, "%c enter m (-1 means bind to problem size): ", '%' );
  scanf( "%d", &m_input );
  fprintf( stdout, "%c %d\n", '%', m_input );


  fprintf( stdout, "\n" );


  if     ( m_input >  0 ) {
    sprintf( m_dim_desc, "m = %d", m_input );
    sprintf( m_dim_tag,  "m%dc", m_input);
  }
  else if( m_input <  -1 ) {
    sprintf( m_dim_desc, "m = p/%d", -m_input );
    sprintf( m_dim_tag,  "m%dp", -m_input );
  }
  else if( m_input == -1 ) {
    sprintf( m_dim_desc, "m = p" );
    sprintf( m_dim_tag,  "m%dp", 1 );
  }


  if ( 0 < sign )
    isgn = FLA_ONE;
  else
    isgn = FLA_MINUS_ONE;


  for ( p = p_first, i = 1; p <= p_last; p += p_inc, i += 1 )
  {

    m = m_input;

    if( m < 0 ) m = p / abs(m_input);

    //datatype = FLA_FLOAT;
    //datatype = FLA_DOUBLE;
    //datatype = FLA_COMPLEX;
    datatype = FLA_DOUBLE_COMPLEX;

    FLA_Obj_create( datatype, m, m, 0, 0, &A );
    FLA_Obj_create( datatype, m, m, 0, 0, &C );
    FLA_Obj_create( datatype, m, m, 0, 0, &C_ref );

    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &scale );
    FLA_Obj_create( FLA_Obj_datatype_proj_to_real( A ), 1, 1, 0, 0, &norm );

    FLA_Random_tri_matrix( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
    FLA_Triangularize( FLA_UPPER_TRIANGULAR, FLA_NONUNIT_DIAG, A );
    FLA_Norm1( A, norm );
    FLA_Shift_diag( FLA_NO_CONJUGATE, norm, A );

    FLA_Random_matrix( C );
    FLA_Hermitianize( FLA_UPPER_TRIANGULAR, C );

/*
    time_Lyap_h( 0, FLA_ALG_REFERENCE, n_repeats, m, nb_alg,
                 isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

    fprintf( stdout, "data_REF( %d, 1:2 ) = [ %d  %6.3lf ]; \n", i, p, gflops );
    fflush( stdout );
*/
    for ( variant = 1; variant <= n_variants; variant++ ){
      
      fprintf( stdout, "data_var%d( %d, 1:7 ) = [ %d  ", variant, i, p );
      fflush( stdout );

      time_Lyap_h( variant, FLA_ALG_UNBLOCKED, n_repeats, m, nb_alg,
                   isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Lyap_h( variant, FLA_ALG_UNB_OPT, n_repeats, m, nb_alg,
                   isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      time_Lyap_h( variant, FLA_ALG_BLOCKED, n_repeats, m, nb_alg,
                   isgn, A, C, C_ref, scale, &dtime, &diff, &gflops );

      fprintf( stdout, "%6.3lf %6.2le ", gflops, diff );
      fflush( stdout );

      fprintf( stdout, " ]; \n" );
      fflush( stdout );
    }

    FLA_Obj_free( &A );
    FLA_Obj_free( &C );
    FLA_Obj_free( &C_ref );
    FLA_Obj_free( &scale );
    FLA_Obj_free( &norm );
    fprintf( stdout, "\n" );
  }

/*
  fprintf( stdout, "figure;\n" );

  fprintf( stdout, "plot( data_REF( :,1 ), data_REF( :, 2 ), '-' ); \n" );

  fprintf( stdout, "hold on;\n" );

  for ( i = 1; i <= n_variants; i++ ){
    fprintf( stdout, "plot( data_var%d( :,1 ), data_var%d( :, 2 ), '%c:%c' ); \n", 
             i, i, colors[ i-1 ], ticks[ i-1 ] );
  }

  fprintf( stdout, "legend( ... \n" );
  fprintf( stdout, "'Reference', ... \n" );

  for ( i = 1; i <= n_variants; i++ )
    fprintf( stdout, "'FLAME var%d', ... \n", i );

  fprintf( stdout, "'Location', 'SouthEast' ); \n" );

  fprintf( stdout, "xlabel( 'problem size p' );\n" );
  fprintf( stdout, "ylabel( 'GFLOPS/sec.' );\n" );
  fprintf( stdout, "axis( [ 0 %d 0 %.2f ] ); \n", p_last, max_gflops );
  fprintf( stdout, "title( 'FLAME sylv\\_nn performance (%s)' );\n", 
           m_dim_desc );
  fprintf( stdout, "print -depsc sylv_nn_%s.eps\n", m_dim_tag );
  fprintf( stdout, "hold off;\n");
  fflush( stdout );
*/
  FLA_Finalize( );

  return 0;
}