tmp < GeometricField < typename outerProduct<vector,Type>::type, fvPatchField, volMesh > > grad ( const tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >& tssf ) { typedef typename outerProduct<vector, Type>::type GradType; tmp<GeometricField<GradType, fvPatchField, volMesh> > Grad ( fvc::grad(tssf()) ); tssf.clear(); return Grad; }
//***************************************************************************** // // // * //============================================================================= float SJCNoise:: Eval(const float x, const float y, const float z) //============================================================================= { int ix = (int)floor(x); float dx = x - ix; int iy = (int)floor(y); float dy = y - iy; int iz = (int)floor(z); float dz = z - iz; ix &= ( PERM_SIZE - 1 ); iy &= ( PERM_SIZE - 1 ); iz &= ( PERM_SIZE - 1 ); float w000 = Grad(ix, iy, iz, dx, dy, dz); float w010 = Grad(ix, iy+1, iz, dx, dy-1.0f, dz); float w100 = Grad(ix+1, iy, iz, dx-1.0f, dy, dz); float w110 = Grad(ix+1, iy+1, iz, dx-1.0f, dy-1.0f, dz); float w001 = Grad(ix, iy, iz+1, dx, dy, dz-1.0f); float w011 = Grad(ix, iy+1, iz+1, dx, dy-1.0f, dz-1.0f); float w101 = Grad(ix+1, iy, iz+1, dx-1.0f, dy, dz-1.0f); float w111 = Grad(ix+1, iy+1, iz+1, dx-1.0f, dy-1.0f, dz-1.0f); float ux = NoiseWeight(dx); float uy = NoiseWeight(dy); float uz = NoiseWeight(dz); float x00 = ( 1 - ux ) * w000 + ux * w100; float x10 = ( 1 - ux ) * w010 + ux * w110; float x01 = ( 1 - ux ) * w001 + ux * w101; float x11 = ( 1 - ux ) * w011 + ux * w111; float y0 = ( 1 - uy ) * x00 + uy * x10; float y1 = ( 1 - uy ) * x01 + uy * x11; return ( 1 - uz ) * y0 + uz * y1; }
PreconditionerAS<space_type,coef_space_type>::PreconditionerAS( std::string t, space_ptrtype Xh, coef_space_ptrtype Mh, BoundaryConditions bcFlags, std::string const& p, sparse_matrix_ptrtype Pm, double k ) : M_type( AS ), M_Xh( Xh ), M_Vh(Xh->template functionSpace<0>() ), M_Qh(Xh->template functionSpace<1>() ), M_Mh( Mh ), M_Vh_indices( M_Vh->nLocalDofWithGhost() ), M_Qh_indices( M_Qh->nLocalDofWithGhost() ), M_Qh3_indices( Dim ), A(backend()->newVector(M_Vh)), B(backend()->newVector(M_Vh)), C(backend()->newVector(M_Vh)), M_r(backend()->newVector(M_Vh)), M_r_t(backend()->newVector(M_Vh)), M_uout(backend()->newVector(M_Vh)), M_diagPm(backend()->newVector(M_Vh)), //M_t(backend()->newVector(M_Vh)), U( M_Vh, "U" ), M_mu(M_Mh, "mu"), M_er(M_Mh, "er"), M_bcFlags( bcFlags ), M_prefix( p ), M_k(k), M_g(1.-k*k) { tic(); LOG(INFO) << "[PreconditionerAS] setup starts"; this->setMatrix( Pm ); // Needed only if worldComm > 1 // QH3 : Lagrange vectorial space type M_Qh3 = lag_v_space_type::New(Xh->mesh()); M_qh3_elt = M_Qh3->element(); M_qh_elt = M_Qh->element(); M_vh_elt = M_Vh->element(); // Block 11.1 M_s = backend()->newVector(M_Qh3); M_y = backend()->newVector(M_Qh3); // Block 11.2 M_z = backend()->newVector(M_Qh); M_t = backend()->newVector(M_Qh); // Create the interpolation and keep only the matrix auto pi_curl = I(_domainSpace=M_Qh3, _imageSpace=M_Vh); auto Igrad = Grad( _domainSpace=M_Qh, _imageSpace=M_Vh); M_P = pi_curl.matPtr(); M_C = Igrad.matPtr(); M_Pt = backend()->newMatrix(M_Qh3,M_Vh); M_Ct = backend()->newMatrix(M_Qh3,M_Vh); M_P->transpose(M_Pt,MATRIX_TRANSPOSE_UNASSEMBLED); M_C->transpose(M_Ct,MATRIX_TRANSPOSE_UNASSEMBLED); LOG(INFO) << "size of M_C = " << M_C->size1() << ", " << M_C->size2() << std::endl; LOG(INFO) << "size of M_P = " << M_P->size1() << ", " << M_P->size2() << std::endl; // Create vector of indices to create subvectors/matrices std::iota( M_Vh_indices.begin(), M_Vh_indices.end(), 0 ); // Vh indices in Xh std::iota( M_Qh_indices.begin(), M_Qh_indices.end(), M_Vh->nLocalDofWithGhost() ); // Qh indices in Xh // "Components" of Qh3 auto Qh3_dof_begin = M_Qh3->dof()->dofPointBegin(); auto Qh3_dof_end = M_Qh3->dof()->dofPointEnd(); int dof_comp, dof_idx; for( auto it = Qh3_dof_begin; it!= Qh3_dof_end; it++ ) { dof_comp = it->template get<2>(); //Component dof_idx = it->template get<1>(); //Global index M_Qh3_indices[dof_comp].push_back( dof_idx ); } // Subvectors for M_y (per component) M_y1 = M_y->createSubVector(M_Qh3_indices[0], true); M_y2 = M_y->createSubVector(M_Qh3_indices[1], true); #if FEELPP_DIM == 3 M_y3 = M_y->createSubVector(M_Qh3_indices[2], true); #endif // Subvectors for M_s (per component) M_s1 = M_y->createSubVector(M_Qh3_indices[0], true); M_s2 = M_y->createSubVector(M_Qh3_indices[1], true); #if FEELPP_DIM == 3 M_s3 = M_y->createSubVector(M_Qh3_indices[2], true); #endif this->setType ( t ); toc( "[PreconditionerAS] setup done ", FLAGS_v > 0 ); }
void Problem::CheckGradHessian(const Variable *xin) const { UseGrad = true; UseHess = true; integer length; double normxi; double t, fx, fy; double *X, *Y; Vector *etax; Variable *x = xin->ConstructEmpty(); xin->CopyTo(x); if (Domain->GetIsIntrinsic()) etax = Domain->GetEMPTYINTR()->ConstructEmpty(); else etax = Domain->GetEMPTYEXTR()->ConstructEmpty(); etax->RandUnform(); Vector *xi = etax->ConstructEmpty(); Vector *gfx = etax->ConstructEmpty(); Vector *Hv = etax->ConstructEmpty(); Variable *y = x->ConstructEmpty(); fx = f(x); Grad(x, gfx); gfx->CopyTo(etax);//-- //double *etaxTV = etax->ObtainWriteEntireData();///--- //integer nnn = etax->Getlength(); //for (integer i = 0; i < nnn; i++)//-- //{ // etaxTV[i] = sin(static_cast<double> (i) / (etax->Getlength() - 1) / 2); //} //for (integer i = 0; i < 5; i++)//--- // etaxTV[nnn - 1 - i] = 0;//-- //etax->Print("etax:");//-- Domain->Projection(x, etax, xi); normxi = sqrt(Domain->Metric(x, xi, xi)); Domain->ScaleTimesVector(x, 100.0 / normxi, xi, xi); // initial length of xi is 100 //xi->Print("xi:");//--- // the length of xi variances from 100 to 100*2^(-35) approx 6e-9 t = 1; length = 35; X = new double [length * 2]; Y = X + length; for (integer i = 0; i < length; i++) { Domain->Retraction(x, xi, y); fy = f(y); HessianEta(x, xi, Hv); Y[i] = log(fabs(fy - fx - Domain->Metric(x, gfx, xi) - 0.5 * Domain->Metric(x, xi, Hv))); X[i] = 0.5 * log(Domain->Metric(x, xi, xi)); Rprintf("i:%d,|eta|:%.3e,(fy-fx)/<gfx,eta>:%.3e,(fy-fx-<gfx,eta>)/<0.5 eta, Hessian eta>:%.3e\n", i, sqrt(Domain->Metric(x, xi, xi)), (fy-fx)/Domain->Metric(x, gfx, xi), (fy - fx - Domain->Metric(x, gfx, xi)) / (0.5 * Domain->Metric(x, xi, Hv))); Domain->ScaleTimesVector(x, 0.5, xi, xi); } Rcpp::Rcout << "CHECK GRADIENT:" << std::endl; Rcpp::Rcout << "\tSuppose the point is not a critical point." << std::endl; Rcpp::Rcout << "\tIf there exists an interval of |eta| such that (fy - fx) / <gfx, eta>" << std::endl; Rcpp::Rcout << "\tapproximates ONE, then the gradient is probably correct!" << std::endl; Rcpp::Rcout << "CHECK THE ACTION OF THE HESSIAN (PRESUME GRADIENT IS CORRECT):" << std::endl; Rcpp::Rcout << "\tSuppose the retraction is second order or the point is a critical point." << std::endl; Rcpp::Rcout << "\tIf there exists an interval of |eta| such that (fy-fx-<gfx,eta>)/<0.5 eta, Hessian eta>" << std::endl; Rcpp::Rcout << "\tapproximates ONE, then the action of Hessian is probably correct." << std::endl; ////TEST IDEA2: //for (integer i = 1; i < length - 1; i++) // Rprintf("log(|eta|):%.3e, slope:%.3e\n", X[i], (Y[i + 1] - Y[i - 1]) / (X[i + 1] - X[i - 1])); //Rcpp::Rcout << "CHECK GRADIENT:" << std::endl; //Rcpp::Rcout << "\tIf there exists an interval of |eta| such that the slopes " << std::endl; //Rcpp::Rcout << "\tapproximate TWO, then the gradient is probably correct!" << std::endl; //Rcpp::Rcout << "CHECK THE ACTION OF THE HESSIAN (PRESUME GRADIENT IS CORRECT AND" << std::endl; //Rcpp::Rcout << "THE COST FUNCTION IS NOT ONLY QUADRATIC):" << std::endl; //Rcpp::Rcout << "\tIf there exists an interval of |eta| such that the slopes" << std::endl; //Rcpp::Rcout << "\tapproximate THREE, then the action of Hessian is probably correct." << std::endl; //x->Print("1, x:", false);//--- delete xi; //x->Print("2, x:", false);//--- //gfx->Print("2, gfx:", false);//--- delete gfx; //x->Print("3, x:", false);//--- delete y; //x->Print("4, x:", false);//--- delete Hv; //x->Print("5, x:", false);//--- delete[] X; delete etax; //x->Print("x:", false);//--- delete x; };
CFlightVisualiser::CFlightVisualiser(QWidget *parent) : CFlightVisualiser(parent, Point3D(100, 100, 100), Point2D(100, 250), Point3D(500, 500, 500), Vector3D(Grad(0), Grad(0))) { }
namespace XLEMath { class Grad { public: float x, y, z, w; Grad(float ix, float iy, float iz) { x = ix; y = iy; z = iz; } Grad(float ix, float iy, float iz, float iw) { x = ix; y = iy; z = iz; w = iw; } }; Grad grad3[] = { Grad(1,1,0), Grad(-1,1,0), Grad(1,-1,0), Grad(-1,-1,0), Grad(1,0,1), Grad(-1,0,1), Grad(1,0,-1), Grad(-1,0,-1), Grad(0,1,1), Grad(0,-1,1), Grad(0,1,-1), Grad(0,-1,-1) }; Grad grad4[]= { Grad(0,1,1,1), Grad(0,1,1,-1), Grad(0,1,-1,1), Grad(0,1,-1,-1), Grad(0,-1,1,1), Grad(0,-1,1,-1), Grad(0,-1,-1,1), Grad(0,-1,-1,-1), Grad(1,0,1,1), Grad(1,0,1,-1), Grad(1,0,-1,1), Grad(1,0,-1,-1), Grad(-1,0,1,1), Grad(-1,0,1,-1), Grad(-1,0,-1,1), Grad(-1,0,-1,-1), Grad(1,1,0,1), Grad(1,1,0,-1), Grad(1,-1,0,1), Grad(1,-1,0,-1), Grad(-1,1,0,1), Grad(-1,1,0,-1), Grad(-1,-1,0,1), Grad(-1,-1,0,-1), Grad(1,1,1,0), Grad(1,1,-1,0), Grad(1,-1,1,0), Grad(1,-1,-1,0), Grad(-1,1,1,0), Grad(-1,1,-1,0), Grad(-1,-1,1,0), Grad(-1,-1,-1,0) }; short p[] = { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180}; // To remove the need for index wrapping, float the permutation table length static short perm[512]; static short permMod12[512]; static bool permDoneInit = false; static void InitPerm() { if (permDoneInit) return; permDoneInit = true; for(int i=0; i<512; i++) { perm[i]=p[i & 255]; permMod12[i] = (short)(perm[i] % 12); } } // Skewing and unskewing factors for 2, 3, and 4 dimensions static float F2 = 0.5f*(XlSqrt(3.0f)-1.0f); static float G2 = (3.0f-XlSqrt(3.0f))/6.0f; static float F3 = 1.0f/3.0f; static float G3 = 1.0f/6.0f; static float F4 = (XlSqrt(5.0f)-1.0f)/4.0f; static float G4 = (5.0f-XlSqrt(5.0f))/20.0f; static int fastfloor(float x) { // this method was built for Java... Maybe it's not the best option for C++? int xi = (int)x; return x<xi ? xi-1 : xi; } static float dot(Grad g, float x, float y) { return g.x*x + g.y*y; } static float dot(Grad g, float x, float y, float z) { return g.x*x + g.y*y + g.z*z; } static float dot(Grad g, float x, float y, float z, float w) { return g.x*x + g.y*y + g.z*z + g.w*w; } // 2D simplex noise float SimplexNoise(Float2 input) { float xin = input[0], yin = input[1]; InitPerm(); float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (xin+yin)*F2; // Hairy factor for 2D int i = fastfloor(xin+s); int j = fastfloor(yin+s); float t = (i+j)*G2; float X0 = i-t; // Unskew the cell origin back to (x,y) space float Y0 = j-t; float x0 = xin-X0; // The x,y distances from the cell origin float y0 = yin-Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if(x0>y0) { i1=1; j1=0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1=0; j1=1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.f + 2.f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.f + 2.f * G2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = permMod12[ii+perm[jj]]; int gi1 = permMod12[ii+i1+perm[jj+j1]]; int gi2 = permMod12[ii+1+perm[jj+1]]; // Calculate the contribution from the three corners float t0 = 0.5f - x0*x0-y0*y0; if(t0<0) n0 = 0.f; else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } float t1 = 0.5f - x1*x1-y1*y1; if(t1<0) n1 = 0.f; else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } float t2 = 0.5f - x2*x2-y2*y2; if(t2<0) n2 = 0.f; else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.f * (n0 + n1 + n2); } // 3D simplex noise float SimplexNoise(Float3 input) { float xin = input[0], yin = input[1], zin = input[2]; InitPerm(); float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D int i = fastfloor(xin+s); int j = fastfloor(yin+s); int k = fastfloor(zin+s); float t = (i+j+k)*G3; float X0 = i-t; // Unskew the cell origin back to (x,y,z) space float Y0 = j-t; float Z0 = k-t; float x0 = xin-X0; // The x,y,z distances from the cell origin float y0 = yin-Y0; float z0 = zin-Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if(x0>=y0) { if(y0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; } // X Y Z order else if(x0>=z0) { i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; } // X Z Y order else { i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; } // Z X Y order } else { // x0<y0 if(y0<z0) { i1=0; j1=0; k1=1; i2=0; j2=1; k2=1; } // Z Y X order else if(x0<z0) { i1=0; j1=1; k1=0; i2=0; j2=1; k2=1; } // Y Z X order else { i1=0; j1=1; k1=0; i2=1; j2=1; k2=0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.f*G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.f*G3; float z2 = z0 - k2 + 2.f*G3; float x3 = x0 - 1.f + 3.f*G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.f + 3.f*G3; float z3 = z0 - 1.f + 3.f*G3; // Work out the hashed gradient indices of the four simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int gi0 = permMod12[ii+perm[jj+perm[kk]]]; int gi1 = permMod12[ii+i1+perm[jj+j1+perm[kk+k1]]]; int gi2 = permMod12[ii+i2+perm[jj+j2+perm[kk+k2]]]; int gi3 = permMod12[ii+1+perm[jj+1+perm[kk+1]]]; // Calculate the contribution from the four corners float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0; if(t0<0) n0 = 0.f; else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); } float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1; if(t1<0) n1 = 0.f; else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); } float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2; if(t2<0) n2 = 0.f; else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); } float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3; if(t3<0) n3 = 0.f; else { t3 *= t3; n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.f*(n0 + n1 + n2 + n3); } #if 1 // 4D simplex noise, better simplex rank ordering method 2012-03-09 float SimplexNoise(Float4 input) { float x = input[0], y = input[1], z = input[2], w = input[3]; InitPerm(); float n0, n1, n2, n3, n4; // Noise contributions from the five corners // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in float s = (x + y + z + w) * F4; // Factor for 4D skewing int i = fastfloor(x + s); int j = fastfloor(y + s); int k = fastfloor(z + s); int l = fastfloor(w + s); float t = (i + j + k + l) * G4; // Factor for 4D unskewing float X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space float Y0 = j - t; float Z0 = k - t; float W0 = l - t; float x0 = x - X0; // The x,y,z,w distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; float w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // Six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to rank the numbers. int rankx = 0; int ranky = 0; int rankz = 0; int rankw = 0; if(x0 > y0) rankx++; else ranky++; if(x0 > z0) rankx++; else rankz++; if(x0 > w0) rankx++; else rankw++; if(y0 > z0) ranky++; else rankz++; if(y0 > w0) ranky++; else rankw++; if(z0 > w0) rankz++; else rankw++; int i1, j1, k1, l1; // The integer offsets for the second simplex corner int i2, j2, k2, l2; // The integer offsets for the third simplex corner int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w // impossible. Only the 24 indices which have non-zero entries make any sense. // We use a thresholding to set the coordinates in turn from the largest magnitude. // Rank 3 denotes the largest coordinate. i1 = rankx >= 3 ? 1 : 0; j1 = ranky >= 3 ? 1 : 0; k1 = rankz >= 3 ? 1 : 0; l1 = rankw >= 3 ? 1 : 0; // Rank 2 denotes the second largest coordinate. i2 = rankx >= 2 ? 1 : 0; j2 = ranky >= 2 ? 1 : 0; k2 = rankz >= 2 ? 1 : 0; l2 = rankw >= 2 ? 1 : 0; // Rank 1 denotes the second smallest coordinate. i3 = rankx >= 1 ? 1 : 0; j3 = ranky >= 1 ? 1 : 0; k3 = rankz >= 1 ? 1 : 0; l3 = rankw >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to compute that. float x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords float y1 = y0 - j1 + G4; float z1 = z0 - k1 + G4; float w1 = w0 - l1 + G4; float x2 = x0 - i2 + 2.0f*G4; // Offsets for third corner in (x,y,z,w) coords float y2 = y0 - j2 + 2.0f*G4; float z2 = z0 - k2 + 2.0f*G4; float w2 = w0 - l2 + 2.0f*G4; float x3 = x0 - i3 + 3.0f*G4; // Offsets for fourth corner in (x,y,z,w) coords float y3 = y0 - j3 + 3.0f*G4; float z3 = z0 - k3 + 3.0f*G4; float w3 = w0 - l3 + 3.0f*G4; float x4 = x0 - 1.0f + 4.0f*G4; // Offsets for last corner in (x,y,z,w) coords float y4 = y0 - 1.0f + 4.0f*G4; float z4 = z0 - 1.0f + 4.0f*G4; float w4 = w0 - 1.0f + 4.0f*G4; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32; int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32; int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32; int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32; int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32; // Calculate the contribution from the five corners float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0 - w0*w0; if(t0<0) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); } float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1 - w1*w1; if(t1<0) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); } float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2 - w2*w2; if(t2<0) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); } float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3 - w3*w3; if(t3<0) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); } float t4 = 0.6f - x4*x4 - y4*y4 - z4*z4 - w4*w4; if(t4<0) n4 = 0.0f; else { t4 *= t4; n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0f * (n0 + n1 + n2 + n3 + n4); } #endif template<typename Type> float SimplexFBM(Type pos, float hgrid, float gain, float lacunarity, int octaves) { float total = 0.0f; float frequency = 1.0f/(float)hgrid; float amplitude = 1.f; for (int i = 0; i < octaves; ++i) { total += SimplexNoise(Type(pos * frequency)) * amplitude; frequency *= lacunarity; amplitude *= gain; } return total; } template float SimplexFBM(Float2, float, float, float, int); template float SimplexFBM(Float3, float, float, float, int); template float SimplexFBM(Float4, float, float, float, int); }
float bePerlinNoise2D::Get(float x, float y) { float xi, xf, yi, yf; xf = modf(x, &xi); yf = modf(y, &yi); constexpr float zf = 0.5f; if (xf < 0.0) { xi -= 1.0; xf += 1.0; } if (yf < 0.0) { yi -= 1.0; yf += 1.0; } int x0 = (int)xi; int y0 = (int)yi; const int maxX = 255; const int maxY = 255; x0 = ((x0 % maxX) + maxX) % maxX; // [0, maxX) y0 = ((y0 % maxY) + maxY) % maxY; // [0, maxX) const int x1 = (x0 + 1) % maxX; // [0, maxX) const int y1 = (y0 + 1) % maxY; // [0, maxX) const float u = beMath::SmootherStep(xf); const float v = beMath::SmootherStep(yf); constexpr float w = beMath::SmootherStep(zf); u8* p = m_hashTable.data(); const int z0 = 0; const int z1 = 1; #pragma warning(push) #pragma warning(disable:26481) // pointer arithmetic int aaa, aba, aab, abb, baa, bba, bab, bbb; aaa = p[p[p[x0]+y0]+z0]; aba = p[p[p[x0]+y1]+z0]; aab = p[p[p[x0]+y0]+z1]; abb = p[p[p[x0]+y1]+z1]; baa = p[p[p[x1]+y0]+z0]; bba = p[p[p[x1]+y1]+z0]; bab = p[p[p[x1]+y0]+z1]; bbb = p[p[p[x1]+y1]+z1]; #pragma warning(pop) // The gradient function calculates the dot product between a pseudorandom // gradient vector and the vector from the input coordinate to the 8 // surrounding points in its unit cube. // This is all then lerped together as a sort of weighted average based on the faded (u,v,w) // values we made earlier. float X1, X2, Y1, Y2; X1 = Lerp(Grad(aaa, xf, yf , zf) , Grad(baa, xf-1.f, yf , zf) , u); X2 = Lerp(Grad(aba, xf, yf-1.f, zf) , Grad(bba, xf-1.f, yf-1.f, zf) , u); Y1 = Lerp(X1, X2, v); X1 = Lerp(Grad(aab, xf, yf , zf-1.f), Grad(bab, xf-1.f, yf , zf-1.f), u); X2 = Lerp(Grad(abb, xf, yf-1.f, zf-1.f), Grad(bbb, xf-1.f, yf-1.f, zf-1.f), u); Y2 = Lerp(X1, X2, v); // Change (-1,1) => (0, 1) const float result = (Lerp(Y1, Y2, w)+1.f) * 0.5f; //LOG("X,Y,Z {%3.1f, %3.1f, %3.1f}\t = %3.3f", x, y, zf, result); return result; }
void OptimizeGeometry(string type) { // Initialize geometry opt parameters int opt_cycle = 1; double dE = 1000, Gnorm = 1000; //nonsense initial values double econv = 1.0e-6; double gconv = 3.0e-4; double stepsize = 0.25; bool reset; // for resetting CG algorithm // Initialize some empty vectors with same dimensions as the Gradient Vector StepDir(Cluster::cluster().GetHMBIGradient(),false); Vector Grad_current(Cluster::cluster().GetHMBIGradient(),false); Vector StepDir_old(Cluster::cluster().GetHMBIGradient(),false); Vector Grad_old(Cluster::cluster().GetHMBIGradient(),false); if (type == "SteepestDescent") { while (opt_cycle <= Params::Parameters().GetMaxOptCycles() && (fabs(dE) > econv || fabs(Gnorm) > gconv ) ) { //printf("XXX\nXXX Starting next opt cycle\n"); // before the step double E_current = Cluster::cluster().GetHMBIEnergy(); Grad_current = Cluster::cluster().GetHMBIGradient(); Vector Coords_current = Cluster::cluster().GetCurrentCoordinates(); //printf("XXX Current Gradient: %12.6f\n",Grad_current.Norm()); // If this is the first cycle, do some special printing if (opt_cycle == 1) { printf("Cycle %d: Energy = %15.9f |Grad| = %12.6f\n", 0, E_current, Grad_current.Max(true)); printf("Cycle %d: dE = %15.9f |dGrad| = %12.6f\n", 0, 0.0, 0.0); Cluster::cluster().UpdateTrajectoryFile(0,true); } // use Gradient printer to show coords if (Params::Parameters().PrintLevel() > 0 ) Cluster::cluster().PrintGradient("Original coordinates",Coords_current); // Create empty coords array with proper size Vector Coords_new(Coords_current, false); // Take optimization step //Grad_current.Scale(-1.0); SteepestDescent(Coords_new, Coords_current, Grad_current, stepsize); // use Gradient printer to show coords if (Params::Parameters().PrintLevel() > 0 ) Cluster::cluster().PrintGradient("New coordinates",Coords_new); // Update the coordinates in the cluster object Cluster::cluster().SetNewCoordinates(Coords_new); // Create the new jobs, run them, and get the HMBI energy Cluster::cluster().RunJobsAndComputeEnergy(); // Print output double E = Cluster::cluster().GetHMBIEnergy(); Vector Grad( Cluster::cluster().GetHMBIGradient() ); //printf("XXX New Gradient: %12.6f\n",Grad.Max(true)); Gnorm = Grad.Max(true); printf("Cycle %d: Energy = %15.9f |Grad| = %10.6f\n",opt_cycle, E,Gnorm); dE = E - E_current; Vector dGrad(Grad); dGrad -= Grad_current; double dG = dGrad.Max(true); printf("Cycle %d: dE = %15.9f |dGrad| = %10.6f step = %8.3f\n", opt_cycle, dE, dG, stepsize); Cluster::cluster().UpdateTrajectoryFile(opt_cycle); // Save a copy of the new geometry in a new input file. FILE *input; string input_file = "new_geom.in"; if ((input = fopen(input_file.c_str(),"w"))==NULL) { printf("OptimizeGeometry() : Cannot open file '%s'\n",input_file.c_str()); exit(1); } Cluster::cluster().PrintInputFile(input); printf("\nNew input file written to '%s'\n",input_file.c_str()); fclose(input); // Adjust step size if (opt_cycle > 1) { // if stepped too far, backup and shrink stepsize if (dE > 0.0) { printf("Cycle Back-up. Decreasing step size for next cycle.\n"); stepsize /= 1.5; // Back up Cluster::cluster().SetNewCoordinates(Coords_current); Cluster::cluster().RunJobsAndComputeEnergy(); Grad_current = Grad_old; } else { printf("Cycle Increasing step size for next cycle.\n"); stepsize *= 1.2; } if (stepsize > 2.0) stepsize = 2.0; } //stepsize = 0.5; opt_cycle++; } } else if (type == "ConjugateGradients") { // Start optimization cycles while (opt_cycle <= Params::Parameters().GetMaxOptCycles() && (fabs(dE) > econv || fabs(Gnorm) > gconv ) ) { reset = false; //printf("XXX\nXXX Starting next opt cycle\n"); // For CG optimizer, need to save previous gradient if (opt_cycle > 1) { Grad_old = Grad_current; StepDir_old = StepDir; //printf("Backing up Gradient and StepDir\n"); //printf("XXX |Grad_old| = %12.6f, |StepDir_old| = %12.6f\n", //Grad_old.Norm(),StepDir_old.Norm()); } // Grab Energy, Gradient, and XYZ coordinates for geometry // before the step double E_current = Cluster::cluster().GetHMBIEnergy(); Grad_current = Cluster::cluster().GetHMBIGradient(); Vector Coords_current = Cluster::cluster().GetCurrentCoordinates(); //printf("XXX Current Gradient: %12.6f\n",Grad_current.Norm()); // If this is the first cycle, do some special printing if (opt_cycle == 1) { printf("Cycle %d: Energy = %15.9f |Grad| = %12.6f\n", 0, E_current, Grad_current.Max(true)); printf("Cycle %d: dE = %15.9f |dGrad| = %12.6f\n", 0, 0.0, 0.0); Cluster::cluster().UpdateTrajectoryFile(0,true); } // use Gradient printer to show coords if (Params::Parameters().PrintLevel() > 0 ) Cluster::cluster().PrintGradient("Original coordinates",Coords_current); // Create empty coords array with proper size Vector Coords_new(Coords_current, false); if (opt_cycle % 20 == 0) { reset = true; //if (stepsize > 0.5) stepsize = 0.25; } // Take optimization step if (opt_cycle==1) { // Use steepest descent for first step, sets StepDir Grad_current.Scale(-1.0); SteepestDescent(Coords_new, Coords_current, Grad_current, stepsize); StepDir = Grad_current; StepDir.Scale(-1.0); } else ConjugateGradients(Coords_new, StepDir, Coords_current, Grad_current, Grad_old, StepDir_old,stepsize, reset); // use Gradient printer to show coords if (Params::Parameters().PrintLevel() > 0 ) Cluster::cluster().PrintGradient("New coordinates",Coords_new); // Update the coordinates in the cluster object Cluster::cluster().SetNewCoordinates(Coords_new); // Create the new jobs, run them, and get the HMBI energy Cluster::cluster().RunJobsAndComputeEnergy(); // Print output double E = Cluster::cluster().GetHMBIEnergy(); Vector Grad( Cluster::cluster().GetHMBIGradient() ); //printf("XXX New Gradient: %12.6f\n",Grad.Max(true)); Gnorm = Grad.Max(true); printf("Cycle %d: Energy = %15.9f |Grad| = %10.6f\n",opt_cycle, E,Gnorm); dE = E - E_current; Vector dGrad(Grad); dGrad -= Grad_current; double dG = dGrad.Max(true); printf("Cycle %d: dE = %15.9f |dGrad| = %10.6f step = %8.3f\n", opt_cycle, dE, dG, stepsize); Cluster::cluster().UpdateTrajectoryFile(opt_cycle); // Save a copy of the new geometry in a new input file. FILE *input; string input_file = "new_geom.in"; if ((input = fopen(input_file.c_str(),"w"))==NULL) { printf("OptimizeGeometry() : Cannot open file '%s'\n",input_file.c_str()); exit(1); } Cluster::cluster().PrintInputFile(input); printf("\nNew input file written to '%s'\n",input_file.c_str()); fclose(input); // Adjust step size if (opt_cycle > 1) { // if stepped too far, backup and shrink stepsize if (dE > 0.0) { printf("Cycle Back-up. Decreasing step size for next cycle.\n"); stepsize /= 1.5; // Back up Cluster::cluster().SetNewCoordinates(Coords_current); Cluster::cluster().RunJobsAndComputeEnergy(); Grad_current = Grad_old; StepDir = StepDir_old; } else { printf("Cycle Increasing step size for next cycle.\n"); stepsize *= 1.2; } if (stepsize > 2.0) stepsize = 2.0; } //stepsize = 0.5; opt_cycle++; } } printf("Cycle %d: Opt completed. dE = %15.9f, |Grad| = %10.6f\n",opt_cycle-1, dE,Gnorm); Cluster::cluster().ComputeDistanceMatrix(); // Save a copy of the new geometry in a new input file. FILE *input; string input_file = "new_geom.in"; if ((input = fopen(input_file.c_str(),"w"))==NULL) { printf("OptimizeGeometry() : Cannot open file '%s'\n",input_file.c_str()); exit(1); } Cluster::cluster().PrintInputFile(input); printf("\nNew input file written to '%s'\n",input_file.c_str()); fclose(input); }
PreconditionerBlockMS<space_type>::PreconditionerBlockMS(space_ptrtype Xh, // (u)x(p) ModelProperties model, // model std::string const& p, // prefix sparse_matrix_ptrtype AA ) // The matrix : M_backend(backend()), // the backend associated to the PC M_Xh( Xh ), M_Vh( Xh->template functionSpace<0>() ), // Potential M_Qh( Xh->template functionSpace<1>() ), // Lagrange M_Vh_indices( M_Vh->nLocalDofWithGhost() ), M_Qh_indices( M_Qh->nLocalDofWithGhost() ), M_uin( M_backend->newVector( M_Vh ) ), M_uout( M_backend->newVector( M_Vh ) ), M_pin( M_backend->newVector( M_Qh ) ), M_pout( M_backend->newVector( M_Qh ) ), U( M_Xh, "U" ), M_mass(M_backend->newMatrix(M_Vh,M_Vh)), M_L(M_backend->newMatrix(M_Qh,M_Qh)), M_er( 1. ), M_model( model ), M_prefix( p ), M_prefix_11( p+".11" ), M_prefix_22( p+".22" ), u(M_Vh, "u"), ozz(M_Vh, "ozz"), zoz(M_Vh, "zoz"), zzo(M_Vh, "zzo"), M_ozz(M_backend->newVector( M_Vh )), M_zoz(M_backend->newVector( M_Vh )), M_zzo(M_backend->newVector( M_Vh )), X(M_Qh, "X"), Y(M_Qh, "Y"), Z(M_Qh, "Z"), M_X(M_backend->newVector( M_Qh )), M_Y(M_backend->newVector( M_Qh )), M_Z(M_backend->newVector( M_Qh )), phi(M_Qh, "phi") { tic(); LOG(INFO) << "[PreconditionerBlockMS] setup starts"; this->setMatrix( AA ); this->setName(M_prefix); /* Indices are need to extract sub matrix */ std::iota( M_Vh_indices.begin(), M_Vh_indices.end(), 0 ); std::iota( M_Qh_indices.begin(), M_Qh_indices.end(), M_Vh->nLocalDofWithGhost() ); M_11 = AA->createSubMatrix( M_Vh_indices, M_Vh_indices, true, true); /* Boundary conditions */ BoundaryConditions M_bc = M_model.boundaryConditions(); map_vector_field<FEELPP_DIM,1,2> m_dirichlet_u { M_bc.getVectorFields<FEELPP_DIM> ( "u", "Dirichlet" ) }; map_scalar_field<2> m_dirichlet_p { M_bc.getScalarFields<2> ( "phi", "Dirichlet" ) }; /* Compute the mass matrix (needed in first block, constant) */ auto f2A = form2(_test=M_Vh, _trial=M_Vh, _matrix=M_mass); auto f1A = form1(_test=M_Vh); f2A = integrate(_range=elements(M_Vh->mesh()), _expr=inner(idt(u),id(u))); // M for(auto const & it : m_dirichlet_u ) { LOG(INFO) << "Applying " << it.second << " on " << it.first << " for "<<M_prefix_11<<"\n"; f2A += on(_range=markedfaces(M_Vh->mesh(),it.first), _expr=it.second,_rhs=f1A, _element=u, _type="elimination_symmetric"); } /* Compute the L (= er * grad grad) matrix (the second block) */ auto f2L = form2(_test=M_Qh,_trial=M_Qh, _matrix=M_L); for(auto it : M_model.materials() ) { f2L += integrate(_range=markedelements(M_Qh->mesh(),marker(it)), _expr=M_er*inner(gradt(phi), grad(phi))); } auto f1LQ = form1(_test=M_Qh); for(auto const & it : m_dirichlet_p) { LOG(INFO) << "Applying " << it.second << " on " << it.first << " for "<<M_prefix_22<<"\n"; f2L += on(_range=markedfaces(M_Qh->mesh(),it.first),_element=phi, _expr=it.second, _rhs=f1LQ, _type="elimination_symmetric"); } if(soption(_name="pc-type", _prefix=M_prefix_11) == "ams") #if FEELPP_DIM == 3 { M_grad = Grad( _domainSpace=M_Qh, _imageSpace=M_Vh); // This preconditioner is linked to that backend : the backend will // automatically use the preconditioner. auto prec = preconditioner(_pc=pcTypeConvertStrToEnum(soption(M_prefix_11+".pc-type")), _backend=backend(_name=M_prefix_11), _prefix=M_prefix_11, _matrix=M_11 ); prec->setMatrix(M_11); prec->attachAuxiliarySparseMatrix("G",M_grad.matPtr()); if(boption(M_prefix_11+".useEdge")) { LOG(INFO) << "[ AMS ] : using SetConstantEdgeVector \n"; ozz.on(_range=elements(M_Vh->mesh()),_expr=vec(cst(1),cst(0),cst(0))); zoz.on(_range=elements(M_Vh->mesh()),_expr=vec(cst(0),cst(1),cst(0))); zzo.on(_range=elements(M_Vh->mesh()),_expr=vec(cst(0),cst(0),cst(1))); *M_ozz = ozz; M_ozz->close(); *M_zoz = zoz; M_zoz->close(); *M_zzo = zzo; M_zzo->close(); prec->attachAuxiliaryVector("Px",M_ozz); prec->attachAuxiliaryVector("Py",M_zoz); prec->attachAuxiliaryVector("Pz",M_zzo); } else { LOG(INFO) << "[ AMS ] : using SetCoordinates \n"; X.on(_range=elements(M_Vh->mesh()),_expr=Px()); Y.on(_range=elements(M_Vh->mesh()),_expr=Py()); Z.on(_range=elements(M_Vh->mesh()),_expr=Pz()); *M_X = X; M_X->close(); *M_Y = Y; M_Y->close(); *M_Z = Z; M_Z->close(); prec->attachAuxiliaryVector("X",M_X); prec->attachAuxiliaryVector("Y",M_Y); prec->attachAuxiliaryVector("Z",M_Z); } } #else std::cerr << "ams preconditioner is not interfaced in two dimensions\n"; #endif toc( "[PreconditionerBlockMS] setup done ", FLAGS_v > 0 ); }