Exemple #1
0
/* ----------------------------- MNI Header -----------------------------------
@NAME       :  compute_chamfer
@INPUT/OUTPUT: chamfer
                   The original input volume will be destroyed and replaced
                   with the resulting chamfer distance volume.  The chamfer
                   will contains 0's where the mask was and values > 0.0
                   for all other voxels, where the value is an estimate of
                   the distance to the the nearest voxel of the mask.
@RETURNS    : ERROR if error, OK otherwise
@DESCRIPTION: Uses an idea from georges, who got it from claire, 
              who got it from Borgefors
@GLOBALS    : 
@CALLS      : 
@CREATED    : Nov 2, 1998 Louis
@MODIFIED   : 
---------------------------------------------------------------------------- */
VIO_Status compute_chamfer(VIO_Volume chamfer, VIO_Real max_val)
{

   VIO_Real
      mask_f[3][3][3],
      mask_b[3][3][3],
      zero, min,
      vox_min, vox_max,
      val, val2;
   int
      sizes[VIO_MAX_DIMENSIONS],
      i,j,k,
      ind0,ind1,ind2;
   
   VIO_progress_struct 
      progress;
   
   get_volume_sizes(chamfer, sizes);

   get_volume_voxel_range(chamfer, &vox_min, &vox_max);

   zero = CONVERT_VALUE_TO_VOXEL(chamfer,0.0);
   
   /* init chamfer to be  binary valued with 0.0 on the object,
      and infinity (or vox_max) elsewhere */
   
   if (debug) print ("initing chamfer vol (%d %d %d)\n",sizes[0],sizes[1],sizes[2]);
   for(ind0=0; ind0<sizes[0]; ind0++) {
      for(ind1=0; ind1<sizes[1]; ind1++) {
         for(ind2=0; ind2<sizes[2]; ind2++) {
            
            GET_VOXEL_3D(val, chamfer, ind0, ind1, ind2);
            if (val == zero) {
               SET_VOXEL_3D(chamfer, ind0, ind1, ind2, vox_max ); 
            }            
            else {
               SET_VOXEL_3D(chamfer, ind0, ind1, ind2, vox_min); 
            }
            
         }
      }
   }

   if (debug) print ("building mask\n");

   build_mask(chamfer, mask_f, mask_b);

   set_volume_real_range(chamfer, 0.0, max_val);
   zero = CONVERT_VALUE_TO_VOXEL(chamfer,0.0);

   if (verbose) initialize_progress_report( &progress, TRUE, sizes[0], 
                                           "forward pass");
   
   for(ind0=1; ind0<sizes[0]-1; ind0++) {
      for(ind1=1; ind1<sizes[1]-1; ind1++) {
         for(ind2=1; ind2<sizes[2]-1; ind2++) {

            GET_VALUE_3D(val, chamfer, ind0, ind1, ind2);
            
            if (val != zero) { /* then apply forward mask */

               min = val;

               for(i=-1; i<=+1; i++) {
                  for(j=-1; j<=+1; j++) {
                     for(k=-1; k<=+1; k++) {
                        
                        GET_VALUE_3D(val, chamfer, i+ind0, j+ind1, k+ind2);
                        
                        val2 = val + mask_f[i+1][j+1][k+1];
                        min = MIN (min, val2);
                        
                     }
                  }
               }
                           
               min = convert_value_to_voxel(chamfer, min);

               SET_VOXEL_3D(chamfer, ind0, ind1, ind2, min );              
               
            } /* if val != 0.0 */
            
         } /* ind2 */
      } /* ind1 */
      if (verbose) update_progress_report( &progress, ind0+1 );
   } /* ind0 */
   
   if (verbose) terminate_progress_report( &progress );


   if (verbose) initialize_progress_report( &progress, TRUE, sizes[0], 
                                           "reverse pass");
       
   for(ind0=sizes[0]-2; ind0>=1; ind0--) {
      for(ind1=sizes[1]-2; ind1>=1; ind1--) {
         for(ind2=sizes[2]-2; ind2>=1; ind2--) {
            
            GET_VALUE_3D(val, chamfer, ind0, ind1, ind2);
            
            if (val != zero) { /* then apply backwardmask */
                                
               min = val;

               for(i=-1; i<=1; i++) {
                  for(j=-1; j<=+1; j++) {
                     for(k=-1; k<=+1; k++) {
                        
                        GET_VALUE_3D(val, chamfer, i+ind0, j+ind1, k+ind2);
                        
                        val2 = val + mask_b[i+1][j+1][k+1];
                        min = MIN (min, val2);
                        
                     }
                  }
               }
                           
               min = convert_value_to_voxel(chamfer, min);

               SET_VOXEL_3D(chamfer, ind0, ind1, ind2, min );              
               
            } /* if val != 0.0 */
            
         } /* ind2 */
      } /* ind1 */
      if (verbose) update_progress_report( &progress, ind0+1 );
   } /* ind0 */
   
   if (verbose) terminate_progress_report( &progress );
   
   return (OK);
   
}
void normalize_data_to_match_target(VIO_Volume d1, VIO_Volume m1, VIO_Real thresh1,
                                           VIO_Volume d2, VIO_Volume m2, VIO_Real thresh2,
                                           Arg_Data *globals)
{

  VectorR
    vector_step;

  PointR
    starting_position,
    slice,
    row,
    col,
    pos2,
    voxel;

  double
    tx,ty,tz;
  int
    i,j,k,
    r,c,s;

  VIO_Real
    min_range, max_range,
    data_vox, data_val,
    value1, value2;
  
  VIO_Real
    t1,t2,                        /* temporary threshold values     */
    s1,s2,s3;                   /* to store the sums for f1,f2,f3 */
  float 
    *ratios,
    result;                                /* the result */
  int 
    sizes[VIO_MAX_DIMENSIONS],ratios_size,count1,count2;

  VIO_Volume 
    vol;

  VIO_progress_struct
    progress;

  VIO_Data_types 
    data_type;


  set_feature_value_threshold(d1,d2, 
                              &thresh1, &thresh2,
                              &t1,      &t2);                              

  if (globals->flags.debug) {
    print ("In normalize_data_to_match_target, thresh = %10.3f %10.3f\n",t1,t2) ;
  }

  ratios_size = globals->count[ROW_IND] * globals->count[COL_IND] * globals->count[SLICE_IND];

  ALLOC(ratios, ratios_size);  

  fill_Point( starting_position, globals->start[VIO_X], globals->start[VIO_Y], globals->start[VIO_Z]);

  s1 = s2 = s3 = 0.0;
  count1 = count2 = 0;

  for(s=0; s<=globals->count[SLICE_IND]; s++) {

    SCALE_VECTOR( vector_step, globals->directions[SLICE_IND], s);
    ADD_POINT_VECTOR( slice, starting_position, vector_step );

    for(r=0; r<=globals->count[ROW_IND]; r++) {
      
      SCALE_VECTOR( vector_step, globals->directions[ROW_IND], r);
      ADD_POINT_VECTOR( row, slice, vector_step );
      
      SCALE_POINT( col, row, 1.0); /* init first col position */
      for(c=0; c<=globals->count[COL_IND]; c++) {
        
        convert_3D_world_to_voxel(d1, Point_x(col), Point_y(col), Point_z(col), &tx, &ty, &tz);
        
        fill_Point( voxel, tx, ty, tz ); /* build the voxel POINT */
        
        if (point_not_masked(m1, Point_x(col), Point_y(col), Point_z(col))) {

          value1 = get_value_of_point_in_volume( Point_x(col), Point_y(col), Point_z(col), d1);

          if ( value1 > t1 ) {

            count1++;

            DO_TRANSFORM(pos2, globals->trans_info.transformation, col);
            
            convert_3D_world_to_voxel(d2, Point_x(pos2), Point_y(pos2), Point_z(pos2), &tx, &ty, &tz);
            
            fill_Point( voxel, tx, ty, tz ); /* build the voxel POINT */
        
            if (point_not_masked(m2, Point_x(pos2), Point_y(pos2), Point_z(pos2))) {

              value2 = get_value_of_point_in_volume( Point_x(pos2), Point_y(pos2), Point_z(pos2), d2);

              if ( (value2 > t2)  && 
                   ((value2 < -1e-15) || (value2 > 1e-15)) ) {
                  
                ratios[count2++] = value1 / value2 ;

                s1 += value1*value2;
                s2 += value1*value1;
                s3 += value2*value2;
                  
                
              } /* if voxel in d2 */
            } /* if point in mask volume two */
          } /* if voxel in d1 */
        } /* if point in mask volume one */
        
        ADD_POINT_VECTOR( col, col, globals->directions[COL_IND] );
        
      } /* for c */
    } /* for r */
  } /* for s */
  

  if (count2 > 0) {

    if (globals->flags.debug) (void)print ("Starting qsort of ratios...");


    qs_list (ratios,0,count2);

    if (globals->flags.debug) (void)print ("Done.\n");

    result = ratios[ (int)(count2/2) ];        /* the median value */

    if (globals->flags.debug) (void)print ("Normalization: %7d %7d -> %10.8f\n",count1,count2,result);

    if ( fabs(result) < 1e-15) {
      print_error_and_line_num("Error computing normalization ratio `%f'.",__FILE__, __LINE__, result);
    }
    else {

      data_type = get_volume_data_type(d1);



      
      switch( data_type ) {
      case SIGNED_BYTE: 
      case UNSIGNED_BYTE: 
      case SIGNED_SHORT: 
      case UNSIGNED_SHORT: 
	
	/* build temporary working volume */
	
	vol = copy_volume_definition_no_alloc(d1, NC_UNSPECIFIED, FALSE, 0.0, 0.0);
	get_volume_minimum_maximum_real_value(d1, &min_range, &max_range);
	min_range /= result;
	max_range /= result;
	set_volume_real_range(vol, min_range, max_range);
	get_volume_sizes(d1, sizes);
	
	initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1,
				   "Normalizing source data" );
	count1 = 0;
	
	/* reset values in the data volume */
	
	for(i=0; i<sizes[0]; i++)
	  for(j=0; j<sizes[1]; j++) {
	    count1++;
	    update_progress_report( &progress, count1);
	    for(k=0; k<sizes[2]; k++) {
	      GET_VOXEL_3D( data_vox,  d1, i, j, k );
	      data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox);
	      data_val /= result;
	      data_vox = CONVERT_VALUE_TO_VOXEL( vol, data_val);
	      SET_VOXEL_3D( d1 , i, j, k, data_vox );
	    }
	  }
	
	terminate_progress_report( &progress );
	
	set_volume_real_range(d1, min_range, max_range);
	
	if (globals->flags.debug) (void)print ("After normalization min,max, thresh = %f %f %f\n",
					       min_range, max_range, t1/result);
	
	delete_volume(vol);
	break;
	
      default:			/* then volume should be either float or double */
	
	get_volume_sizes(d1, sizes);
	initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1,
				   "Normalizing source data" );
	count1 = 0;
	
	/* nomalize the values in the data volume */
	
	for(i=0; i<sizes[0]; i++)
	  for(j=0; j<sizes[1]; j++) {
	    count1++;
	    update_progress_report( &progress, count1);
	    
	    for(k=0; k<sizes[2]; k++) {	/* it should be possible to directly stream through the voxels, without indexing... */
	      GET_VOXEL_3D( data_vox,  d1, i, j, k );
	      data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox);
	      data_val /= result;
	      data_vox = CONVERT_VALUE_TO_VOXEL( d1, data_val);
	      SET_VOXEL_3D( d1 , i, j, k, data_vox );
	    }
	  }
	terminate_progress_report( &progress );
      }
    }
    
  }
  FREE(ratios);

  
}
void make_zscore_volume(VIO_Volume d1, VIO_Volume m1, 
                               VIO_Real *threshold)
{
  unsigned long
    count;
  int 
    stat_count,
    sizes[VIO_MAX_DIMENSIONS],
    s,r,c;
  VIO_Real
    wx,wy,wz,
    valid_min_dvoxel, valid_max_dvoxel,
    min,max,
    sum, sum2, mean, var, std,
    data_vox,data_val,
    thick[VIO_MAX_DIMENSIONS];

  PointR 
    voxel;

  VIO_Volume 
    vol;

  VIO_progress_struct
    progress;

  /* get default information from data and mask */

  /* build temporary working volume */
 
  vol = copy_volume_definition(d1, NC_UNSPECIFIED, FALSE, 0.0, 0.0);
  set_volume_real_range(vol, MIN_ZRANGE, MAX_ZRANGE);
  get_volume_sizes(d1, sizes);
  get_volume_separations(d1, thick);
  get_volume_voxel_range(d1, &valid_min_dvoxel, &valid_max_dvoxel);

  /* initialize counters and sums */

  count  = 0;
  sum  = 0.0;
  sum2 = 0.0;
  min = 1e38;
  max = -1e38;
  stat_count = 0;

  initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1,
                             "Tally stats" );

                                /* do first pass, to get mean and std */
  for(s=0; s<sizes[0]; s++) {
    for(r=0; r<sizes[1]; r++) {
      for(c=0; c<sizes[2]; c++) {

        stat_count++;
        update_progress_report( &progress, stat_count);
        convert_3D_voxel_to_world(d1, (VIO_Real)s, (VIO_Real)r, (VIO_Real)c, &wx, &wy, &wz);

        if (m1 != NULL) {
          convert_3D_world_to_voxel(m1, wx, wy, wz, &Point_x(voxel), &Point_y(voxel), &Point_z(voxel));
        }
        else {
          wx = 0.0; wy = 0.0; wz = 0.0;
        }

        if (point_not_masked(m1, wx,wy,wz)) {
          
          GET_VOXEL_3D( data_vox,  d1 , s, r, c );

          if (data_vox >= valid_min_dvoxel && data_vox <= valid_max_dvoxel) { 

            data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox);
            
            if (data_val > *threshold) {
              sum  += data_val;
              sum2 += data_val*data_val;
              
              count++;
              
              if (data_val < min)
                min = data_val;
              else
                if (data_val > max)
                  max = data_val;
            }
          }
        }
      }
    }
  }
  terminate_progress_report( &progress );

  stat_count = 0;
  initialize_progress_report(&progress, FALSE, sizes[0]*sizes[1]*sizes[2] + 1,
                             "Zscore convert" );

                                /* calc mean and std */
  mean = sum / (float)count;
  var  = ((float)count*sum2 - sum*sum) / ((float)count*((float)count-1));
  std  = sqrt(var);

  min = 1e38;
  max = -1e38;

                                /* replace the voxel values */
  for(s=0; s<sizes[0]; s++) {
    for(r=0; r<sizes[1]; r++) {
      for(c=0; c<sizes[2]; c++) {
        
        stat_count++;
        update_progress_report( &progress, stat_count);

        GET_VOXEL_3D( data_vox,  d1, s, r, c );
        
        if (data_vox >= valid_min_dvoxel && data_vox <= valid_max_dvoxel) { 
          
          data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox);
          
          if (data_val > *threshold) {

                                /* instead of   
                                   data_val = CONVERT_VALUE_TO_VOXEL(d1, data_vox);
                                   i will use
                                   data_val = CONVERT_VALUE_TO_VOXEL(d1, vol);

                                   since the values in vol are changed with respect to the
                                   new z-score volume */

            data_val = (data_val - mean) / std;
            if (data_val< MIN_ZRANGE) data_val = MIN_ZRANGE;
            if (data_val> MAX_ZRANGE) data_val = MAX_ZRANGE;

            data_vox = CONVERT_VALUE_TO_VOXEL( vol, data_val);
            

            if (data_val < min) {
              min = data_val;
            }
            else {
              if (data_val > max)
                max = data_val;
            }
          }
          else
            data_vox = -DBL_MAX;   /* should be fill_value! */
          
          SET_VOXEL_3D( d1 , s, r, c, data_vox );
        }
        
      }
    }
  }

  terminate_progress_report( &progress );

  set_volume_real_range(d1, MIN_ZRANGE, MAX_ZRANGE);        /* reset the data volume's range */

  *threshold = (*threshold - mean) / std;

  delete_volume(vol);
  
}
void add_speckle_to_volume(VIO_Volume d1, 
                                  float speckle,
                                  double  *start, int *count, VectorR directions[])
{
  VectorR
    vector_step;

  PointR 
    starting_position,
    slice,
    row,
    col;
  VIO_Real valid_min_voxel, valid_max_voxel;

  double
    tx,ty,tz,
    voxel_value;
  int
    xi,yi,zi,
    flip_flag,r,c,s;


  flip_flag = FALSE;

  get_volume_voxel_range(d1, &valid_min_voxel, &valid_max_voxel);
  fill_Point( starting_position, start[0], start[1], start[2]);
  
  for(s=0; s<count[SLICE_IND]; s++) {

    SCALE_VECTOR( vector_step, directions[SLICE_IND], s);
    ADD_POINT_VECTOR( slice, starting_position, vector_step );

    for(r=0; r<count[ROW_IND]; r++) {

      SCALE_VECTOR( vector_step, directions[ROW_IND], r);
      ADD_POINT_VECTOR( row, slice, vector_step );

      SCALE_POINT( col, row, 1.0); /* init first col position */
      for(c=0; c<count[COL_IND]; c++) {

        convert_3D_world_to_voxel(d1, Point_x(col), Point_y(col), Point_z(col), &tx, &ty, &tz);

        xi = (int)floor(tx + 0.5);
        yi = (int)floor( ty + 0.5);
        zi = (int)floor( tz + 0.5 );

        GET_VOXEL_3D( voxel_value, d1 , xi, yi, zi ); 


        if (voxel_value >= valid_min_voxel && voxel_value <= valid_max_voxel) {
          if (flip_flag)
            voxel_value = voxel_value * (1 + 0.01*speckle);
          else
            voxel_value = voxel_value * (1 - 0.01*speckle);

          SET_VOXEL_3D( d1 , xi, yi, zi, voxel_value );
        }

        flip_flag = !flip_flag;


        ADD_POINT_VECTOR( col, col, directions[COL_IND] );

      }
        


    }
  }


}
void get_zscore_values(VIO_Volume d1, VIO_Volume m1, 
                              VIO_Real threshold, VIO_Real *mean, VIO_Real *std)
{
  unsigned long
    count;
  int 
    sizes[VIO_MAX_DIMENSIONS],
    s,r,c;
  VIO_Real
    wx,wy,wz,
    valid_min_dvoxel, valid_max_dvoxel,
    min,max,
    sum, sum2,  var,
    data_vox,data_val,
    thick[VIO_MAX_DIMENSIONS];

  /* get default information from data and mask */

  get_volume_sizes(d1, sizes);
  get_volume_separations(d1, thick);
  get_volume_voxel_range(d1, &valid_min_dvoxel, &valid_max_dvoxel);

  /* initialize counters and sums */

  count  = 0;
  sum  = 0.0;
  sum2 = 0.0;
  min = FLT_MAX;
  max = -FLT_MAX;

                                /* get mean and std */
  for(s=0; s<sizes[0]; s++) {
    for(r=0; r<sizes[1]; r++) {
      for(c=0; c<sizes[2]; c++) {

        convert_3D_voxel_to_world(d1, (VIO_Real)s, (VIO_Real)r, (VIO_Real)c, &wx, &wy, &wz);

        if (point_not_masked(m1, wx,wy,wz)) {
          
          GET_VOXEL_3D( data_vox,  d1 , s, r, c );

          if (data_vox >= valid_min_dvoxel && data_vox <= valid_max_dvoxel) { 

            data_val = CONVERT_VOXEL_TO_VALUE(d1, data_vox);
            
            if (data_val > threshold) {
              sum  += data_val;
              sum2 += data_val*data_val;
              
              count++;
              
              if (data_val < min)
                min = data_val;
              else
                if (data_val > max)
                  max = data_val;
            }
          }
        }
      }
    }
  }


                                /* calc mean and std */
  *mean = sum / (float)count;
  var  = ((float)count*sum2 - sum*sum) / ((float)count*((float)count-1));
  *std  = sqrt(var);
 
}