Exemple #1
0
EFI_STATUS
EFIAPI
FchCsResumeCallBack (
  IN  RESUME_TYPE   ResumeType,
  IN  VOID          *Context
   )
{
  FCH_DATA_BLOCK         *LocalCfgPtr;
  AMD_CONFIG_PARAMS      *StdHeader;

  LocalCfgPtr = (FCH_DATA_BLOCK *) Context;
  StdHeader = LocalCfgPtr->StdHeader;
  if (ResumeType == ResumeFromConnectedStandby) {

    RwAlink (FCH_ABCFG_REG80 | (UINT32) (ABCFG << 29), ~(UINT32) BIT0, BIT0, StdHeader);
    RwAlink (FCH_ABCFG_REG80 | (UINT32) (ABCFG << 29), ~(UINT32) (0x3 << 17), (UINT32) (0x3 << 17), StdHeader);
    RwAlink (FCH_ABCFG_REG94 | (UINT32) (ABCFG << 29), 0xFFE00000, BIT20 + 0x00FEE, StdHeader);
    RwAlink (FCH_ABCFG_REG10054 | (UINT32) (ABCFG << 29), 0xFFFFF000, 0x7FF, StdHeader);
    RwAlink (FCH_ABCFG_REG90 | (UINT32) (ABCFG << 29), ~(UINT32) BIT21, BIT21, StdHeader);
    RwAlink (FCH_ABCFG_REG10090 | (UINT32) (ABCFG << 29), ~(UINT32) BIT16, BIT16, StdHeader);
    RwAlink (FCH_ABCFG_REG58 | (UINT32) (ABCFG << 29), ~(UINT32) (BIT29 + BIT31), (UINT32) (BIT29 + BIT31), StdHeader);
    RwAlink (FCH_ABCFG_REG10056 | (UINT32) (ABCFG << 29), 0xFFFFC00, 0x310, StdHeader);
    RwAlink (FCH_ABCFG_REG54 | (UINT32) (ABCFG << 29), 0xFE00FFEA, 0x01100014, StdHeader);
//Add SATA PHY STAGGERING SEQUENCE to fix SSD disk detection issue
    RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG40), AccessWidth32, (UINT32) (~ (0x1 << 16)), (UINT32) (0x1 << 16), StdHeader);
    FchStall (1, StdHeader);
    RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG40), AccessWidth32, (UINT32) (~ (0x1 << 16)), (UINT32) (0x0 << 16), StdHeader);

    return EFI_SUCCESS;
  } else {
    return EFI_UNSUPPORTED;
  }
}
Exemple #2
0
/**
 * SoftwareDisableImc - Software disable IMC strap
 *
 *
 * @param[in] FchDataPtr Fch configuration structure pointer.
 *
 */
VOID
SoftwareDisableImc (
  IN  VOID     *FchDataPtr
  )
{
  UINT8    ValueByte;
  UINT8    PortStatusByte;
  UINT32   AbValue;
  UINT32   ABStrapOverrideReg;
  AMD_CONFIG_PARAMS     *StdHeader;

  StdHeader = ((FCH_DATA_BLOCK *) FchDataPtr)->StdHeader;
  GetChipSysMode (&PortStatusByte, StdHeader);

  RwPci ((LPC_BUS_DEV_FUN << 16) + FCH_LPC_REGC8 + 3, AccessWidth8, 0x7F, BIT7, StdHeader);
  ReadPmio (FCH_PMIOA_REGBF, AccessWidth8, &ValueByte, StdHeader);

  ReadMem ((ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG80), AccessWidth32, &AbValue);
  ABStrapOverrideReg = AbValue;
  ABStrapOverrideReg &= ~BIT2;                           // bit2=0 EcEnableStrap
  WriteMem ((ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG84), AccessWidth32, &ABStrapOverrideReg);

  ReadPmio (FCH_PMIOA_REGD7, AccessWidth8, &ValueByte, StdHeader);
  ValueByte |= BIT1;        // Set GenImcClkEn to 1
  WritePmio (FCH_PMIOA_REGD7, AccessWidth8, &ValueByte, StdHeader);

  ValueByte = 06;
  LibAmdIoWrite (AccessWidth8, 0xcf9, &ValueByte, StdHeader);
  FchStall (0xffffffff, StdHeader);
}
Exemple #3
0
/**
 * FchSataDriveDetectionFpga
 *
 * @param[in]   LocalCfgPtr
 * @param[in]   Bar5
 *
 */
VOID
FchSataDriveDetectionFpga (
  IN       FCH_DATA_BLOCK     *LocalCfgPtr,
  IN       UINT32             *Bar5
  )
{
  UINT32                 SataBarFpgaInfo;
  UINT8                  PortNum;
  UINT8                  SataFpaPortType;
  UINT16                 IoBase;
  UINT32                 SataFpgaLoopVarWord;
  AMD_CONFIG_PARAMS      *StdHeader;

  StdHeader = LocalCfgPtr->StdHeader;

  TRACE ((DMSG_FCH_TRACE, "FCH - Entering sata drive detection procedure\n\n"));
  TRACE ((DMSG_FCH_TRACE, "SATA BAR5 is %X \n", *pBar5));

  for ( PortNum = 0; PortNum < 4; PortNum++ ) {
    ReadMem (*Bar5 + FCH_SATA_BAR5_REG128 + PortNum * 0x80, AccWidthUint32, &SataBarFpgaInfo);
    if ( ( SataBarFpgaInfo & 0x0F ) == 0x03 ) {
      if ( PortNum & BIT0 ) {
        //this port belongs to secondary channel
        ReadPci (((UINT32) (SATA_BUS_DEV_FUN_FPGA << 16) + FCH_SATA_REG18), AccWidthUint16, &IoBase);
      } else {
        //this port belongs to primary channel
        ReadPci (((UINT32) (SATA_BUS_DEV_FUN_FPGA << 16) + FCH_SATA_REG10), AccWidthUint16, &IoBase);
      }

      //if legacy ide mode, then the bar registers don't contain the correct values. So we need to hardcode them
      if ( LocalCfgPtr->Sata.SataClass == SataLegacyIde ) {
        IoBase = ( (0x170) | ((UINT16) ( (~((UINT8) (PortNum & BIT0) << 7)) & 0x80 )) );
      }

      if ( PortNum & BIT1 ) {
        //this port is slave
        SataFpaPortType = 0xB0;
      } else {
        //this port is master
        SataFpaPortType = 0xA0;
      }

      IoBase &= 0xFFF8;
      LibAmdIoWrite (AccessWidth8, IoBase + 6, &SataFpaPortType, StdHeader);

      //Wait in loop for 30s for the drive to become ready
      for ( SataFpgaLoopVarWord = 0; SataFpgaLoopVarWord < 300000; SataFpgaLoopVarWord++ ) {
        LibAmdIoRead (AccessWidth8, IoBase + 7, &SataFpaPortType, StdHeader);
        if ( (SataFpaPortType & 0x88) == 0 ) {
          break;
        }
        FchStall (100, StdHeader);
      }
    }
  }
}
Exemple #4
0
/**
 * ProgramGppTogglePcieReset - Toggle PCIE_RST2#
 *
 *
 * @param[in] DoToggling
 * @param[in] StdHeader
 *
 */
VOID
ProgramGppTogglePcieReset (
  IN     BOOLEAN                DoToggling,
  IN     AMD_CONFIG_PARAMS      *StdHeader
  )
{
  if (DoToggling) {
    FchResetPcie (FchBlock, AssertReset, StdHeader);
    FchStall (500, StdHeader);
    FchResetPcie (FchBlock, DeassertReset, StdHeader);
  } else {
    RwMem (ACPI_MMIO_BASE + IOMUX_BASE + FCH_GEVENT_REG04, AccessWidth8, ~(BIT1 + BIT0), 0x02);
  }
}
Exemple #5
0
/**
 * FchInitEnvGpp - Config Gpp controller before PCI emulation
 *
 *
 * @param[in] FchDataPtr Fch configuration structure pointer.
 *
 */
VOID
FchInitEnvGpp (
  IN  VOID     *FchDataPtr
  )
{
  FCH_DATA_BLOCK         *LocalCfgPtr;
  AMD_CONFIG_PARAMS      *StdHeader;

  LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
  StdHeader = LocalCfgPtr->StdHeader;

  if ( !LocalCfgPtr->Gpp.NewGppAlgorithm) {
    ProgramFchGppInitReset (&LocalCfgPtr->Gpp, StdHeader);
    FchStall (5000, StdHeader);
  }
  FchGppPortInit (&LocalCfgPtr->Gpp, StdHeader);
}
Exemple #6
0
VOID
FchSataRestore (
  IN      FCH_DATA_BLOCK     *FchDataPtr
  )
{
  FCH_DATA_BLOCK         *LocalCfgPtr;
  AMD_CONFIG_PARAMS      *StdHeader;

  LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
  StdHeader = LocalCfgPtr->StdHeader;

  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGDA, AccessWidth8, 0, 0x11);
  RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG84), AccessWidth32, 0, 0x04140006, StdHeader);
  RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REGA0), AccessWidth8, ~(BIT2 + BIT3 + BIT4 + BIT5 + BIT6), 0, StdHeader);
  FchStall (1000, StdHeader);
  FchInitEnvSata (FchDataPtr);
  FchInitLateSata (FchDataPtr);
}
Exemple #7
0
VOID
WaitForEcLDN9MailboxCmdAck (
  IN AMD_CONFIG_PARAMS  *StdHeader
  )
{
  UINT8    Msgdata;
  UINT32   Delaytime;

  Msgdata = 0;

  for (Delaytime = 0; Delaytime <= 100000; Delaytime++) {
    ReadECmsg (MSG_REG0, AccessWidth8, &Msgdata, StdHeader);
    if ( Msgdata == 0xfa) {
      break;
    }

    FchStall (5, StdHeader);                            /// Wait for 1ms
  }
}
Exemple #8
0
/**
 * GppPortPollingLtssmR - Loop polling the LTSSM for each GPP
 * port marked in PortMap
 *
 *
 * @param[in] FchGpp        Pointer to Fch GPP configuration structure
 * @param[in] ActivePorts   A bitmap of ports which should be polled
 * @param[in] IsGen2        TRUE if the polling is in Gen2 mode
 * @param[in] StdHeader     Pointer to AMD_CONFIG_PARAMS
 *
 * @retval       FailedPorts     A bitmap of ports which failed to train
 *
 */
UINT8
GppPortPollingLtssmR (
  IN       FCH_GPP_R           *FchGpp,
  IN       UINT8               ActivePorts,
  IN       BOOLEAN             IsGen2,
  IN       AMD_CONFIG_PARAMS   *StdHeader
  )
{
  UINT32                 RetryCounter;
  UINT8                  PortId;
  UINT8                  FailedPorts;
  UINT8                  HotPlugPorts;
  FCH_GPP_PORT_CONFIG_R  *PortCfg;
  UINT32                 AbIndex;
  UINT32                 GppData32;
  UINT8                  EmptyPorts;
  UINT8                  Index;
  UINT8                  FixedPolling;

  FailedPorts = 0;
  HotPlugPorts = 0;
  RetryCounter = MAX_LT_POLLINGS;
  EmptyPorts = ActivePorts;
  FixedPolling = FchGpp->GppPortMinPollingTime;

  while (RetryCounter-- && ActivePorts) {
    for (PortId = 0; PortId < MAX_GPP_PORTS; PortId++) {
      if (ActivePorts & (1 << PortId)) {
        PortCfg = &FchGpp->PortCfg[PortId];
        if ( PortCfg->PortHotPlug == TRUE ) {
          HotPlugPorts |= ( 1 << PortId);
        }
        AbIndex = FCH_RCINDXP_REGA5 | (UINT32) (PortId << 24);
        GppData32 = ReadAlink (AbIndex, StdHeader) & 0x3F3F3F3F;

        if ((UINT8) (GppData32) > 0x04) {
          EmptyPorts &= ~(1 << PortId);
        }

        if ((UINT8) (GppData32) == 0x10) {
          ActivePorts &= ~(1 << PortId);
          PortCfg->PortDetected = TRUE;
          break;
        }

        if (IsGen2) {
          for (Index = 0; Index < 4; Index++) {
            if ((UINT8) (GppData32) == 0x29 || (UINT8) (GppData32) == 0x2A ) {
              ActivePorts &= ~(1 << PortId);
              FailedPorts |= (1 << PortId);
              break;
            }
            GppData32 >>= 8;
          }
        }
      }
    }
    if (EmptyPorts && RetryCounter < (MAX_LT_POLLINGS - (UINT32) FixedPolling)) {
      ActivePorts &= ~EmptyPorts;
    }
    FchStall (1000, StdHeader);
  }
/**
 * FchXhciInitIndirectReg - Config XHCI Indirect Registers
 *
 *
 *
 * @param[in] FchDataPtr Fch configuration structure pointer.
 *
 */
VOID
FchXhciInitIndirectReg (
  IN  FCH_DATA_BLOCK     *FchDataPtr
  )
{
  UINT8                 Index;
  UINT32                DrivingStrength;
  UINT32                Port;
  UINT32                Register;
  UINT32                RegValue;
  FCH_DATA_BLOCK        *LocalCfgPtr;
  AMD_CONFIG_PARAMS     *StdHeader;

  LocalCfgPtr = (FCH_DATA_BLOCK *)FchDataPtr;
  StdHeader = LocalCfgPtr->StdHeader;
  DrivingStrength = 0;

  //
  // SuperSpeed PHY Configuration (adaptation mode setting)
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG94, 0xFFFFFC00, 0x00000021, StdHeader);
  RwXhciIndReg ( FCH_XHCI_IND_REGD4, 0xFFFFFC00, 0x00000021, StdHeader);
  //
  // SuperSpeed PHY Configuration (CR phase and frequency filter settings)
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG98, 0xFFFFFFC0, 0x0000000A, StdHeader);
  RwXhciIndReg ( FCH_XHCI_IND_REGD8, 0xFFFFFFC0, 0x0000000A, StdHeader);
  //
  // BLM Meaasge
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG00, 0xF8FFFFFF, 0x07000000, StdHeader);
  //
  // xHCI USB 2.0 PHY Settings
  // Step 1 is done by hardware default
  // Step 2
  for (Port = 0; Port < 4; Port ++) {
    DrivingStrength = (UINT32) (LocalCfgPtr->Usb.Xhci20Phy[Port]);
    if (Port < 2) {
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + DrivingStrength, StdHeader);
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
    } else {
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, ((Port - 2) << 13) + BIT12 + DrivingStrength, StdHeader);
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, ((Port - 2) << 13) + DrivingStrength, StdHeader);
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, ((Port - 2) << 13) + BIT12 + DrivingStrength, StdHeader);
    }
  }

  // Step 3
  RwXhciIndReg ( FCH_XHCI_IND60_REG0C, ~ ((UINT32) (0x0f << 8)), ((UINT32) (0x02 << 8)), StdHeader);
  RwXhciIndReg ( FCH_XHCI_IND60_REG08, ~ ((UINT32) (0xff << 8)), ((UINT32) (0x0f << 8)), StdHeader);

  // RPR 8.25 Clock Gating in PHY
  for (Port = 0; Port < 4; Port ++) {
    DrivingStrength = 0x1E4;
    if (Port < 2) {
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, (Port << 13) + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
    } else {
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, ((Port - 2) << 13) + BIT12 + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, ((Port - 2) << 13) + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, ((Port - 2) << 13) + BIT12 + DrivingStrength, StdHeader);
    }
  }

  if ( ReadFchChipsetRevision ( StdHeader ) >= FCH_BOLTON ) {
   // RRG 8.36 Enhance XHC LS Rise time
    for (Port = 0; Port < 2; Port ++) {
      DrivingStrength = 0x1C4;
      RwXhciIndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
      RwXhciIndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + DrivingStrength, StdHeader);
      RwXhciIndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
    }
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(UINT32) (BIT23), BIT23);

    // RPR 8.61 XHCI ISO device CRC false error detection
    for (Port = 0; Port < 4; Port ++) {
      if (Port < 2) {
        ReadXhci0Phy (Port, (0x7 << 7), &DrivingStrength, StdHeader);
        DrivingStrength &= 0x0000000F8;
        DrivingStrength |= BIT0 + BIT2;
        RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + (0x7 << 7) + DrivingStrength, StdHeader);
        RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + (0x7 << 7) + DrivingStrength, StdHeader);
        RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + (0x7 << 7) + DrivingStrength, StdHeader);
      } else {
        ReadXhci1Phy ((Port - 2), (0x7 << 7), &DrivingStrength, StdHeader);
        DrivingStrength &= 0x0000000F8;
        DrivingStrength |= BIT0 + BIT2;
        RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, ((Port - 2) << 13) + BIT12 + (0x7 << 7) + DrivingStrength, StdHeader);
        RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, ((Port - 2) << 13) + (0x7 << 7) + DrivingStrength, StdHeader);
        RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, ((Port - 2) << 13) + BIT12 + (0x7 << 7) + DrivingStrength, StdHeader);
      }
    }
    //8.64 L1 Residency Duration
    RwXhciIndReg ( FCH_XHCI_IND60_REG48, 0xFFFFFFFE0, BIT0, StdHeader);
  }
}
/**
 * FchXhciInitBeforePciInit - Config XHCI controller before PCI
 * emulation
 *
 *
 *
 * @param[in] FchDataPtr Fch configuration structure pointer.
 *
 */
VOID
FchXhciInitBeforePciInit (
  IN  FCH_DATA_BLOCK     *FchDataPtr
  )
{
  UINT16                BcdAddress;
  UINT16                BcdSize;
  UINT16                AcdAddress;
  UINT16                AcdSize;
  UINT16                FwAddress;
  UINT16                FwSize;
  UINT32                XhciFwStarting;
  UINT32                SpiValidBase;
  UINT32                RegData;
  UINT16                Index;
  BOOLEAN               Xhci0Enable;
  BOOLEAN               Xhci1Enable;
  FCH_DATA_BLOCK        *LocalCfgPtr;
  AMD_CONFIG_PARAMS     *StdHeader;

  LocalCfgPtr = (FCH_DATA_BLOCK *)FchDataPtr;
  StdHeader = LocalCfgPtr->StdHeader;
  Xhci0Enable = LocalCfgPtr->Usb.Xhci0Enable;
  Xhci1Enable = LocalCfgPtr->Usb.Xhci1Enable;

  if (( Xhci0Enable == 0 ) && (Xhci1Enable == 0)) {
    return;
  }
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0x00000000, 0x00400700);
  FchStall (20, StdHeader);

  XhciFwStarting = FchCombineSigRomInfo (FchDataPtr);
  if ( XhciFwStarting == 0 ) {
    return;
  }
  //
  // Enable SuperSpeed receive special error case logic. 0x20 bit8
  // Enable USB2.0 RX_Valid Synchronization. 0x20 bit9
  // Enable USB2.0 DIN/SE0 Synchronization. 0x20 bit10
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, 0xFFFFF8FF, 0x00000700);
  //
  // SuperSpeed PHY Configuration (adaptation timer setting)
  // XHC U1 LFPS Exit time
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90, AccessWidth32, 0xCFF00000, 0x000AAAAA);
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90 + 0x40, AccessWidth32, 0xFFF00000, 0x000AAAAA);

  //
  // Step 1. to enable Xhci IO and Firmware load mode
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(UINT32) (BIT4 + BIT5), 0);                /// Disable Device 22
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(UINT32) (BIT7), BIT7);                    /// Enable 2.0 devices
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0xF0FFFFFC, (Xhci0Enable + (Xhci1Enable << 1)) & 0x03);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0xEFFFFFFF, 0x10000000);

  //
  // Step 2. to read a portion of the USB3_APPLICATION_CODE from BIOS ROM area and program certain registers.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA0, AccessWidth32, 0x00000000, (SPI_HEAD_LENGTH << 16));

  BcdAddress = ACPIMMIO16 (XhciFwStarting + BCD_ADDR_OFFSET);
  BcdSize = ACPIMMIO16 (XhciFwStarting + BCD_SIZE_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA4, AccessWidth16, 0x0000, BcdAddress);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA4 + 2, AccessWidth16, 0x0000, BcdSize);

  AcdAddress = ACPIMMIO16 (XhciFwStarting + ACD_ADDR_OFFSET);
  AcdSize = ACPIMMIO16 (XhciFwStarting + ACD_SIZE_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA8, AccessWidth16, 0x0000, AcdAddress);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA8 + 2, AccessWidth16, 0x0000, AcdSize);

  SpiValidBase = SPI_BASE2 (XhciFwStarting + 4) | SPI_BAR0_VLD | SPI_BASE0 | SPI_BAR1_VLD | SPI_BASE1 | SPI_BAR2_VLD;
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB0, AccessWidth32, 0x00000000, SpiValidBase);
  //
  //   Copy Type0/1/2 data block from ROM image to MMIO starting from 0xC0
  //
  for (Index = 0; Index < SPI_HEAD_LENGTH; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + Index));
  }

  for (Index = 0; Index < BcdSize; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + SPI_HEAD_LENGTH + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + BcdAddress + Index));
  }

  for (Index = 0; Index < AcdSize; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + SPI_HEAD_LENGTH + BcdSize + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + AcdAddress + Index));
  }

  //
  // Step 3. to enable the instruction RAM preload functionality.
  //
  FwAddress = ACPIMMIO16 (XhciFwStarting + FW_ADDR_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth16, 0x0000, ACPIMMIO16 (XhciFwStarting + FwAddress));
  FwAddress += 2;
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04, AccessWidth16, 0x0000, FwAddress);

  FwSize = ACPIMMIO16 (XhciFwStarting + FW_SIZE_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04 + 2, AccessWidth16, 0x0000, FwSize);
  //
  //   Set the starting address offset for Instruction RAM preload.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG08, AccessWidth16, 0x0000, 0);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(UINT32) BIT29, BIT29);

  for (;;) {
    ReadMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00 , AccessWidth32, &RegData);
    if (RegData & BIT30) {
      break;
    }
  }
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(UINT32) BIT29, 0);

  //
  // Step 4. to release resets in XHCI_ACPI_MMIO_AMD_REG00. wait for USPLL to lock by polling USPLL lock.
  //

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(UINT32) U3PLL_RESET, 0);       ///Release U3PLLreset
  for (;;) {
    ReadMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00 , AccessWidth32, &RegData);
    if (RegData & U3PLL_LOCK) {
      break;
    }
  }

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(UINT32) U3PHY_RESET, 0);       ///Release U3PHY
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(UINT32) U3CORE_RESET, 0);      ///Release core reset

  //
  // SuperSpeed PHY Configuration
  //
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90, AccessWidth32, 0xFFF00000, 0x000AAAAA);
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGD0, AccessWidth32, 0xFFF00000, 0x000AAAAA);

  FchXhciInitIndirectReg (LocalCfgPtr);

  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(UINT32) (BIT4 + BIT5), 0);                /// Disable Device 22
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(UINT32) (BIT7), BIT7);                    /// Enable 2.0 devices
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(UINT32) (BIT21), BIT21);
  //
  // Step 5.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(UINT32) (BIT17 + BIT18 + BIT19), BIT17 + BIT18);

  //
  // PLUG/UNPLUG of USB 2.0 devices make the XHCI USB 2.0 ports unfunctional - fix enable
  // ACPI_USB3.0_REG 0x20[12:11] = 2'b11
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x3 << 11)), (UINT32) (0x3 << 11));
  //
  // XHC 2 USB2 ports interactional issue - fix enable
  // ACPI_USB3.0_REG 0x20[16] = 1'b1
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x1 << 16)), (UINT32) (0x1 << 16));
  //
  // XHC USB2.0 Ports suspend Enhancement
  // ACPI_USB3.0_REG 0x20[15] = 1'b1
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x1 << 15)), (UINT32) (0x1 << 15));
  //
  // XHC HS/FS IN Data Buffer Underflow issue - fix enable
  // ACPI_USB3.0_REG 0x20[20:18] = 0x7
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x7 << 18)), (UINT32) (0x7 << 18));
  //
  // XHC stuck in U3 after system resuming from S3 -fix enable
  // ACPI_USB3.0_REG 0x98[19] = 1'b1
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG98, AccessWidth32, ~((UINT32) (0x1 << 19)), (UINT32) (0x1 << 19));
  //
  // Change XHC1 ( Dev 16 function 1) Interrupt Pin register to INTB# - Fix enable
  // ACPI_PMIO_F0[18] =1
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF0, AccessWidth32, ~((UINT32) (0x1 << 18)), (UINT32) (0x1 << 18));
  //
  // EHCI3/OHCI3 blocks Blink Global Clock Gating when EHCI/OHCI Dev 22 fn 0/2 are disabled
  // ACPI_PMIO_F0[13] =1
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF0, AccessWidth32, ~((UINT32) (0x1 << 13)), (UINT32) (0x1 << 13));
  //
  // Access register through JTAG fail when switch from XHCI to EHCI/OHCI - Fix enable
  // ACPI_PMIO_F0[17] =1
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF0, AccessWidth32, ~((UINT32) (0x1 << 17)), (UINT32) (0x1 << 17));
  //
  // USB leakage current on differential lines when ports are switched to XHCI - Fix enable
  // ACPI_PMIO_F0[14] =1
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF0, AccessWidth32, ~((UINT32) (0x1 << 14)), (UINT32) (0x1 << 14));

  // RRG 8.26 XHCI Clear pending PME on Sx entry
  RwXhciIndReg ( FCH_XHCI_IND_REG54, ~(UINT32) (BIT15), BIT15, StdHeader);

  //
  // UMI Lane Configuration Information for XHCI Firmware to Calculate the Bandwidth for USB 3.0 ISOC Devices
  //
  if (!(IsUmiOneLaneGen1Mode (StdHeader))) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~(UINT32) (BIT25 + BIT24), BIT24);
  }
  // RPR 8.23 FS/LS devices not functional after resume from S4 fix enable (SB02699)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~(UINT32) (BIT22), BIT22);
  // RPR 8.24 XHC USB2.0 Hub disable issue fix enable (SB02702)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(UINT32) (BIT20), BIT20);
  if ( ReadFchChipsetRevision ( FchDataPtr->StdHeader ) >= FCH_BOLTON ) {
    // RPR 8.27 Enhance D3Cold ccu sequencing
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG10, AccessWidth32, ~(UINT32) (BIT11), BIT11);
    // RPR 8.28 Set HCIVERSION to 1.0
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT15), BIT15);
    // RPR 8.29 xHCI 1.0 Sub-Features Supported
    // Blobk Event Interrupt Flag (BEI)
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT1), BIT1);
    // Force Stopped Event (FSE)
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT2), BIT2);
    // Software LPM
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT3), BIT3);
    // Hardware LPM
    // Skip TRB IOC Event
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT6), BIT6);
    // Remove Secondary Bandwith Domain Reporting
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT7), BIT7);
    // Cold Attach Status
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT8), BIT8);
    // Endpoint Status Update Ordering
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT9), BIT9);
    // Report Event during SKIP on Missed Service Error
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT10), BIT10);
    // Soft Retry
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT11), BIT11);
    // U3 Exit
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT12), BIT12);
    // USB3.0 Link Command
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT13), BIT13);
    // MSE FrameId invalid
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT14), BIT14);
    // Port Test Mode
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT16), BIT16);
    // Miscellaneous Design Improvements
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG40, AccessWidth32, ~(UINT32) (BIT0), BIT0);
    //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG40, AccessWidth32, ~(UINT32) (BIT25), 0);
    // RRG 8.29 End

    // RRG 8.30 XHC USB2 Loopback RX SE0
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~(UINT32) (BIT13 + BIT14 + BIT21), BIT13 + BIT14 + BIT21);
    // RRG 8.31 XHC U2IF_Enabled_Quiettermination off
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(UINT32) (BIT20), BIT20);
    // RRG 8.32 XHC S0 BLM Reset Mode
    RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF2, AccessWidth8, ~(UINT32) (BIT3), BIT3);
    // RRG 8.33 Enhance XHC Ent_Flag
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(UINT32) (BIT22), BIT22);
    // RRG 8.34 Enhance TRB Pointer when both MSE and SKIP TRB IOC evt opened
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT17), BIT17);
    // RRG 8.35 LPM Broadcast disable
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT18), BIT18);

    // RRG 8.37 Enhance XHC FS/LS connect
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(UINT32) (BIT24), BIT24);
    // RRG 8.38 Enhance XHC ISOCH td_cmp
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(UINT32) (BIT25), BIT25);
    // RRG 8.39 LPM Clock 5us Select
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT8), BIT8);
    // RRG 8.40 Enhance DPP ERR as XactErr
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT9), BIT9);
    // RRG 8.41 Enhance U2IF PME Enable
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT10), BIT10);
    // RRG 8.42 U2IF S3 Disconnect detection
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT12), BIT12);
    // RRG 8.43 Stream Error Handling
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT20 + BIT21 + BIT22), (BIT20 + BIT21 + BIT22));
    // RRG 8.44 FLA Deassert
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT23), BIT23);
    // RRG 8.45 LPM Ctrl Improve
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT27), BIT27);
    // 393674 Enable fix for control transfer error
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) (BIT24), BIT24);

    //8.60 Enhance LPM Host initial L1 Exit
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(UINT32) BIT29, BIT29);

    // RRG 8.46 Enhance resume after disconnect
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG98, AccessWidth32, ~(UINT32) (BIT30), BIT30);
    // RRG 8.47 Enhance SS HD Detected on Plug-in during S3
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG98, AccessWidth32, ~(UINT32) (BIT31), BIT31);
    // RRG 8.48 Frame Babble Reporting
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(UINT32) (BIT27), BIT27);
    // xHCI Debug Capability
    // RRG 8.49 DCP Halt RSTSM OFF
    // RRG 8.50 Enable DCP DPH check
    // RRG 8.51 DCP LTSSM Inactive to Rxdetect
    // RRG 8.52 Enhance DCP EP State
    // RRG 8.53 DCP Remote Wakeup Capable
    // RRG 8.58 Enable ERDY send once DBC detectes HIT/HOT
    // RRG 8.59 Block HIT/HOT until service interval done
    //RegData = FCH_XHCI_IND_REG100;
    //WriteMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, &RegData);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT0 + BIT1 + BIT2), BIT0 + BIT1 + BIT2);
    //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT0 + BIT1 + BIT2), BIT0 + BIT1 + BIT2);
    //ReadMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, &RegData);

    //RegData = FCH_XHCI_IND_REG120;
    //WriteMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, &RegData);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG120);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT3), BIT3);
    //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT3), BIT3);
    //ReadMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, &RegData);

    //RegData = FCH_XHCI_IND_REG100;
    //WriteMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, &RegData);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT21), BIT21);
    //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT21), BIT21);
    //ReadMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, &RegData);

    //RegData = FCH_XHCI_IND_REG128;
    //WriteMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, &RegData);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG128);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT0), BIT0);
    //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT0), BIT0);
    //ReadMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, &RegData);

    //RegData = FCH_XHCI_IND_REG100;
    //WriteMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, &RegData);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT3 + BIT4), BIT3 + BIT4);
    //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT3 + BIT4), BIT3 + BIT4);
    //ReadMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, &RegData);

    // RRG 8.54 Enhance SS HS detected during S3
    //RegData = FCH_XHCI_IND_REG48;
    //WriteMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, &RegData);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG48);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT1), BIT1);
    // RRG 8.55 Enhance U1 timer (shorten U1 exit response time)
    //RegData = FCH_XHCI_IND_REG48;
    //WriteMem ( ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, &RegData);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG48);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT14), BIT14);
    // RRG 8.56 Enhance HW LPM U2Entry state
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT17), BIT17);
    // RRG 8.57 Enhance SSIF PME
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT14), BIT14);
    // RPR 8.62 Enable FW enhancement on XHC clock control when memory power saving is disabled
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG10, AccessWidth32, ~(UINT32) (BIT13), BIT13);
    // RPR 8.63 U2IF Remote Wake Select
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT11), BIT11);
    // RPR 8.64 HS Data Toggle Error Handling
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT16), BIT16);
    // A1
    // UBTS 444589 PIL failures when reset device command hit link td points to invaild trb
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG28, AccessWidth32, ~(UINT32) (BIT3), BIT3);
    // UBTS 437021 PME not generated by U2IF logic during S3 shutdown
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT30 + BIT31), (BIT30 + BIT31));
    // UBTS 432864 When a USB3 device is disconnected, and connected again, xHC cannot detect it.
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG48);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT16), BIT16);
    // UBTS 430710 USB3 port enters compliance state when debug port enabled (0: enable)
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT27), BIT27);
    // UBTS 430715 [DbC] Compatibility issue with 3rd party (I) chip as Host and AMD as Target
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT5), BIT5);
    // UBTS 430708  The second configure endpoint command haven't been executed completely when the port was in L1
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT26), BIT26);
    // UBTS 428048 [LPM] LPM 2ports interrupt in is ERROR after host initiate L1exit respond a nak in HS
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT23), 0);
    // UBTS 428045 LPM packet with incorrect address
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT22 + BIT24 + BIT25), 0);
    // UBTS 443139 Buffer overrun during S4 loop
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG48);
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(UINT32) (BIT17), BIT17);
    // UBTS 419582 LPM arbitration between USB ports
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT21), 0);
    // UBTS 429765 USB3.0 ACPI Indirect registers get changed after reboot
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG28, AccessWidth32, ~(UINT32) (BIT0), BIT0);
    // UBTS 439658 Black Magic USB 3.0 device when enabled/disabled under windows causes the driver to register disconnect
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG28, AccessWidth32, ~(UINT32) (BIT1 + BIT2), BIT2);
    // UBTS SS RX terminations blocked unexpectedly
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(UINT32) (BIT15), BIT15);
  }
}
Exemple #11
0
/**
 * FchInitMidAzalia - Config Azalia controller after PCI
 * emulation
 *
 *
 *
 * @param[in] FchDataPtr Fch configuration structure pointer.
 *
 */
VOID
FchInitMidAzalia (
  IN  VOID     *FchDataPtr
  )
{
  UINT8        Index;
  BOOLEAN      EnableAzalia;
  UINT32       PinRouting;
  UINT8        ChannelNum;
  UINT8        AzaliaTempVariableByte;
  UINT16       AzaliaTempVariableWord;
  UINT32       BAR0;
  FCH_DATA_BLOCK         *LocalCfgPtr;
  AMD_CONFIG_PARAMS      *StdHeader;

  LocalCfgPtr = (FCH_DATA_BLOCK *) FchDataPtr;
  StdHeader = LocalCfgPtr->StdHeader;

  EnableAzalia = FALSE;
  ChannelNum = 0;
  AzaliaTempVariableByte = 0;
  AzaliaTempVariableWord = 0;
  BAR0 = 0;

  if ( LocalCfgPtr->Azalia.AzaliaEnable == 1 ) {
    return;
  } else {
    RwPci ((AZALIA_BUS_DEV_FUN << 16) + FCH_AZ_REG04, AccessWidth8, (UINT32)~BIT1, BIT1, StdHeader);

    if ( LocalCfgPtr->Azalia.AzaliaSsid != 0 ) {
      RwPci ((AZALIA_BUS_DEV_FUN << 16) + FCH_AZ_REG2C, AccessWidth32, 0x00, LocalCfgPtr->Azalia.AzaliaSsid, StdHeader);
    }

    ReadPci ((AZALIA_BUS_DEV_FUN << 16) + FCH_AZ_REG10, AccessWidth32, &BAR0, StdHeader);

    if ( BAR0 != 0 ) {
      if ( BAR0 != 0xFFFFFFFF ) {
        BAR0 &=  ~(0x03FFF);
        EnableAzalia = TRUE;
      }
    }
  }

  if ( EnableAzalia ) {
    //
    // Get SDIN Configuration
    //
    if ( LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin0 == 2 ) {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xA7, AccessWidth8, 0, 0x3E);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xA7, AccessWidth8, 0, 0x00);
    } else {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xA7, AccessWidth8, 0, 0x0);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xA7, AccessWidth8, 0, 0x01);
    }

    if ( LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin1 == 2 ) {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xA8, AccessWidth8, 0, 0x3E);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xA8, AccessWidth8, 0, 0x00);
    } else {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xA8, AccessWidth8, 0, 0x0);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xA8, AccessWidth8, 0, 0x01);
    }

    if ( LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin2 == 2 ) {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xA9, AccessWidth8, 0, 0x3E);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xA9, AccessWidth8, 0, 0x00);
    } else {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xA9, AccessWidth8, 0, 0x0);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xA9, AccessWidth8, 0, 0x01);
    }

    if ( LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin3 == 2 ) {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xAA, AccessWidth8, 0, 0x3E);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xAA, AccessWidth8, 0, 0x00);
    } else {
      RwMem (ACPI_MMIO_BASE + GPIO_BASE + 0xAA, AccessWidth8, 0, 0x0);
      RwMem (ACPI_MMIO_BASE + IOMUX_BASE + 0xAA, AccessWidth8, 0, 0x01);
    }

    Index = 11;
    do {
      ReadMem ( BAR0 + FCH_AZ_BAR_REG08, AccessWidth8, &AzaliaTempVariableByte);
      AzaliaTempVariableByte |= BIT0;
      WriteMem (BAR0 + FCH_AZ_BAR_REG08, AccessWidth8, &AzaliaTempVariableByte);
      FchStall (1000, StdHeader);
      ReadMem (BAR0 + FCH_AZ_BAR_REG08, AccessWidth8, &AzaliaTempVariableByte);
      Index--;
    }  while ((! (AzaliaTempVariableByte & BIT0)) && (Index > 0) );

    if ( Index == 0 ) {
      return;
    }

    FchStall (1000, StdHeader);
    ReadMem ( BAR0 + FCH_AZ_BAR_REG0E, AccessWidth16, &AzaliaTempVariableWord);
    if ( AzaliaTempVariableWord & 0x0F ) {

      //
      //at least one azalia codec found
      //
      //PinRouting = LocalCfgPtr->Azalia.AZALIA_CONFIG.AzaliaSdinPin;
      //new structure need make up PinRouting
      //need adjust later!!!
      //
      PinRouting = 0;
      PinRouting = (UINT32 )LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin3;
      PinRouting <<= 8;
      PinRouting |= (UINT32 )LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin2;
      PinRouting <<= 8;
      PinRouting |= (UINT32 )LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin1;
      PinRouting <<= 8;
      PinRouting |= (UINT32 )LocalCfgPtr->Azalia.AzaliaConfig.AzaliaSdin0;

      do {
        if ( ( ! (PinRouting & BIT0) ) && (PinRouting & BIT1) ) {
          ConfigureAzaliaPinCmd (LocalCfgPtr, BAR0, ChannelNum);
        }
        PinRouting >>= 8;
        ChannelNum++;
      }  while ( ChannelNum != 4 );
    } else {
      //
      //No Azalia codec found
      //
      if ( LocalCfgPtr->Azalia.AzaliaEnable != 2 ) {
Exemple #12
0
/**
 * FchXhciInitIndirectReg - Config XHCI Indirect Registers
 *
 *
 *
 * @param[in] StdHeader   AMD Standard Header
 * @param[in] FchRevision FCH Chip revision
 *
 */
VOID
FchXhciRecoveryInitIndirectReg (
  IN       AMD_CONFIG_PARAMS *StdHeader,
  IN       UINT8             FchRevision
  )
{
  UINT8                 Index;
  UINT32                DrivingStrength;
  UINT32                Port;
  UINT32                Register;
  UINT32                RegValue;
  UINT32                Xhci20Phy[MAX_XHCI_PORTS];

  Xhci20Phy[0] = 0x21;
  Xhci20Phy[1] = 0x21;
  Xhci20Phy[2] = 0x24;
  Xhci20Phy[3] = 0x24;
  DrivingStrength = 0;

  //
  // SuperSpeed PHY Configuration (adaptation mode setting)
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG94, 0xFFFFFC00, 0x00000021, StdHeader);
  RwXhciIndReg ( FCH_XHCI_IND_REGD4, 0xFFFFFC00, 0x00000021, StdHeader);
  //
  // BLM Meaasge
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG00, 0xF8FFFFFF, 0x07000000, StdHeader);
  //
  // xHCI USB 2.0 PHY Settings
  // Step 1 is done by hardware default
  // Step 2
  for (Port = 0; Port < 2; Port ++) {
    DrivingStrength = (UINT32) (Xhci20Phy[Port]);
    RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
    RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + DrivingStrength, StdHeader);
    RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
  }
  RwXhci0IndReg ( FCH_XHCI_IND60_REG50, ~ ((UINT32) (0x0f)), ((UINT32) (0x07)), StdHeader);
  RwXhci0IndReg ( FCH_XHCI_IND60_REG0C, ~ ((UINT32) (0x0f << 4)), ((UINT32) (0x02 << 4)), StdHeader);
  RwXhci0IndReg ( FCH_XHCI_IND60_REG0C, ~ ((UINT32) (0x0f << 8)), ((UINT32) (0x02 << 8)), StdHeader);
  RwXhci0IndReg ( FCH_XHCI_IND60_REG08, 0x80FC00FF, 0, StdHeader);
  // RPR 8.25 Clock Gating in PHY
  for (Port = 0; Port < 4; Port ++) {
    DrivingStrength = 0x1E4;
    if (Port < 2) {
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, (Port << 13) + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
    }
  }
  // Enhance XHC LS Rise time
  for (Port = 0; Port < 2; Port ++) {
    DrivingStrength = 0x1C4;
    RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
    RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + DrivingStrength, StdHeader);
    RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + DrivingStrength, StdHeader);
  }
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT23), BIT23);

  // XHCI ISO device CRC false error detection
  for (Port = 0; Port < 4; Port ++) {
    if (Port < 2) {
      ReadXhci0Phy (Port, (0x7 << 7), &DrivingStrength, StdHeader);
      DrivingStrength &= 0x0000000F8;
      DrivingStrength |= BIT0 + BIT2;
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + (0x7 << 7) + DrivingStrength, StdHeader);
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + (0x7 << 7) + DrivingStrength, StdHeader);
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFC000, (Port << 13) + BIT12 + (0x7 << 7) + DrivingStrength, StdHeader);
    }
  }
  // L1 Residency Duration
  RwXhci0IndReg ( FCH_XHCI_IND60_REG48, 0xFFFFFFFE0, BIT0, StdHeader);

}
Exemple #13
0
/*********************************************************************************
 * Name: FchXhciOnRecovery
 *
 * Description
 *
 *
 * Input
 *   FchPrivate     : FCH PEI private data structure
 *   XhciRomAddress : temporary base address value of Xhci controller
 *
 * Output
 *
 *
 *********************************************************************************/
EFI_STATUS
FchXhciOnRecovery (
  IN      FCH_PEI_PRIVATE      FchPrivate,
  IN      UINT32               XhciRomAddress
  )
{

  UINT16                BcdAddress;
  UINT16                BcdSize;
  UINT16                AcdAddress;
  UINT16                AcdSize;
  UINT16                FwAddress;
  UINT16                FwSize;
  UINT32                XhciFwStarting;
  UINT32                SpiValidBase;
  UINT32                RegData;
  UINT16                Index;
  AMD_CONFIG_PARAMS     *StdHeader;
  UINT8                 FchRevision;
  UINT32                XhcBootRamSize;
  UINTN                 RomSigStartingAddr;
  UINT32                RomStore[NUM_OF_ROMSIG_FILED];
  UINT32                SelNum;

  StdHeader = &FchPrivate.StdHdr;
  FchRevision = 0;
  ReadPci (PCI_ADDRESS (0, FCH_ISA_DEV, 0, 0x08), AccessWidth8, &FchRevision, StdHeader);

  GetRomSigPtr (&RomSigStartingAddr, StdHeader);
  for ( SelNum = 0; SelNum < NUM_OF_ROMSIG_FILED; SelNum++) {
    RomStore[SelNum] = ACPIMMIO32 (RomSigStartingAddr + (SelNum << 2));
  }
  if ( XhciRomAddress != 0 ) {
    RomStore[XHCI_FILED_NUM] = XhciRomAddress;
  }
  RwPci ((LPC_BUS_DEV_FUN << 16) + FCH_LPC_REGC8 + 3, AccessWidth8, 0x7F, BIT7, StdHeader);
  for ( SelNum = 1; SelNum < NUM_OF_ROMSIG_FILED; SelNum++) {
    RwPci ((LPC_BUS_DEV_FUN << 16) + FCH_LPC_REGCC, AccessWidth32, ~ (BIT2 + BIT1 + BIT0), (BIT2 + SelNum), StdHeader);
    RwPci ((LPC_BUS_DEV_FUN << 16) + FCH_LPC_REGCC, AccessWidth32, ROMSIG_CFG_MASK, RomStore[SelNum], StdHeader);
  }
  XhciFwStarting = RomStore[XHCI_FILED_NUM];

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0x00090000, 0x00400700);
  FchStall (20, StdHeader);

  //
  // Enable SuperSpeed receive special error case logic. 0x20 bit8
  // Enable USB2.0 RX_Valid Synchronization. 0x20 bit9
  // Enable USB2.0 DIN/SE0 Synchronization. 0x20 bit10
  //
  XhcBootRamSize = XHC_BOOT_RAM_SIZE;
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, 0xFFFFF9FF, 0x00000600);
  RwMem (ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG50 + 1, AccessWidth8, ~BIT1, BIT1);
  //
  // SuperSpeed PHY Configuration (adaptation timer setting)
  // XHC U1 LFPS Exit time
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90, AccessWidth32, 0xCFF00000, 0x000AAAAA);
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90 + 0x40, AccessWidth32, 0xFFF00000, 0x000AAAAA);

  //
  // Step 1. to enable Xhci IO and Firmware load mode
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(BIT4 + BIT5), 0);                /// Disable Device 22
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(BIT7), BIT7);                    /// Enable 2.0 devices

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0xF0FFFFFC, 0x01);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0xEFFFFFFF, 0x10000000);

  //
  // Step 2. to read a portion of the USB3_APPLICATION_CODE from BIOS ROM area and program certain registers.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA0, AccessWidth32, 0x00000000, (SPI_HEAD_LENGTH << 16));

  BcdAddress = ACPIMMIO16 (XhciFwStarting + BCD_ADDR_OFFSET + XhcBootRamSize);
  BcdSize = ACPIMMIO16 (XhciFwStarting + BCD_SIZE_OFFSET + XhcBootRamSize);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA4, AccessWidth16, 0x0000, BcdAddress);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA4 + 2, AccessWidth16, 0x0000, BcdSize);

  AcdAddress = ACPIMMIO16 (XhciFwStarting + ACD_ADDR_OFFSET + XhcBootRamSize);
  AcdSize = ACPIMMIO16 (XhciFwStarting + ACD_SIZE_OFFSET + XhcBootRamSize);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA8, AccessWidth16, 0x0000, AcdAddress);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA8 + 2, AccessWidth16, 0x0000, AcdSize);

  SpiValidBase = SPI_BASE2 (XhciFwStarting + 4 + XHC_BOOT_RAM_SIZE) | SPI_BAR0_VLD | SPI_BASE0 | SPI_BAR1_VLD | SPI_BASE1 | SPI_BAR2_VLD;
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB0, AccessWidth32, 0x00000000, SpiValidBase);
  //
  //   Copy Type0/1/2 data block from ROM image to MMIO starting from 0xC0
  //
  for (Index = 0; Index < SPI_HEAD_LENGTH; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + XhcBootRamSize + Index));
  }

  for (Index = 0; Index < BcdSize; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + SPI_HEAD_LENGTH + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + BcdAddress + Index));
  }

  for (Index = 0; Index < AcdSize; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + SPI_HEAD_LENGTH + BcdSize + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + AcdAddress + Index));
  }

  //
  // Step 3. to enable the BOOT RAM preload functionality.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~BIT0, BIT0);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~BIT29, 0);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04 + 2, AccessWidth16, 0x7FFF, BIT15);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04, AccessWidth16, 0x0000, 0);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG08 + 2, AccessWidth16, 0x0000, 0x8000);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG08, AccessWidth16, 0x0000, 0);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~BIT29, BIT29);

  for (;;) {
    ReadMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00 , AccessWidth32, &RegData);
    if (RegData & BIT30) {
      break;
    }
  }
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~BIT29, 0);

  //
  //   Set the starting address offset for Instruction RAM preload.
  //
  FwAddress = ACPIMMIO16 (XhciFwStarting + FW_ADDR_OFFSET + XhcBootRamSize);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth16, 0x0000, ACPIMMIO16 (XhciFwStarting + FwAddress));
  FwAddress += 2;
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04, AccessWidth16, 0x0000, FwAddress + XhcBootRamSize);

  FwSize = ACPIMMIO16 (XhciFwStarting + FW_SIZE_OFFSET + XhcBootRamSize);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG08, AccessWidth16, 0x0000, 0);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG08 + 2, AccessWidth16, 0x0000, FwSize);
  //
  // Step 3.5 to enable the instruction RAM preload functionality.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04 + 2, AccessWidth16, 0x7FFF, 0);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~BIT29, BIT29);

  for (;;) {
    ReadMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00 , AccessWidth32, &RegData);
    if (RegData & BIT30) {
      break;
    }
  }
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~BIT29, 0);

  //
  // Step 4. to release resets in XHCI_ACPI_MMIO_AMD_REG00. wait for USPLL to lock by polling USPLL lock.
  //

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~U3PLL_RESET, 0);       ///Release U3PLLreset
  for (;;) {
    ReadMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00 , AccessWidth32, &RegData);
    if (RegData & U3PLL_LOCK) {
      break;
    }
  }

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~U3PHY_RESET, 0);       ///Release U3PHY
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~U3CORE_RESET, 0);      ///Release core reset

  FchXhciRecoveryInitIndirectReg ( StdHeader, FchRevision );

  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(BIT4 + BIT5), 0);                /// Disable Device 22
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, ~(BIT7), BIT7);                    /// Enable 2.0 devices
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(BIT21), BIT21);
  //
  // Step 5.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, ~(BIT17 + BIT18 + BIT19), BIT17 + BIT18 + BIT19);
  //
  // PLUG/UNPLUG of USB 2.0 devices make the XHCI USB 2.0 ports unfunctional - fix enable
  // ACPI_USB3.0_REG 0x20[12:11] = 2'b11
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x3 << 11)), (UINT32) (0x3 << 11));
  //
  // XHC 2 USB2 ports interactional issue - fix enable
  // ACPI_USB3.0_REG 0x20[16] = 1'b1
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x1 << 16)), (UINT32) (0x1 << 16));
  //
  // XHC USB2.0 Ports suspend Enhancement
  // ACPI_USB3.0_REG 0x20[15] = 1'b1
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x1 << 15)), (UINT32) (0x1 << 15));
  //
  // XHC HS/FS IN Data Buffer Underflow issue - fix enable
  // ACPI_USB3.0_REG 0x20[20:18] = 0x7
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~((UINT32) (0x7 << 18)), (UINT32) (0x7 << 18));
  //
  // EHCI3/OHCI3 blocks Blink Global Clock Gating when EHCI/OHCI Dev 22 fn 0/2 are disabled
  // ACPI_PMIO_F0[13] =1
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF0, AccessWidth32, ~((UINT32) (0x1 << 13)), (UINT32) (0x1 << 13));
  //
  // USB leakage current on differential lines when ports are switched to XHCI - Fix enable
  // ACPI_PMIO_F0[14] =1
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF0, AccessWidth32, ~((UINT32) (0x1 << 14)), (UINT32) (0x1 << 14));

  // RRG 8.26 XHCI Clear pending PME on Sx entry
  RwXhciIndReg ( FCH_XHCI_IND_REG54, ~(BIT15), BIT15, StdHeader);

  //
  // UMI Lane Configuration Information for XHCI Firmware to Calculate the Bandwidth for USB 3.0 ISOC Devices
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~(BIT25 + BIT24), BIT24);

  // RPR 8.23 FS/LS devices not functional after resume from S4 fix enable (SB02699)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~(BIT22), BIT22);
  // RPR 8.24 XHC USB2.0 Hub disable issue fix enable (SB02702)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT20), BIT20);
  // Set HCIVERSION to 1.0
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT15), BIT15);
  // xHCI 1.0 Sub-Features Supported
  // Blobk Event Interrupt Flag (BEI)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT1), BIT1);
  // Force Stopped Event (FSE)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT2), BIT2);
  // Software LPM
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT3), 0);
  // Hardware LPM
  // Skip TRB IOC Event
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT6), BIT6);
  // Remove Secondary Bandwith Domain Reporting
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT7), BIT7);
  // Cold Attach Status
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT8), BIT8);
  // Endpoint Status Update Ordering
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT9), BIT9);
  // Report Event during SKIP on Missed Service Error
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT10), BIT10);
  // Soft Retry
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT11), BIT11);
  // U3 Exit
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT12), BIT12);
  // USB3.0 Link Command
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT13), BIT13);
  // MSE FrameId invalid
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT14), BIT14);
  // Port Test Mode
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT16), BIT16);
  // Miscellaneous Design Improvements
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG40, AccessWidth32, ~(BIT0), BIT0);
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG40, AccessWidth32, ~(BIT25), 0);

  // XHC USB2 Loopback RX SE0
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, ~(BIT13 + BIT14 + BIT21), BIT13 + BIT14 + BIT21);
  // XHC U2IF_Enabled_Quiettermination off
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT20), BIT20);
  // XHC S0 BLM Reset Mode
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGF2, AccessWidth8, ~(BIT3), BIT3);
  // Enhance XHC Ent_Flag
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT22), BIT22);
  // Enhance TRB Pointer when both MSE and SKIP TRB IOC evt opened
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT17), BIT17);
  // LPM Broadcast disable
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT18), BIT18);

  // Enhance XHC FS/LS connect
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT24), BIT24);
  // Enhance XHC ISOCH td_cmp
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT25), BIT25);
  // LPM Clock 5us Select
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT8), BIT8);
  // Enhance DPP ERR as XactErr
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT9), BIT9);
  // Enhance U2IF PME Enable
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT10), BIT10);
  // U2IF S3 Disconnect detection
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT12), BIT12);
  // Stream Error Handling
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT20 + BIT21 + BIT22), (BIT20 + BIT21 + BIT22));
  // FLA Deassert
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT23), BIT23);

  // Enhance LPM Host initial L1 Exit
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~BIT29, BIT29);

  // Enhance resume after disconnect
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG98, AccessWidth32, ~(BIT30), BIT30);
  // Enhance SS HD Detected on Plug-in during S3
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG98, AccessWidth32, ~(BIT31), BIT31);
  // Frame Babble Reporting
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT27), BIT27);
  // xHCI Debug Capability
  // DCP Halt RSTSM OFF
  // Enable DCP DPH check
  // DCP LTSSM Inactive to Rxdetect
  // Enhance DCP EP State
  // DCP Remote Wakeup Capable
  // Enable ERDY send once DBC detectes HIT/HOT
  // Block HIT/HOT until service interval done
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT0 + BIT1 + BIT2), BIT0 + BIT1 + BIT2);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG120);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT3), BIT3);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT21), BIT21);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG128);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT0), BIT0);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT3 + BIT4), BIT3 + BIT4);

  // Enhance SS HS detected during S3
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG48);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT1), BIT1);
  // Enhance U1 timer (shorten U1 exit response time)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG48);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT14), BIT14);
  // Enhance HW LPM U2Entry state
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT17), BIT17);
  // Enhance SSIF PME
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT15 + BIT14), (BIT15 + BIT14));
  // U2IF Remote Wake Select
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT11), BIT11);
  // HS Data Toggle Error Handling
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT16), BIT16);
  // USB20PHY FL Speed select
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, ~(BIT28), BIT28);
  // Enable Fix for DBC compatibility
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT5), BIT5);
  // Enable Fix for ACPI registers write issue.
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG28, AccessWidth32, ~(BIT0), BIT0);
  //
  // For BTS only
  //
  // LPM reated items
  // HwLpmAddrSel (22) U2LpmTranArbEn, ColdAttachMode.
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT20 + BIT21 + BIT22), (BIT20 + BIT21 + BIT22));
  // HwLpmStateSel (24), HwLpmDeconfigL1Exit (25), HwLpmL1StopEpEn (26).
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG24, AccessWidth32, ~(BIT24 + BIT25 + BIT26), (BIT24 + BIT25 + BIT26));
  // Xhci10En: xHCI 10 Enable (0), HwLpmEn (4), SkipTrbIocEvtLenMode (24)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG30, AccessWidth32, ~(BIT0 + BIT4 + BIT24), (BIT4 + BIT24));
  // DcpNumP1En
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG100);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~ BIT5, BIT5);
  // LtssmDisconnectToConnect
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, FCH_XHCI_IND_REG48);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, ~(BIT16), BIT16);
  // CcuMode
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG10, AccessWidth32, 0xFFFF00FF, 0x2A00);
  // XtalPciClk_UseEcClkSel clear
  RwMem (ACPI_MMIO_BASE + MISC_BASE + FCH_MISC_REG50 + 1, AccessWidth8, ~BIT1, 0);
  // Change PHY LFPS Detection threshold (RX_LFPSDET_TH[2:0]) to 6h from default setting 4h
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, 0x80);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, 0xFFFFFFF8, 0x06);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG48, AccessWidth32, 0x00000000, 0xC0);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG4C, AccessWidth32, 0xFFFFFFF8, 0x06);
  return EFI_SUCCESS;
}
/**
 * FchXhciInitIndirectReg - Config XHCI Indirect Registers
 *
 *
 *
 * @param[in] StdHeader AMD Standard Header
 *
 */
VOID
FchXhciInitIndirectReg (
  IN       AMD_CONFIG_PARAMS *StdHeader
  )
{
  UINT32 DrivingStrength;
  UINT32 Port;
  UINT32 Register;
  UINT32 RegValue;
  UINT8  Index;
  DrivingStrength = 0;
  Port = 0;
  //
  // SuperSpeed PHY Configuration (adaptation mode setting)
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG94, 0xFFFFFC00, 0x00000021, StdHeader);
  RwXhciIndReg ( FCH_XHCI_IND_REGD4, 0xFFFFFC00, 0x00000021, StdHeader);
  //
  // SuperSpeed PHY Configuration (CR phase and frequency filter settings)
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG98, 0xFFFFFFC0, 0x0000000A, StdHeader);
  RwXhciIndReg ( FCH_XHCI_IND_REGD8, 0xFFFFFFC0, 0x0000000A, StdHeader);
  //
  // BLM Meaasge
  //
  RwXhciIndReg ( FCH_XHCI_IND_REG00, 0xF8FFFFFF, 0x07000000, StdHeader);
  //
  // xHCI USB 2.0 PHY Settings
  // Step 1 is done by hardware default
  // Step 2
  for (Port = 0; Port < 4; Port ++) {
    DrivingStrength = BIT2;
    if (Port < 2) {
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE1E78, (Port << 13) + DrivingStrength, StdHeader);
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE1E78, (Port << 13) + BIT8 + BIT7 + DrivingStrength, StdHeader);
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0E78, (Port << 13) + BIT8 + BIT7 + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci0IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFEFFF, 0x00001000, StdHeader);
    } else {
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE1E78, ((Port - 2) << 13) + DrivingStrength, StdHeader);
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE1E78, ((Port - 2) << 13) + BIT8 + BIT7 + DrivingStrength, StdHeader);
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFE0E78, ((Port - 2) << 13) + BIT8 + BIT7 + DrivingStrength, StdHeader);
      Register = FCH_XHCI_IND60_REG00;
      Index = 0;
      do {
        WritePci ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x48, AccessWidth32, &Register, StdHeader);
        ReadPci ((USB_XHCI1_BUS_DEV_FUN << 16) + 0x4C, AccessWidth32, &RegValue, StdHeader);
        Index++;
        FchStall (10, StdHeader);
      } while ((RegValue & BIT17) && (Index < 10 ));
      RwXhci1IndReg ( FCH_XHCI_IND60_REG00, 0xFFFFEFFF, 0x00001000, StdHeader);
    }
  }

  // Step 3
  RwXhciIndReg ( FCH_XHCI_IND60_REG0C, ~ ((UINT32) (0x0f << 8)), ((UINT32) (0x02 << 8)), StdHeader);
  RwXhciIndReg ( FCH_XHCI_IND60_REG08, ~ ((UINT32) (0xff << 8)), ((UINT32) (0x0f << 8)), StdHeader);
}
/**
 * FchXhciInitBeforePciInit - Config XHCI controller before PCI
 * emulation
 *
 *
 *
 * @param[in] FchDataPtr Fch configuration structure pointer.
 *
 */
VOID
FchXhciInitBeforePciInit (
  IN  FCH_DATA_BLOCK     *FchDataPtr
  )
{
  UINT16                BcdAddress;
  UINT16                BcdSize;
  UINT16                AcdAddress;
  UINT16                AcdSize;
  UINT16                FwAddress;
  UINT16                FwSize;
  UINTN                 XhciFwStarting;
  UINT32                SpiValidBase;
  UINT32                RegData;
  UINT16                Index;
  BOOLEAN               Xhci0Enable;
  BOOLEAN               Xhci1Enable;
  FCH_DATA_BLOCK        *LocalCfgPtr;
  AMD_CONFIG_PARAMS     *StdHeader;

  LocalCfgPtr = (FCH_DATA_BLOCK *)FchDataPtr;
  StdHeader = LocalCfgPtr->StdHeader;
  Xhci0Enable = LocalCfgPtr->Usb.Xhci0Enable;
  Xhci1Enable = LocalCfgPtr->Usb.Xhci1Enable;

  if (( Xhci0Enable == 0 ) && (Xhci1Enable == 0)) {
    return;
  }
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0x00000000, 0x00400700);
  FchStall (20, StdHeader);

  if ( LocalCfgPtr->Usb.UserDefineXhciRomAddr == 0 ) {
    //
    // Get ROM SIG starting address for USB firmware starting address (offset 0x0C to SIG address)
    //
    GetRomSigPtr (&XhciFwStarting, StdHeader);

    if (XhciFwStarting == 0) {
      return;
    }
    XhciFwStarting = ACPIMMIO32 (XhciFwStarting + FW_TO_SIGADDR_OFFSET);
  } else {
    XhciFwStarting = ( UINTN ) LocalCfgPtr->Usb.UserDefineXhciRomAddr;
  }
  if (IsLpcRom ()) {
    //
    // XHCI firmware re-load
    //
    RwPci ((LPC_BUS_DEV_FUN << 16) + FCH_LPC_REGCC, AccessWidth32, (UINT32)~BIT2, (UINT32)(BIT2 + BIT1 + BIT0), StdHeader);
    RwPci ((LPC_BUS_DEV_FUN << 16) + FCH_LPC_REGCC, AccessWidth32, 0x00000FFF, (UINT32) (XhciFwStarting), StdHeader);
  }

  //
  // Enable SuperSpeed receive special error case logic. 0x20 bit8
  // Enable USB2.0 RX_Valid Synchronization. 0x20 bit9
  // Enable USB2.0 DIN/SE0 Synchronization. 0x20 bit10
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, 0xFFFFF8FF, 0x00000700);
  //
  // SuperSpeed PHY Configuration (adaptation timer setting)
  // XHC U1 LFPS Exit time
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90, AccessWidth32, 0xCFF00000, 0x000AAAAA);
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90 + 0x40, AccessWidth32, 0xFFF00000, 0x000AAAAA);

  //
  // Step 1. to enable Xhci IO and Firmware load mode
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, (UINT32)~(BIT4 + BIT5), 0);                /// Disable Device 22
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, (UINT32)~(BIT7), (UINT32)BIT7);                    /// Enable 2.0 devices
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0xF0FFFFFC, (Xhci0Enable + (Xhci1Enable << 1)) & 0x03);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, 0xEFFFFFFF, 0x10000000);

  //
  // Step 2. to read a portion of the USB3_APPLICATION_CODE from BIOS ROM area and program certain registers.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA0, AccessWidth32, 0x00000000, (SPI_HEAD_LENGTH << 16));

  BcdAddress = ACPIMMIO16 (XhciFwStarting + BCD_ADDR_OFFSET);
  BcdSize = ACPIMMIO16 (XhciFwStarting + BCD_SIZE_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA4, AccessWidth16, 0x0000, BcdAddress);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA4 + 2, AccessWidth16, 0x0000, BcdSize);

  AcdAddress = ACPIMMIO16 (XhciFwStarting + ACD_ADDR_OFFSET);
  AcdSize = ACPIMMIO16 (XhciFwStarting + ACD_SIZE_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA8, AccessWidth16, 0x0000, AcdAddress);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGA8 + 2, AccessWidth16, 0x0000, AcdSize);

  SpiValidBase = SPI_BASE2 (XhciFwStarting + 4) | SPI_BAR0_VLD | SPI_BASE0 | SPI_BAR1_VLD | SPI_BASE1 | SPI_BAR2_VLD;
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB0, AccessWidth32, 0x00000000, SpiValidBase);
  //
  //   Copy Type0/1/2 data block from ROM image to MMIO starting from 0xC0
  //
  for (Index = 0; Index < SPI_HEAD_LENGTH; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + Index));
  }

  for (Index = 0; Index < BcdSize; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + SPI_HEAD_LENGTH + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + BcdAddress + Index));
  }

  for (Index = 0; Index < AcdSize; Index++) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGC0 + SPI_HEAD_LENGTH + BcdSize + Index, AccessWidth8, 0, ACPIMMIO8 (XhciFwStarting + AcdAddress + Index));
  }

  //
  // Step 3. to enable the instruction RAM preload functionality.
  //
  FwAddress = ACPIMMIO16 (XhciFwStarting + FW_ADDR_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth16, 0x0000, ACPIMMIO16 (XhciFwStarting + FwAddress));
  FwAddress += 2;
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04, AccessWidth16, 0x0000, FwAddress);

  FwSize = ACPIMMIO16 (XhciFwStarting + FW_SIZE_OFFSET);
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG04 + 2, AccessWidth16, 0x0000, FwSize);
  //
  //   Set the starting address offset for Instruction RAM preload.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG08, AccessWidth16, 0x0000, 0);

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, (UINT32)~BIT29, (UINT32)BIT29);

  for (;;) {
    ReadMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00 , AccessWidth32, &RegData);
    if (RegData & BIT30) {
      break;
    }
  }
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, (UINT32)~BIT29, 0);

  //
  // Step 4. to release resets in XHCI_ACPI_MMIO_AMD_REG00. wait for USPLL to lock by polling USPLL lock.
  //

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, (UINT32)~U3PLL_RESET, 0);       ///Release U3PLLreset
  for (;;) {
    ReadMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00 , AccessWidth32, &RegData);
    if (RegData & U3PLL_LOCK) {
      break;
    }
  }

  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, (UINT32)~U3PHY_RESET, 0);       ///Release U3PHY
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, (UINT32)~U3CORE_RESET, 0);      ///Release core reset

  //
  // SuperSpeed PHY Configuration
  //
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG90, AccessWidth32, 0xFFF00000, 0x000AAAAA);
  //RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGD0, AccessWidth32, 0xFFF00000, 0x000AAAAA);

  FchXhciInitIndirectReg (StdHeader);

  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, (UINT32)~(BIT4 + BIT5), 0);                /// Disable Device 22
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGEF, AccessWidth8, (UINT32)~(BIT7), (UINT32)BIT7);                    /// Enable 2.0 devices
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, (UINT32)~(BIT21), (UINT32)BIT21);
  //
  // Step 5.
  //
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG00, AccessWidth32, (UINT32)~(BIT17 + BIT18 + BIT19), (UINT32)(BIT17 + BIT18));

  XhciA12Fix ();

  //
  // UMI Lane Configuration Information for XHCI Firmware to Calculate the Bandwidth for USB 3.0 ISOC Devices
  //
  if (!(IsUmiOneLaneGen1Mode (StdHeader))) {
    RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, (UINT32)~(BIT25 + BIT24), (UINT32)BIT24);
  }
  // RPR 8.23 FS/LS devices not functional after resume from S4 fix enable (SB02699)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REG20, AccessWidth32, (UINT32)~(BIT22), (UINT32)BIT22);
  // RPR 8.24 XHC USB2.0 Hub disable issue fix enable (SB02702)
  RwMem (ACPI_MMIO_BASE + XHCI_BASE + XHCI_ACPI_MMIO_AMD_REGB4, AccessWidth32, (UINT32)~(BIT20), (UINT32)BIT20);
}
/**
 * FchInitResetSataProgram - Config Sata controller during
 * Power-On
 *
 *
 *
 * @param[in] FchDataPtr Fch configuration structure pointer.
 *
 */
VOID
FchInitResetSataProgram (
  IN  VOID     *FchDataPtr
  )
{
  UINT8        SataPortNum;
  UINT8        PortStatusByte;
  UINT8        EfuseByte;
  UINT8        FchSataMode;
  UINT8        FchSataInternal100Spread;
  FCH_RESET_DATA_BLOCK      *LocalCfgPtr;
  AMD_CONFIG_PARAMS         *StdHeader;

  LocalCfgPtr = (FCH_RESET_DATA_BLOCK *) FchDataPtr;
  StdHeader = LocalCfgPtr->StdHeader;

  //
  //FchSataMode = LocalCfgPtr->Sata.SATA_MODE.SataMode.SataModeReg;
  //New structure need calculate Sata Register value
  //
  FchSataMode = 0;
  if ( LocalCfgPtr->FchReset.SataEnable ) {
    FchSataMode |= 0x01;
  }
  if ( LocalCfgPtr->Sata6AhciCap ) {
    FchSataMode |= 0x02;
  }
  if ( LocalCfgPtr->SataSetMaxGen2 ) {
    FchSataMode |= 0x04;
  }
  if ( LocalCfgPtr->FchReset.IdeEnable ) {
    FchSataMode |= 0x08;
  }

  FchSataMode |= (( LocalCfgPtr->SataClkMode ) << 4 ) ;
  LocalCfgPtr->SataModeReg = FchSataMode;            ///Save Back to Structure

  FchSataInternal100Spread = ( UINT8 ) LocalCfgPtr->SataInternal100Spread;
  SataPortNum = 0;

  if ( ReadFchChipsetRevision ( StdHeader ) >= FCH_BOLTON ) {
    // ECO host link domain may not be reset correctly by device's OOB issue.
    RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG48 + 3), AccessWidth8,  ~(UINT32) BIT6, BIT6, StdHeader);
  }
  //
  // Sata Workaround
  //
  for ( SataPortNum = 0; SataPortNum < 0x08; SataPortNum++ ) {
    RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG40 + 2), AccessWidth8, 0xFF, 1 << SataPortNum, StdHeader);
    FchStall (2, StdHeader);
    RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG40 + 2), AccessWidth8, (0xFF ^ (1 << SataPortNum)) , 0x00, StdHeader);
    FchStall (2, StdHeader);
  }

  RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG84 + 3), AccessWidth8,  ~(UINT32) BIT2, 0, StdHeader);
  RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REGA0), AccessWidth8, ~(UINT32) (BIT2 + BIT3 + BIT4 + BIT5 + BIT6), BIT2 + BIT3 + BIT4 + BIT5, StdHeader);

  //
  // Sata Setting for clock mode only
  //
  RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGDA, AccessWidth8, 0, FchSataMode);

  if ( FchSataInternal100Spread ) {
    RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x1E, AccessWidth8, 0xFF, BIT4);
    RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG84), AccessWidth32, 0xFFFFFFFB, 0x00, StdHeader);
  } else {
    RwMem (ACPI_MMIO_BASE + MISC_BASE + 0x1E, AccessWidth8, ~(UINT32) BIT4, 0x00);
  }

  EfuseByte = SATA_FIS_BASE_EFUSE_LOC;
  GetEfuseStatus (&EfuseByte, StdHeader);

  if (EfuseByte & BIT0) {
    RwMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGDA, AccessWidth8, 0xFB, 0x04);
  }

  ReadMem (ACPI_MMIO_BASE + PMIO_BASE + FCH_PMIOA_REGDA, AccessWidth8, &PortStatusByte);
  if ( ((PortStatusByte & 0xF0) == 0x10) ) {
    RwMem (ACPI_MMIO_BASE + MISC_BASE + FCH_PMIOA_REG08, AccessWidth8, 0, BIT5);
  }

  if ( FchSataInternal100Spread ) {
    RwPci (((SATA_BUS_DEV_FUN << 16) + FCH_SATA_REG84), AccessWidth32, 0xFFFFFFFF, 0x04, StdHeader);
  }
}