Exemple #1
0
static MagickBooleanType InverseFourier(FourierInfo *fourier_info,
  const Image *magnitude_image,const Image *phase_image,fftw_complex *fourier,
  ExceptionInfo *exception)
{
  CacheView
    *magnitude_view,
    *phase_view;

  double
    *magnitude,
    *phase,
    *magnitude_source,
    *phase_source;

  MagickBooleanType
    status;

  register const IndexPacket
    *indexes;

  register const PixelPacket
    *p;

  register ssize_t
    i,
    x;

  ssize_t
    y;

  /*
    Inverse fourier - read image and break down into a double array.
  */
  magnitude_source=(double *) AcquireQuantumMemory((size_t)
    fourier_info->height,fourier_info->width*sizeof(*magnitude_source));
  if (magnitude_source == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      return(MagickFalse);
    }
  phase_source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->width*sizeof(*phase_source));
  if (phase_source == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
      return(MagickFalse);
    }
  i=0L;
  magnitude_view=AcquireVirtualCacheView(magnitude_image,exception);
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
  {
    p=GetCacheViewVirtualPixels(magnitude_view,0L,y,fourier_info->width,1UL,
      exception);
    if (p == (const PixelPacket *) NULL)
      break;
    indexes=GetCacheViewAuthenticIndexQueue(magnitude_view);
    for (x=0L; x < (ssize_t) fourier_info->width; x++)
    {
      switch (fourier_info->channel)
      {
        case RedChannel:
        default:
        {
          magnitude_source[i]=QuantumScale*GetPixelRed(p);
          break;
        }
        case GreenChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelGreen(p);
          break;
        }
        case BlueChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelBlue(p);
          break;
        }
        case OpacityChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelOpacity(p);
          break;
        }
        case IndexChannel:
        {
          magnitude_source[i]=QuantumScale*GetPixelIndex(indexes+x);
          break;
        }
        case GrayChannels:
        {
          magnitude_source[i]=QuantumScale*GetPixelGray(p);
          break;
        }
      }
      i++;
      p++;
    }
  }
  i=0L;
  phase_view=AcquireVirtualCacheView(phase_image,exception);
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
  {
    p=GetCacheViewVirtualPixels(phase_view,0,y,fourier_info->width,1,
      exception);
    if (p == (const PixelPacket *) NULL)
      break;
    indexes=GetCacheViewAuthenticIndexQueue(phase_view);
    for (x=0L; x < (ssize_t) fourier_info->width; x++)
    {
      switch (fourier_info->channel)
      {
        case RedChannel:
        default:
        {
          phase_source[i]=QuantumScale*GetPixelRed(p);
          break;
        }
        case GreenChannel:
        {
          phase_source[i]=QuantumScale*GetPixelGreen(p);
          break;
        }
        case BlueChannel:
        {
          phase_source[i]=QuantumScale*GetPixelBlue(p);
          break;
        }
        case OpacityChannel:
        {
          phase_source[i]=QuantumScale*GetPixelOpacity(p);
          break;
        }
        case IndexChannel:
        {
          phase_source[i]=QuantumScale*GetPixelIndex(indexes+x);
          break;
        }
        case GrayChannels:
        {
          phase_source[i]=QuantumScale*GetPixelGray(p);
          break;
        }
      }
      i++;
      p++;
    }
  }
  if (fourier_info->modulus != MagickFalse)
    {
      i=0L;
      for (y=0L; y < (ssize_t) fourier_info->height; y++)
        for (x=0L; x < (ssize_t) fourier_info->width; x++)
        {
          phase_source[i]-=0.5;
          phase_source[i]*=(2.0*MagickPI);
          i++;
        }
    }
  magnitude_view=DestroyCacheView(magnitude_view);
  phase_view=DestroyCacheView(phase_view);
  magnitude=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->center*sizeof(*magnitude));
  if (magnitude == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
      phase_source=(double *) RelinquishMagickMemory(phase_source);
      return(MagickFalse);
    }
  status=InverseQuadrantSwap(fourier_info->width,fourier_info->height,
    magnitude_source,magnitude);
  magnitude_source=(double *) RelinquishMagickMemory(magnitude_source);
  phase=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->width*sizeof(*phase));
  if (phase == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",
        magnitude_image->filename);
      phase_source=(double *) RelinquishMagickMemory(phase_source);
      return(MagickFalse);
    }
  CorrectPhaseLHS(fourier_info->width,fourier_info->width,phase_source);
  if (status != MagickFalse)
    status=InverseQuadrantSwap(fourier_info->width,fourier_info->height,
      phase_source,phase);
  phase_source=(double *) RelinquishMagickMemory(phase_source);
  /*
    Merge two sets.
  */
  i=0L;
  if (fourier_info->modulus != MagickFalse)
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
       for (x=0L; x < (ssize_t) fourier_info->center; x++)
       {
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
         fourier[i]=magnitude[i]*cos(phase[i])+I*magnitude[i]*sin(phase[i]);
#else
         fourier[i][0]=magnitude[i]*cos(phase[i]);
         fourier[i][1]=magnitude[i]*sin(phase[i]);
#endif
         i++;
      }
  else
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
      for (x=0L; x < (ssize_t) fourier_info->center; x++)
      {
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
        fourier[i]=magnitude[i]+I*phase[i];
#else
        fourier[i][0]=magnitude[i];
        fourier[i][1]=phase[i];
#endif
        i++;
      }
  phase=(double *) RelinquishMagickMemory(phase);
  magnitude=(double *) RelinquishMagickMemory(magnitude);
  return(status);
}
Exemple #2
0
static MagickBooleanType ForwardFourierTransform(FourierInfo *fourier_info,
  const Image *image,double *magnitude,double *phase,ExceptionInfo *exception)
{
  CacheView
    *image_view;

  double
    n,
    *source;

  fftw_complex
    *fourier;

  fftw_plan
    fftw_r2c_plan;

  register const IndexPacket
    *indexes;

  register const PixelPacket
    *p;

  register ssize_t
    i,
    x;

  ssize_t
    y;

  /*
    Generate the forward Fourier transform.
  */
  source=(double *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->width*sizeof(*source));
  if (source == (double *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
      return(MagickFalse);
    }
  ResetMagickMemory(source,0,fourier_info->height*fourier_info->width*
    sizeof(*source));
  i=0L;
  image_view=AcquireVirtualCacheView(image,exception);
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
  {
    p=GetCacheViewVirtualPixels(image_view,0L,y,fourier_info->width,1UL,
      exception);
    if (p == (const PixelPacket *) NULL)
      break;
    indexes=GetCacheViewVirtualIndexQueue(image_view);
    for (x=0L; x < (ssize_t) fourier_info->width; x++)
    {
      switch (fourier_info->channel)
      {
        case RedChannel:
        default:
        {
          source[i]=QuantumScale*GetPixelRed(p);
          break;
        }
        case GreenChannel:
        {
          source[i]=QuantumScale*GetPixelGreen(p);
          break;
        }
        case BlueChannel:
        {
          source[i]=QuantumScale*GetPixelBlue(p);
          break;
        }
        case OpacityChannel:
        {
          source[i]=QuantumScale*GetPixelOpacity(p);
          break;
        }
        case IndexChannel:
        {
          source[i]=QuantumScale*GetPixelIndex(indexes+x);
          break;
        }
        case GrayChannels:
        {
          source[i]=QuantumScale*GetPixelGray(p);
          break;
        }
      }
      i++;
      p++;
    }
  }
  image_view=DestroyCacheView(image_view);
  fourier=(fftw_complex *) AcquireQuantumMemory((size_t) fourier_info->height,
    fourier_info->center*sizeof(*fourier));
  if (fourier == (fftw_complex *) NULL)
    {
      (void) ThrowMagickException(exception,GetMagickModule(),
        ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename);
      source=(double *) RelinquishMagickMemory(source);
      return(MagickFalse);
    }
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp critical (MagickCore_ForwardFourierTransform)
#endif
  fftw_r2c_plan=fftw_plan_dft_r2c_2d(fourier_info->width,fourier_info->width,
    source,fourier,FFTW_ESTIMATE);
  fftw_execute(fftw_r2c_plan);
  fftw_destroy_plan(fftw_r2c_plan);
  source=(double *) RelinquishMagickMemory(source);
  /*
    Normalize Fourier transform.
  */
  n=(double) fourier_info->width*(double) fourier_info->width;
  i=0L;
  for (y=0L; y < (ssize_t) fourier_info->height; y++)
    for (x=0L; x < (ssize_t) fourier_info->center; x++)
    {
#if defined(MAGICKCORE_HAVE_COMPLEX_H)
      fourier[i]/=n;
#else
      fourier[i][0]/=n;
      fourier[i][1]/=n;
#endif
      i++;
    }
  /*
    Generate magnitude and phase (or real and imaginary).
  */
  i=0L;
  if (fourier_info->modulus != MagickFalse)
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
      for (x=0L; x < (ssize_t) fourier_info->center; x++)
      {
        magnitude[i]=cabs(fourier[i]);
        phase[i]=carg(fourier[i]);
        i++;
      }
  else
    for (y=0L; y < (ssize_t) fourier_info->height; y++)
      for (x=0L; x < (ssize_t) fourier_info->center; x++)
      {
        magnitude[i]=creal(fourier[i]);
        phase[i]=cimag(fourier[i]);
        i++;
      }
  fourier=(fftw_complex *) RelinquishMagickMemory(fourier);
  return(MagickTrue);
}
Exemple #3
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   R e a d G R A Y I m a g e                                                 %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  ReadGRAYImage() reads an image of raw grayscale samples and returns
%  it.  It allocates the memory necessary for the new Image structure and
%  returns a pointer to the new image.
%
%  The format of the ReadGRAYImage method is:
%
%      Image *ReadGRAYImage(const ImageInfo *image_info,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image_info: the image info.
%
%    o exception: return any errors or warnings in this structure.
%
*/
static Image *ReadGRAYImage(const ImageInfo *image_info,
  ExceptionInfo *exception)
{
  Image
    *canvas_image,
    *image;

  MagickBooleanType
    status;

  MagickOffsetType
    scene;

  QuantumInfo
    *quantum_info;

  QuantumType
    quantum_type;

  size_t
    length;

  ssize_t
    count,
    y;

  unsigned char
    *pixels;

  /*
    Open image file.
  */
  assert(image_info != (const ImageInfo *) NULL);
  assert(image_info->signature == MagickSignature);
  if (image_info->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
      image_info->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  image=AcquireImage(image_info,exception);
  if ((image->columns == 0) || (image->rows == 0))
    ThrowReaderException(OptionError,"MustSpecifyImageSize");
  status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
  if (status == MagickFalse)
    {
      image=DestroyImageList(image);
      return((Image *) NULL);
    }
  if (DiscardBlobBytes(image,(size_t) image->offset) == MagickFalse)
    ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
      image->filename);
  /*
    Create virtual canvas to support cropping (i.e. image.gray[100x100+10+20]).
  */
  image->colorspace=GRAYColorspace;
  canvas_image=CloneImage(image,image->extract_info.width,1,MagickFalse,
    exception);
  (void) SetImageVirtualPixelMethod(canvas_image,BlackVirtualPixelMethod,
    exception);
  quantum_type=GrayQuantum;
  quantum_info=AcquireQuantumInfo(image_info,canvas_image);
  if (quantum_info == (QuantumInfo *) NULL)
    ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
  pixels=GetQuantumPixels(quantum_info);
  if (image_info->number_scenes != 0)
    while (image->scene < image_info->scene)
    {
      /*
        Skip to next image.
      */
      image->scene++;
      length=GetQuantumExtent(canvas_image,quantum_info,quantum_type);
      for (y=0; y < (ssize_t) image->rows; y++)
      {
        count=ReadBlob(image,length,pixels);
        if (count != (ssize_t) length)
          break;
      }
    }
  scene=0;
  count=0;
  length=0;
  do
  {
    /*
      Read pixels to virtual canvas image then push to image.
    */
    if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
      if (image->scene >= (image_info->scene+image_info->number_scenes-1))
        break;
    if (scene == 0)
      {
        length=GetQuantumExtent(canvas_image,quantum_info,quantum_type);
        count=ReadBlob(image,length,pixels);
      }
    for (y=0; y < (ssize_t) image->extract_info.height; y++)
    {
      register const Quantum
        *restrict p;

      register ssize_t
        x;

      register Quantum
        *restrict q;

      if (count != (ssize_t) length)
        {
          ThrowFileException(exception,CorruptImageError,
            "UnexpectedEndOfFile",image->filename);
          break;
        }
      q=GetAuthenticPixels(canvas_image,0,0,canvas_image->columns,1,exception);
      if (q == (Quantum *) NULL)
        break;
      length=ImportQuantumPixels(canvas_image,(CacheView *) NULL,quantum_info,
        quantum_type,pixels,exception);
      if (SyncAuthenticPixels(canvas_image,exception) == MagickFalse)
        break;
      if (((y-image->extract_info.y) >= 0) && 
          ((y-image->extract_info.y) < (ssize_t) image->rows))
        {
          p=GetVirtualPixels(canvas_image,canvas_image->extract_info.x,0,
            image->columns,1,exception);
          q=QueueAuthenticPixels(image,0,y-image->extract_info.y,image->columns,
            1,exception);
          if ((p == (const Quantum *) NULL) ||
              (q == (Quantum *) NULL))
            break;
          for (x=0; x < (ssize_t) image->columns; x++)
          {
            SetPixelGray(image,GetPixelGray(canvas_image,p),q);
            p+=GetPixelChannels(canvas_image);
            q+=GetPixelChannels(image);
          }
          if (SyncAuthenticPixels(image,exception) == MagickFalse)
            break;
        }
      if (image->previous == (Image *) NULL)
        {
          status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,
            image->rows);
          if (status == MagickFalse)
            break;
        }
      count=ReadBlob(image,length,pixels);
    }
    SetQuantumImageType(image,quantum_type);
    /*
      Proceed to next image.
    */
    if (image_info->number_scenes != 0)
      if (image->scene >= (image_info->scene+image_info->number_scenes-1))
        break;
    if (count == (ssize_t) length)
      {
        /*
          Allocate next image structure.
        */
        AcquireNextImage(image_info,image,exception);
        if (GetNextImageInList(image) == (Image *) NULL)
          {
            image=DestroyImageList(image);
            return((Image *) NULL);
          }
        image=SyncNextImageInList(image);
        status=SetImageProgress(image,LoadImagesTag,TellBlob(image),
          GetBlobSize(image));
        if (status == MagickFalse)
          break;
      }
    scene++;
  } while (count == (ssize_t) length);
  quantum_info=DestroyQuantumInfo(quantum_info);
  canvas_image=DestroyImage(canvas_image);
  (void) CloseBlob(image);
  return(GetFirstImageInList(image));
}
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%     C o m b i n e I m a g e s                                               %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  CombineImages() combines one or more images into a single image.  The
%  grayscale value of the pixels of each image in the sequence is assigned in
%  order to the specified channels of the combined image.   The typical
%  ordering would be image 1 => Red, 2 => Green, 3 => Blue, etc.
%
%  The format of the CombineImages method is:
%
%      Image *CombineImages(const Image *images,const ColorspaceType colorspace,
%        ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o images: the image sequence.
%
%    o colorspace: the image colorspace.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport Image *CombineImages(const Image *image,
  const ColorspaceType colorspace,ExceptionInfo *exception)
{
#define CombineImageTag  "Combine/Image"

  CacheView
    *combine_view;

  Image
    *combine_image;

  MagickBooleanType
    status;

  MagickOffsetType
    progress;

  ssize_t
    y;

  /*
    Ensure the image are the same size.
  */
  assert(image != (const Image *) NULL);
  assert(image->signature == MagickSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(exception != (ExceptionInfo *) NULL);
  assert(exception->signature == MagickSignature);
  combine_image=CloneImage(image,0,0,MagickTrue,exception);
  if (combine_image == (Image *) NULL)
    return((Image *) NULL);
  if (SetImageStorageClass(combine_image,DirectClass,exception) == MagickFalse)
    {
      combine_image=DestroyImage(combine_image);
      return((Image *) NULL);
    }
  (void) SetImageColorspace(combine_image,colorspace,exception);
  if ((GetPixelAlphaTraits(image) & UpdatePixelTrait) != 0)
    combine_image->alpha_trait=BlendPixelTrait;
  /*
    Combine images.
  */
  status=MagickTrue;
  progress=0;
  combine_view=AcquireAuthenticCacheView(combine_image,exception);
  for (y=0; y < (ssize_t) combine_image->rows; y++)
  {
    CacheView
      *image_view;

    const Image
      *next;

    Quantum
      *pixels;

    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      i;

    if (status == MagickFalse)
      continue;
    pixels=GetCacheViewAuthenticPixels(combine_view,0,y,combine_image->columns,
      1,exception);
    if (pixels == (Quantum *) NULL)
      {
        status=MagickFalse;
        continue;
      }
    next=image;
    for (i=0; i < (ssize_t) GetPixelChannels(combine_image); i++)
    {
      register ssize_t
        x;

      PixelChannel channel=GetPixelChannelChannel(combine_image,i);
      PixelTrait traits=GetPixelChannelTraits(combine_image,channel);
      if (traits == UndefinedPixelTrait)
        continue;
      if (next == (Image *) NULL)
        continue;
      image_view=AcquireVirtualCacheView(next,exception);
      p=GetCacheViewVirtualPixels(image_view,0,y,next->columns,1,exception);
      if (p == (const Quantum *) NULL)
        continue;
      q=pixels;
      for (x=0; x < (ssize_t) combine_image->columns; x++)
      {
        if (x < (ssize_t) next->columns)
          {
            q[i]=GetPixelGray(next,p);
            p+=GetPixelChannels(next);
          }
        q+=GetPixelChannels(combine_image);
      }
      image_view=DestroyCacheView(image_view);
      next=GetNextImageInList(next);
    }
    if (SyncCacheViewAuthenticPixels(combine_view,exception) == MagickFalse)
      status=MagickFalse;
    if (image->progress_monitor != (MagickProgressMonitor) NULL)
      {
        MagickBooleanType
          proceed;

        proceed=SetImageProgress(image,CombineImageTag,progress++,
          combine_image->rows);
        if (proceed == MagickFalse)
          status=MagickFalse;
      }
  }
  combine_view=DestroyCacheView(combine_view);
  if (status == MagickFalse)
    combine_image=DestroyImage(combine_image);
  return(combine_image);
}
Exemple #5
0
/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                                             %
%                                                                             %
%                                                                             %
%   F l o o d f i l l P a i n t I m a g e                                     %
%                                                                             %
%                                                                             %
%                                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%  FloodfillPaintImage() changes the color value of any pixel that matches
%  target and is an immediate neighbor.  If the method FillToBorderMethod is
%  specified, the color value is changed for any neighbor pixel that does not
%  match the bordercolor member of image.
%
%  By default target must match a particular pixel color exactly.  However,
%  in many cases two colors may differ by a small amount.  The fuzz member of
%  image defines how much tolerance is acceptable to consider two colors as
%  the same.  For example, set fuzz to 10 and the color red at intensities of
%  100 and 102 respectively are now interpreted as the same color for the
%  purposes of the floodfill.
%
%  The format of the FloodfillPaintImage method is:
%
%      MagickBooleanType FloodfillPaintImage(Image *image,
%        const DrawInfo *draw_info,const PixelInfo target,
%        const ssize_t x_offset,const ssize_t y_offset,
%        const MagickBooleanType invert,ExceptionInfo *exception)
%
%  A description of each parameter follows:
%
%    o image: the image.
%
%    o draw_info: the draw info.
%
%    o target: the RGB value of the target color.
%
%    o x_offset,y_offset: the starting location of the operation.
%
%    o invert: paint any pixel that does not match the target color.
%
%    o exception: return any errors or warnings in this structure.
%
*/
MagickExport MagickBooleanType FloodfillPaintImage(Image *image,
  const DrawInfo *draw_info,const PixelInfo *target,const ssize_t x_offset,
  const ssize_t y_offset,const MagickBooleanType invert,
  ExceptionInfo *exception)
{
#define MaxStacksize  262144UL
#define PushSegmentStack(up,left,right,delta) \
{ \
  if (s >= (segment_stack+MaxStacksize)) \
    ThrowBinaryException(DrawError,"SegmentStackOverflow",image->filename) \
  else \
    { \
      if ((((up)+(delta)) >= 0) && (((up)+(delta)) < (ssize_t) image->rows)) \
        { \
          s->x1=(double) (left); \
          s->y1=(double) (up); \
          s->x2=(double) (right); \
          s->y2=(double) (delta); \
          s++; \
        } \
    } \
}

  CacheView
    *floodplane_view,
    *image_view;

  Image
    *floodplane_image;

  MagickBooleanType
    skip,
    status;

  MemoryInfo
    *segment_info;

  PixelInfo
    fill_color,
    pixel;

  register SegmentInfo
    *s;

  SegmentInfo
    *segment_stack;

  ssize_t
    offset,
    start,
    x,
    x1,
    x2,
    y;

  /*
    Check boundary conditions.
  */
  assert(image != (Image *) NULL);
  assert(image->signature == MagickCoreSignature);
  if (image->debug != MagickFalse)
    (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
  assert(draw_info != (DrawInfo *) NULL);
  assert(draw_info->signature == MagickCoreSignature);
  if ((x_offset < 0) || (x_offset >= (ssize_t) image->columns))
    return(MagickFalse);
  if ((y_offset < 0) || (y_offset >= (ssize_t) image->rows))
    return(MagickFalse);
  if (SetImageStorageClass(image,DirectClass,exception) == MagickFalse)
    return(MagickFalse);
  if (IsGrayColorspace(image->colorspace) != MagickFalse)
    (void) SetImageColorspace(image,sRGBColorspace,exception);
  if ((image->alpha_trait == UndefinedPixelTrait) &&
      (draw_info->fill.alpha_trait != UndefinedPixelTrait))
    (void) SetImageAlpha(image,OpaqueAlpha,exception);
  /*
    Set floodfill state.
  */
  floodplane_image=CloneImage(image,image->columns,image->rows,MagickTrue,
    exception);
  if (floodplane_image == (Image *) NULL)
    return(MagickFalse);
  floodplane_image->alpha_trait=UndefinedPixelTrait;
  floodplane_image->colorspace=GRAYColorspace;
  (void) QueryColorCompliance("#000",AllCompliance,
    &floodplane_image->background_color,exception);
  (void) SetImageBackgroundColor(floodplane_image,exception);
  segment_info=AcquireVirtualMemory(MaxStacksize,sizeof(*segment_stack));
  if (segment_info == (MemoryInfo *) NULL)
    {
      floodplane_image=DestroyImage(floodplane_image);
      ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
        image->filename);
    }
  segment_stack=(SegmentInfo *) GetVirtualMemoryBlob(segment_info);
  /*
    Push initial segment on stack.
  */
  status=MagickTrue;
  x=x_offset;
  y=y_offset;
  start=0;
  s=segment_stack;
  PushSegmentStack(y,x,x,1);
  PushSegmentStack(y+1,x,x,-1);
  GetPixelInfo(image,&pixel);
  image_view=AcquireVirtualCacheView(image,exception);
  floodplane_view=AcquireAuthenticCacheView(floodplane_image,exception);
  while (s > segment_stack)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    /*
      Pop segment off stack.
    */
    s--;
    x1=(ssize_t) s->x1;
    x2=(ssize_t) s->x2;
    offset=(ssize_t) s->y2;
    y=(ssize_t) s->y1+offset;
    /*
      Recolor neighboring pixels.
    */
    p=GetCacheViewVirtualPixels(image_view,0,y,(size_t) (x1+1),1,exception);
    q=GetCacheViewAuthenticPixels(floodplane_view,0,y,(size_t) (x1+1),1,
      exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      break;
    p+=x1*GetPixelChannels(image);
    q+=x1*GetPixelChannels(floodplane_image);
    for (x=x1; x >= 0; x--)
    {
      if (GetPixelGray(floodplane_image,q) != 0)
        break;
      GetPixelInfoPixel(image,p,&pixel);
      if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert)
        break;
      SetPixelGray(floodplane_image,QuantumRange,q);
      p-=GetPixelChannels(image);
      q-=GetPixelChannels(floodplane_image);
    }
    if (SyncCacheViewAuthenticPixels(floodplane_view,exception) == MagickFalse)
      break;
    skip=x >= x1 ? MagickTrue : MagickFalse;
    if (skip == MagickFalse)
      {
        start=x+1;
        if (start < x1)
          PushSegmentStack(y,start,x1-1,-offset);
        x=x1+1;
      }
    do
    {
      if (skip == MagickFalse)
        {
          if (x < (ssize_t) image->columns)
            {
              p=GetCacheViewVirtualPixels(image_view,x,y,image->columns-x,1,
                exception);
              q=GetCacheViewAuthenticPixels(floodplane_view,x,y,image->columns-
                x,1,exception);
              if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
                break;
              for ( ; x < (ssize_t) image->columns; x++)
              {
                if (GetPixelGray(floodplane_image,q) != 0)
                  break;
                GetPixelInfoPixel(image,p,&pixel);
                if (IsFuzzyEquivalencePixelInfo(&pixel,target) == invert)
                  break;
                SetPixelGray(floodplane_image,QuantumRange,q);
                p+=GetPixelChannels(image);
                q+=GetPixelChannels(floodplane_image);
              }
              status=SyncCacheViewAuthenticPixels(floodplane_view,exception);
              if (status == MagickFalse)
                break;
            }
          PushSegmentStack(y,start,x-1,offset);
          if (x > (x2+1))
            PushSegmentStack(y,x2+1,x-1,-offset);
        }
      skip=MagickFalse;
      x++;
      if (x <= x2)
        {
          p=GetCacheViewVirtualPixels(image_view,x,y,(size_t) (x2-x+1),1,
            exception);
          q=GetCacheViewAuthenticPixels(floodplane_view,x,y,(size_t) (x2-x+1),1,
            exception);
          if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
            break;
          for ( ; x <= x2; x++)
          {
            if (GetPixelGray(floodplane_image,q) != 0)
              break;
            GetPixelInfoPixel(image,p,&pixel);
            if (IsFuzzyEquivalencePixelInfo(&pixel,target) != invert)
              break;
            p+=GetPixelChannels(image);
            q+=GetPixelChannels(floodplane_image);
          }
        }
      start=x;
    } while (x <= x2);
  }
  status=MagickTrue;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
  #pragma omp parallel for schedule(static,4) shared(status) \
    magick_threads(floodplane_image,image,floodplane_image->rows,1)
#endif
  for (y=0; y < (ssize_t) image->rows; y++)
  {
    register const Quantum
      *restrict p;

    register Quantum
      *restrict q;

    register ssize_t
      x;

    /*
      Tile fill color onto floodplane.
    */
    if (status == MagickFalse)
      continue;
    p=GetCacheViewVirtualPixels(floodplane_view,0,y,image->columns,1,exception);
    q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
    if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL))
      {
        status=MagickFalse;
        continue;
      }
    for (x=0; x < (ssize_t) image->columns; x++)
    {
      if (GetPixelGray(floodplane_image,p) != 0)
        {
          (void) GetFillColor(draw_info,x,y,&fill_color,exception);
          SetPixelViaPixelInfo(image,&fill_color,q);
        }
      p+=GetPixelChannels(floodplane_image);
      q+=GetPixelChannels(image);
    }
    if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
      status=MagickFalse;
  }
  floodplane_view=DestroyCacheView(floodplane_view);
  image_view=DestroyCacheView(image_view);
  segment_info=RelinquishVirtualMemory(segment_info);
  floodplane_image=DestroyImage(floodplane_image);
  return(status);
}