FT_Stream_ReadFields( FT_Stream stream, const FT_Frame_Field* fields, void* structure ) { FT_Error error; FT_Bool frame_accessed = 0; FT_Byte* cursor = stream->cursor; if ( !fields || !stream ) return FT_Err_Invalid_Argument; error = FT_Err_Ok; do { FT_ULong value; FT_Int sign_shift; FT_Byte* p; switch ( fields->value ) { case ft_frame_start: /* access a new frame */ error = FT_Stream_EnterFrame( stream, fields->offset ); if ( error ) goto Exit; frame_accessed = 1; cursor = stream->cursor; fields++; continue; /* loop! */ case ft_frame_bytes: /* read a byte sequence */ case ft_frame_skip: /* skip some bytes */ { FT_UInt len = fields->size; if ( cursor + len > stream->limit ) { error = FT_Err_Invalid_Stream_Operation; goto Exit; } if ( fields->value == ft_frame_bytes ) { p = (FT_Byte*)structure + fields->offset; FT_MEM_COPY( p, cursor, len ); } cursor += len; fields++; continue; } case ft_frame_byte: case ft_frame_schar: /* read a single byte */ value = FT_NEXT_BYTE(cursor); sign_shift = 24; break; case ft_frame_short_be: case ft_frame_ushort_be: /* read a 2-byte big-endian short */ value = FT_NEXT_USHORT(cursor); sign_shift = 16; break; case ft_frame_short_le: case ft_frame_ushort_le: /* read a 2-byte little-endian short */ value = FT_NEXT_USHORT_LE(cursor); sign_shift = 16; break; case ft_frame_long_be: case ft_frame_ulong_be: /* read a 4-byte big-endian long */ value = FT_NEXT_ULONG(cursor); sign_shift = 0; break; case ft_frame_long_le: case ft_frame_ulong_le: /* read a 4-byte little-endian long */ value = FT_NEXT_ULONG_LE(cursor); sign_shift = 0; break; case ft_frame_off3_be: case ft_frame_uoff3_be: /* read a 3-byte big-endian long */ value = FT_NEXT_UOFF3(cursor); sign_shift = 8; break; case ft_frame_off3_le: case ft_frame_uoff3_le: /* read a 3-byte little-endian long */ value = FT_NEXT_UOFF3_LE(cursor); sign_shift = 8; break; default: /* otherwise, exit the loop */ stream->cursor = cursor; goto Exit; } /* now, compute the signed value is necessary */ if ( fields->value & FT_FRAME_OP_SIGNED ) value = (FT_ULong)( (FT_Int32)( value << sign_shift ) >> sign_shift ); /* finally, store the value in the object */ p = (FT_Byte*)structure + fields->offset; switch ( fields->size ) { case (8 / FT_CHAR_BIT): *(FT_Byte*)p = (FT_Byte)value; break; case (16 / FT_CHAR_BIT): *(FT_UShort*)p = (FT_UShort)value; break; case (32 / FT_CHAR_BIT): *(FT_UInt32*)p = (FT_UInt32)value; break; default: /* for 64-bit systems */ *(FT_ULong*)p = (FT_ULong)value; } /* go to next field */ fields++; } while ( 1 ); Exit: /* close the frame if it was opened by this read */ if ( frame_accessed ) FT_Stream_ExitFrame( stream ); return error; }
static FT_Error pfr_sort_kerning_pairs( FT_Stream stream, PFR_PhyFont phy_font ) { FT_Error error; FT_Memory memory = stream->memory; PFR_KernPair pairs; PFR_KernItem item; PFR_Char chars = phy_font->chars; FT_UInt num_chars = phy_font->num_chars; FT_UInt count; /* create kerning pairs array */ if ( FT_NEW_ARRAY( phy_font->kern_pairs, phy_font->num_kern_pairs ) ) goto Exit; /* load all kerning items into the array, * converting character codes into glyph indices */ pairs = phy_font->kern_pairs; item = phy_font->kern_items; count = 0; for ( ; item; item = item->next ) { FT_UInt limit = count + item->pair_count; FT_Byte* p; if ( limit > phy_font->num_kern_pairs ) { error = PFR_Err_Invalid_Table; goto Exit; } if ( FT_STREAM_SEEK( item->offset ) || FT_FRAME_ENTER( item->pair_count * item->pair_size ) ) goto Exit; p = stream->cursor; for ( ; count < limit; count++ ) { PFR_KernPair pair = pairs + count; FT_UInt char1, char2; FT_Int kerning; if ( item->flags & PFR_KERN_2BYTE_CHAR ) { char1 = FT_NEXT_USHORT( p ); char2 = FT_NEXT_USHORT( p ); } else { char1 = FT_NEXT_BYTE( p ); char2 = FT_NEXT_BYTE( p ); } if ( item->flags & PFR_KERN_2BYTE_ADJ ) kerning = item->base_adj + FT_NEXT_SHORT( p ); else kerning = item->base_adj + FT_NEXT_CHAR( p ); pair->glyph1 = pfr_get_gindex( chars, num_chars, char1 ); pair->glyph2 = pfr_get_gindex( chars, num_chars, char2 ); pair->kerning = kerning; } FT_FRAME_EXIT(); } /* sort the resulting array */ ft_qsort( pairs, count, sizeof ( PFR_KernPairRec ), pfr_compare_kern_pairs ); Exit: if ( error ) { /* disable kerning data in case of error */ phy_font->num_kern_pairs = 0; } return error; }
static void gxv_kern_subtable_fmt3_validate( FT_Bytes table, FT_Bytes limit, GXV_Validator gxvalid ) { FT_Bytes p = table + GXV_KERN_SUBTABLE_HEADER_SIZE; FT_UShort glyphCount; FT_Byte kernValueCount; FT_Byte leftClassCount; FT_Byte rightClassCount; FT_Byte flags; GXV_NAME_ENTER( "kern subtable format 3" ); GXV_LIMIT_CHECK( 2 + 1 + 1 + 1 + 1 ); glyphCount = FT_NEXT_USHORT( p ); kernValueCount = FT_NEXT_BYTE( p ); leftClassCount = FT_NEXT_BYTE( p ); rightClassCount = FT_NEXT_BYTE( p ); flags = FT_NEXT_BYTE( p ); if ( gxvalid->face->num_glyphs != glyphCount ) { GXV_TRACE(( "maxGID=%d, but glyphCount=%d\n", gxvalid->face->num_glyphs, glyphCount )); GXV_SET_ERR_IF_PARANOID( FT_INVALID_GLYPH_ID ); } if ( flags != 0 ) GXV_TRACE(( "kern subtable fmt3 has nonzero value" " (%d) in unused flag\n", flags )); /* * just skip kernValue[kernValueCount] */ GXV_LIMIT_CHECK( 2 * kernValueCount ); p += 2 * kernValueCount; /* * check leftClass[gid] < leftClassCount */ { FT_Byte min, max; GXV_LIMIT_CHECK( glyphCount ); gxv_array_getlimits_byte( p, p + glyphCount, &min, &max, gxvalid ); p += gxvalid->subtable_length; if ( leftClassCount < max ) FT_INVALID_DATA; } /* * check rightClass[gid] < rightClassCount */ { FT_Byte min, max; GXV_LIMIT_CHECK( glyphCount ); gxv_array_getlimits_byte( p, p + glyphCount, &min, &max, gxvalid ); p += gxvalid->subtable_length; if ( rightClassCount < max ) FT_INVALID_DATA; } /* * check kernIndex[i, j] < kernValueCount */ { FT_UShort i, j; for ( i = 0; i < leftClassCount; i++ ) { for ( j = 0; j < rightClassCount; j++ ) { GXV_LIMIT_CHECK( 1 ); if ( kernValueCount < FT_NEXT_BYTE( p ) ) FT_INVALID_OFFSET; } } } gxvalid->subtable_length = (FT_ULong)( p - table ); GXV_EXIT; }