Vector3f    SensorFusion::GetCalibratedMagValue(const Vector3f& rawMag) const
{
    Vector3f mag = rawMag;
    OVR_ASSERT(HasMagCalibration());
    mag.x += MagCalibrationMatrix.M[0][3];
    mag.y += MagCalibrationMatrix.M[1][3];
    mag.z += MagCalibrationMatrix.M[2][3];
    return mag;
}
void SensorFusion::handleMessage(const MessageBodyFrame& msg)
{
    if (msg.Type != Message_BodyFrame)
        return;
  
    // Put the sensor readings into convenient local variables
    Vector3f angVel    = msg.RotationRate; 
    Vector3f rawAccel  = msg.Acceleration;
    Vector3f mag       = msg.MagneticField;

    // Set variables accessible through the class API
	DeltaT = msg.TimeDelta;
    AngV = msg.RotationRate;
    AngV.y *= YawMult;  // Warning: If YawMult != 1, then AngV is not true angular velocity
    A = rawAccel;

    // Allow external access to uncalibrated magnetometer values
    RawMag = mag;  

    // Apply the calibration parameters to raw mag
    if (HasMagCalibration())
    {
        mag.x += MagCalibrationMatrix.M[0][3];
        mag.y += MagCalibrationMatrix.M[1][3];
        mag.z += MagCalibrationMatrix.M[2][3];
    }

    // Provide external access to calibrated mag values
    // (if the mag is not calibrated, then the raw value is returned)
    CalMag = mag;

    float angVelLength = angVel.Length();
    float accLength    = rawAccel.Length();


    // Acceleration in the world frame (Q is current HMD orientation)
    Vector3f accWorld  = Q.Rotate(rawAccel);

    // Keep track of time
    Stage++;
    float currentTime  = Stage * DeltaT; // Assumes uniform time spacing

    // Insert current sensor data into filter history
    FRawMag.AddElement(RawMag);
    FAccW.AddElement(accWorld);
    FAngV.AddElement(angVel);

    // Update orientation Q based on gyro outputs.  This technique is
    // based on direct properties of the angular velocity vector:
    // Its direction is the current rotation axis, and its magnitude
    // is the rotation rate (rad/sec) about that axis.  Our sensor
    // sampling rate is so fast that we need not worry about integral
    // approximation error (not yet, anyway).
    if (angVelLength > 0.0f)
    {
        Vector3f     rotAxis      = angVel / angVelLength;  
        float        halfRotAngle = angVelLength * DeltaT * 0.5f;
        float        sinHRA       = sin(halfRotAngle);
        Quatf        deltaQ(rotAxis.x*sinHRA, rotAxis.y*sinHRA, rotAxis.z*sinHRA, cos(halfRotAngle));

        Q =  Q * deltaQ;
    }
    
    // The quaternion magnitude may slowly drift due to numerical error,
    // so it is periodically normalized.
    if (Stage % 5000 == 0)
        Q.Normalize();
    
	// Maintain the uncorrected orientation for later use by predictive filtering
	QUncorrected = Q;

    // Perform tilt correction using the accelerometer data. This enables 
    // drift errors in pitch and roll to be corrected. Note that yaw cannot be corrected
    // because the rotation axis is parallel to the gravity vector.
    if (EnableGravity)
    {
        // Correcting for tilt error by using accelerometer data
        const float  gravityEpsilon = 0.4f;
        const float  angVelEpsilon  = 0.1f; // Relatively slow rotation
        const int    tiltPeriod     = 50;   // Req'd time steps of stability
        const float  maxTiltError   = 0.05f;
        const float  minTiltError   = 0.01f;

        // This condition estimates whether the only measured acceleration is due to gravity 
        // (the Rift is not linearly accelerating).  It is often wrong, but tends to average
        // out well over time.
        if ((fabs(accLength - 9.81f) < gravityEpsilon) &&
            (angVelLength < angVelEpsilon))
            TiltCondCount++;
        else
            TiltCondCount = 0;
    
        // After stable measurements have been taken over a sufficiently long period,
        // estimate the amount of tilt error and calculate the tilt axis for later correction.
        if (TiltCondCount >= tiltPeriod)
        {   // Update TiltErrorEstimate
            TiltCondCount = 0;
            // Use an average value to reduce noice (could alternatively use an LPF)
            Vector3f accWMean = FAccW.Mean();
            // Project the acceleration vector into the XZ plane
            Vector3f xzAcc = Vector3f(accWMean.x, 0.0f, accWMean.z);
            // The unit normal of xzAcc will be the rotation axis for tilt correction
            Vector3f tiltAxis = Vector3f(xzAcc.z, 0.0f, -xzAcc.x).Normalized();
            Vector3f yUp = Vector3f(0.0f, 1.0f, 0.0f);
            // This is the amount of rotation
            float    tiltAngle = yUp.Angle(accWMean);
            // Record values if the tilt error is intolerable
            if (tiltAngle > maxTiltError) 
            {
                TiltErrorAngle = tiltAngle;
                TiltErrorAxis = tiltAxis;
            }
        }

        // This part performs the actual tilt correction as needed
        if (TiltErrorAngle > minTiltError) 
        {
            if ((TiltErrorAngle > 0.4f)&&(Stage < 8000))
            {   // Tilt completely to correct orientation
                Q = Quatf(TiltErrorAxis, -TiltErrorAngle) * Q;
                TiltErrorAngle = 0.0f;
            }
            else 
            {
                //LogText("Performing tilt correction  -  Angle: %f   Axis: %f %f %f\n",
                //        TiltErrorAngle,TiltErrorAxis.x,TiltErrorAxis.y,TiltErrorAxis.z);
                //float deltaTiltAngle = -Gain*TiltErrorAngle*0.005f;
                // This uses agressive correction steps while your head is moving fast
                float deltaTiltAngle = -Gain*TiltErrorAngle*0.005f*(5.0f*angVelLength+1.0f);
                // Incrementally "untilt" by a small step size
                Q = Quatf(TiltErrorAxis, deltaTiltAngle) * Q;
                TiltErrorAngle += deltaTiltAngle;
            }
        }
    }

    // Yaw drift correction based on magnetometer data.  This corrects the part of the drift
    // that the accelerometer cannot handle.
    // This will only work if the magnetometer has been enabled, calibrated, and a reference
    // point has been set.
    const float maxAngVelLength = 3.0f;
    const int   magWindow = 5;
    const float yawErrorMax = 0.1f;
    const float yawErrorMin = 0.01f;
    const int   yawErrorCountLimit = 50;
    const float yawRotationStep = 0.00002f;

    if (angVelLength < maxAngVelLength)
        MagCondCount++;
    else
        MagCondCount = 0;

	YawCorrectionInProgress = false;
    if (EnableYawCorrection && MagReady && (currentTime > 2.0f) && (MagCondCount >= magWindow) &&
        (Q.Distance(MagRefQ) < MagRefDistance))
    {
        // Use rotational invariance to bring reference mag value into global frame
        Vector3f grefmag = MagRefQ.Rotate(GetCalibratedMagValue(MagRefM));
        // Bring current (averaged) mag reading into global frame
        Vector3f gmag = Q.Rotate(GetCalibratedMagValue(FRawMag.Mean()));
        // Calculate the reference yaw in the global frame
        float gryaw = atan2(grefmag.x,grefmag.z);
        // Calculate the current yaw in the global frame
        float gyaw = atan2(gmag.x,gmag.z);
        //LogText("Yaw error estimate: %f\n",YawErrorAngle);
        // The difference between reference and current yaws is the perceived error
        YawErrorAngle = AngleDifference(gyaw,gryaw);
        // If the perceived error is large, keep count
        if ((fabs(YawErrorAngle) > yawErrorMax) && (!YawCorrectionActivated))
            YawErrorCount++;
        // After enough iterations of high perceived error, start the correction process
        if (YawErrorCount > yawErrorCountLimit)
            YawCorrectionActivated = true;
        // If the perceived error becomes small, turn off the yaw correction
        if ((fabs(YawErrorAngle) < yawErrorMin) && YawCorrectionActivated) 
        {
            YawCorrectionActivated = false;
            YawErrorCount = 0;
        }
        // Perform the actual yaw correction, due to previously detected, large yaw error
        if (YawCorrectionActivated) 
        {
			YawCorrectionInProgress = true;
            int sign = (YawErrorAngle > 0.0f) ? 1 : -1;
            // Incrementally "unyaw" by a small step size
            Q = Quatf(Vector3f(0.0f,1.0f,0.0f), -yawRotationStep * sign) * Q;
        }
    }
}
// Writes the current calibration for a particular device to a device profile file
// sensor - the sensor that was calibrated
// cal_name - an optional name for the calibration or default if cal_name == NULL
bool SensorFusion::SaveMagCalibration(const char* calibrationName) const
{
    if (CachedSensorInfo.SerialNumber[0] == 0 || !HasMagCalibration())
        return false;
    
    // A named calibration may be specified for calibration in different
    // environments, otherwise the default calibration is used
    if (calibrationName == NULL)
        calibrationName = "default";

    // Generate a mag calibration event
    JSON* calibration = JSON::CreateObject();
    // (hardcoded for now) the measurement and representation method 
    calibration->AddStringItem("Version", "2.0");   
    calibration->AddStringItem("Name", "default");

    // time stamp the calibration
    char time_str[64];
   
#if defined(OVR_OS_WIN32) and !defined(__MINGW32__)
    struct tm caltime;
    localtime_s(&caltime, &MagCalibrationTime);
    strftime(time_str, 64, "%Y-%m-%d %H:%M:%S", &caltime);
#else
    struct tm* caltime;
    caltime = localtime(&MagCalibrationTime);
    strftime(time_str, 64, "%Y-%m-%d %H:%M:%S", caltime);
#endif
   
    calibration->AddStringItem("Time", time_str);

    // write the full calibration matrix
    char matrix[256];
    Matrix4f calmat = GetMagCalibration();
    calmat.ToString(matrix, 256);
    calibration->AddStringItem("CalibrationMatrix", matrix);
    // save just the offset, for backwards compatibility
    // this can be removed when we don't want to support 0.2.4 anymore
    Vector3f center(calmat.M[0][3], calmat.M[1][3], calmat.M[2][3]);
    Matrix4f tmp = calmat; tmp.M[0][3] = tmp.M[1][3] = tmp.M[2][3] = 0; tmp.M[3][3] = 1;
    center = tmp.Inverted().Transform(center);
    Matrix4f oldcalmat; oldcalmat.M[0][3] = center.x; oldcalmat.M[1][3] = center.y; oldcalmat.M[2][3] = center.z; 
    oldcalmat.ToString(matrix, 256);
    calibration->AddStringItem("Calibration", matrix);
    

    String path = GetBaseOVRPath(true);
    path += "/Devices.json";

    // Look for a prexisting device file to edit
    Ptr<JSON> root = *JSON::Load(path);
    if (root)
    {   // Quick sanity check of the file type and format before we parse it
        JSON* version = root->GetFirstItem();
        if (version && version->Name == "Oculus Device Profile Version")
        {   
            int major = atoi(version->Value.ToCStr());
            if (major > MAX_DEVICE_PROFILE_MAJOR_VERSION)
            {
                // don't use the file on unsupported major version number
                root->Release();
                root = NULL;
            }
        }
        else
        {
            root->Release();
            root = NULL;
        }
    }

    JSON* device = NULL;
    if (root)
    {
        device = root->GetFirstItem();   // skip the header
        device = root->GetNextItem(device);
        while (device)
        {   // Search for a previous calibration with the same name for this device
            // and remove it before adding the new one
            if (device->Name == "Device")
            {   
                JSON* item = device->GetItemByName("Serial");
                if (item && item->Value == CachedSensorInfo.SerialNumber)
                {   // found an entry for this device
                    item = device->GetNextItem(item);
                    while (item)
                    {
                        if (item->Name == "MagCalibration")
                        {   
                            JSON* name = item->GetItemByName("Name");
                            if (name && name->Value == calibrationName)
                            {   // found a calibration of the same name
                                item->RemoveNode();
                                item->Release();
                                break;
                            } 
                        }
                        item = device->GetNextItem(item);
                    }

                    // update the auto-mag flag
                    item = device->GetItemByName("EnableYawCorrection");
                    if (item)
                        item->dValue = (double)EnableYawCorrection;
                    else
                        device->AddBoolItem("EnableYawCorrection", EnableYawCorrection);

                    break;
                }
            }

            device = root->GetNextItem(device);
        }
    }
    else
    {   // Create a new device root
        root = *JSON::CreateObject();
        root->AddStringItem("Oculus Device Profile Version", "1.0");
    }

    if (device == NULL)
    {
        device = JSON::CreateObject();
        device->AddStringItem("Product", CachedSensorInfo.ProductName);
        device->AddNumberItem("ProductID", CachedSensorInfo.ProductId);
        device->AddStringItem("Serial", CachedSensorInfo.SerialNumber);
        device->AddBoolItem("EnableYawCorrection", EnableYawCorrection);

        root->AddItem("Device", device);
    }

    // Create and the add the new calibration event to the device
    device->AddItem("MagCalibration", calibration);

    return root->Save(path);
}
Vector3f SensorFusion::GetCalibratedMagValue(const Vector3f& rawMag) const
{
    OVR_ASSERT(HasMagCalibration());
    return MagCalibrationMatrix.Transform(rawMag);
    }