Module::ReturnType FeasibleUpwardPlanarSubgraph::call(
	const Graph &G,
	GraphCopy &FUPS,
	adjEntry &extFaceHandle,
	List<edge> &delEdges,
	bool multisources)
{
	FUPS = GraphCopy(G);
	delEdges.clear();
	node s_orig;
	hasSingleSource(G, s_orig);
	List<edge> nonTreeEdges_orig;
	getSpanTree(FUPS, nonTreeEdges_orig, true, multisources);
	CombinatorialEmbedding Gamma(FUPS);
	nonTreeEdges_orig.permute(); // random order

	//insert nonTreeEdges
	while (!nonTreeEdges_orig.empty()) {
		// make identical copy GC of Fups
		//and insert e_orig in GC
		GraphCopy GC = FUPS;
		edge e_orig = nonTreeEdges_orig.popFrontRet();
		//node a = GC.copy(e_orig->source());
		//node b = GC.copy(e_orig->target());
		GC.newEdge(e_orig);

		if (UpwardPlanarity::upwardPlanarEmbed_singleSource(GC)) { //upward embedded the fups and check feasibility
			CombinatorialEmbedding Beta(GC);

			//choose a arbitrary feasibel ext. face
			FaceSinkGraph fsg(Beta, GC.copy(s_orig));
			SList<face> ext_faces;
			fsg.possibleExternalFaces(ext_faces);
			OGDF_ASSERT(!ext_faces.empty());
			Beta.setExternalFace(ext_faces.front());

			GraphCopy M = GC; // use a identical copy of GC to constrcut the merge graph of GC
			adjEntry extFaceHandle_cur = getAdjEntry(Beta, GC.copy(s_orig), Beta.externalFace());
			adjEntry adj_orig = GC.original(extFaceHandle_cur->theEdge())->adjSource();

			if (constructMergeGraph(M, adj_orig, nonTreeEdges_orig)) {
				FUPS = GC;
				extFaceHandle = FUPS.copy(GC.original(extFaceHandle_cur->theEdge()))->adjSource();
				continue;
			}
			else {
				//Beta is not feasible
				delEdges.pushBack(e_orig);
			}
		}
		else {
			// not ok, GC is not feasible
			delEdges.pushBack(e_orig);
		}
	}

	return Module::retFeasible;
}
Exemple #2
0
void SchnyderLayout::schnyderEmbedding(
	GraphCopy& GC,
	GridLayout &gridLayout,
	adjEntry adjExternal)
{
	NodeArray<int> &xcoord = gridLayout.x();
	NodeArray<int> &ycoord = gridLayout.y();

	node v;
	List<node> L;						// (un)contraction order
	GraphCopy T = GraphCopy(GC);		// the realizer tree (reverse direction of edges!!!)
	EdgeArray<int> rValues(T);			// the realizer values

	// choose outer face a,b,c
	adjEntry adja;
	if (adjExternal != 0) {
		edge eG  = adjExternal->theEdge();
		edge eGC = GC.copy(eG);
		adja = (adjExternal == eG->adjSource()) ? eGC->adjSource() : eGC->adjTarget();
	}
	else {
		adja = GC.firstEdge()->adjSource();
	}
	adjEntry adjb = adja->faceCyclePred();
	adjEntry adjc = adjb->faceCyclePred();

	node a = adja->theNode();
	node b = adjb->theNode();
	node c = adjc->theNode();

	node a_in_T = T.copy(GC.original(a));
	node b_in_T = T.copy(GC.original(b));
	node c_in_T = T.copy(GC.original(c));

	contract(GC, a, b, c, L);

	realizer(GC, L, a, b, c, rValues, T);

	NodeArray<int>  t1(T);
	NodeArray<int>  t2(T);
	NodeArray<int>  val(T, 1);

	NodeArray<int>  P1(T);
	NodeArray<int>  P3(T);
	NodeArray<int>  v1(T);
	NodeArray<int>  v2(T);

	subtreeSizes(rValues, 1, a_in_T, t1);
	subtreeSizes(rValues, 2, b_in_T, t2);

	prefixSum(rValues, 1, a_in_T, val, P1);
	prefixSum(rValues, 3, c_in_T, val, P3);
	// now Pi  =  depth of all nodes in Tree T(i) (depth[root] = 1)

	prefixSum(rValues, 2, b_in_T, t1, v1);
	// special treatment for a
	v1[a_in_T] = t1[a_in_T];

	/*
	 * v1[v] now is the sum of the
	 * "count of nodes in t1" minus the "subtree size for node x"
	 * for every node x on a path from b to v in t2
	 */

	prefixSum(rValues, 3, c_in_T, t1, val);
	// special treatment for a
	val[a_in_T] = t1[a_in_T];

	/*
	 * val[v] now is the sum of the
	 * "count of nodes in t1" minus the "subtree size for node x"
	 * for every node x on a path from c to v in t3
	 */

	// r1[v]=v1[v]+val[v]-t1[v] is the number of nodes in region 1 from v
	forall_nodes(v, T) {
		// calc v1'
		v1[v] += val[v] - t1[v] - P3[v];
	}