bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod) { assert(!equiv.IsNegative() && equiv < mod); Integer gcd = GCD(equiv, mod); if (gcd != Integer::One()) { // the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv) if (p <= gcd && gcd <= max && IsPrime(gcd)) { p = gcd; return true; } else return false; } BuildPrimeTable(); if (p <= primeTable[primeTableSize-1]) { word *pItr; --p; if (p.IsPositive()) pItr = std::upper_bound(primeTable, primeTable+primeTableSize, p.ConvertToLong()); else pItr = primeTable; while (pItr < primeTable+primeTableSize && *pItr%mod != equiv) ++pItr; if (pItr < primeTable+primeTableSize) { p = *pItr; return p <= max; } p = primeTable[primeTableSize-1]+1; } assert(p > primeTable[primeTableSize-1]); if (mod.IsOdd()) return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1); p += (equiv-p)%mod; if (p>max) return false; PrimeSieve sieve(p, max, mod); while (sieve.NextCandidate(p)) { if (FastProbablePrimeTest(p) && IsPrime(p)) return true; } return false; }
bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector) { assert(!equiv.IsNegative() && equiv < mod); Integer gcd = GCD(equiv, mod); if (gcd != Integer::One()) { // the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv) if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd))) { p = gcd; return true; } else return false; } unsigned int primeTableSize; const word16 * primeTable = GetPrimeTable(primeTableSize); if (p <= primeTable[primeTableSize-1]) { const word16 *pItr; --p; if (p.IsPositive()) pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong()); else pItr = primeTable; while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr)))) ++pItr; if (pItr < primeTable+primeTableSize) { p = *pItr; return p <= max; } p = primeTable[primeTableSize-1]+1; } assert(p > primeTable[primeTableSize-1]); if (mod.IsOdd()) return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector); p += (equiv-p)%mod; if (p>max) return false; PrimeSieve sieve(p, max, mod); while (sieve.NextCandidate(p)) { if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p)) return true; } return false; }