void *FastGaussianBlurOperation::initializeTileData(rcti *rect)
{
	lockMutex();
	if (!this->m_iirgaus) {
		MemoryBuffer *newBuf = (MemoryBuffer *)this->m_inputProgram->initializeTileData(rect);
		MemoryBuffer *copy = newBuf->duplicate();
		updateSize();

		int c;
		this->m_sx = this->m_data.sizex * this->m_size / 2.0f;
		this->m_sy = this->m_data.sizey * this->m_size / 2.0f;

		if ((this->m_sx == this->m_sy) && (this->m_sx > 0.0f)) {
			for (c = 0; c < COM_NUM_CHANNELS_COLOR; ++c)
				IIR_gauss(copy, this->m_sx, c, 3);
		}
		else {
			if (this->m_sx > 0.0f) {
				for (c = 0; c < COM_NUM_CHANNELS_COLOR; ++c)
					IIR_gauss(copy, this->m_sx, c, 1);
			}
			if (this->m_sy > 0.0f) {
				for (c = 0; c < COM_NUM_CHANNELS_COLOR; ++c)
					IIR_gauss(copy, this->m_sy, c, 2);
			}
		}
		this->m_iirgaus = copy;
	}
	unlockMutex();
	return this->m_iirgaus;
}
Exemple #2
0
static void ghosts(NodeGlare* ndg, CompBuf* dst, CompBuf* src)
{
	// colormodulation and scale factors (cm & scalef) for 16 passes max: 64
	int x, y, n, p, np;
	fRGB c, tc, cm[64];
	float sc, isc, u, v, sm, s, t, ofs, scalef[64];
	CompBuf *tbuf1, *tbuf2, *gbuf;
	const float cmo = 1.f - ndg->colmod;
	const int qt = 1 << ndg->quality;
	const float s1 = 4.f/(float)qt, s2 = 2.f*s1;

	gbuf = BTP(src, ndg->threshold, qt);
	tbuf1 = dupalloc_compbuf(gbuf);
	IIR_gauss(tbuf1, s1, 0, 3);
	IIR_gauss(tbuf1, s1, 1, 3);
	IIR_gauss(tbuf1, s1, 2, 3);
	tbuf2 = dupalloc_compbuf(tbuf1);
	IIR_gauss(tbuf2, s2, 0, 3);
	IIR_gauss(tbuf2, s2, 1, 3);
	IIR_gauss(tbuf2, s2, 2, 3);

	if (ndg->iter & 1) ofs = 0.5f; else ofs = 0.f;
	for (x=0; x<(ndg->iter*4); x++) {
		y = x & 3;
		cm[x][0] = cm[x][1] = cm[x][2] = 1;
		if (y==1) fRGB_rgbmult(cm[x], 1.f, cmo, cmo);
		if (y==2) fRGB_rgbmult(cm[x], cmo, cmo, 1.f);
		if (y==3) fRGB_rgbmult(cm[x], cmo, 1.f, cmo);
		scalef[x] = 2.1f*(1.f-(x+ofs)/(float)(ndg->iter*4));
		if (x & 1) scalef[x] = -0.99f/scalef[x];
	}

	sc = 2.13;
	isc = -0.97;
	for (y=0; y<gbuf->y; y++) {
		v = (float)(y+0.5f) / (float)gbuf->y;
		for (x=0; x<gbuf->x; x++) {
			u = (float)(x+0.5f) / (float)gbuf->x;
			s = (u-0.5f)*sc + 0.5f, t = (v-0.5f)*sc + 0.5f;
			qd_getPixelLerp(tbuf1, s*gbuf->x, t*gbuf->y, c);
			sm = smoothMask(s, t);
			fRGB_mult(c, sm);
			s = (u-0.5f)*isc + 0.5f, t = (v-0.5f)*isc + 0.5f;
			qd_getPixelLerp(tbuf2, s*gbuf->x - 0.5f, t*gbuf->y - 0.5f, tc);
			sm = smoothMask(s, t);
			fRGB_madd(c, tc, sm);
			qd_setPixel(gbuf, x, y, c);
		}
	}

	memset(tbuf1->rect, 0, tbuf1->x*tbuf1->y*tbuf1->type*sizeof(float));
	for (n=1; n<ndg->iter; n++) {
		for (y=0; y<gbuf->y; y++) {
			v = (float)(y+0.5f) / (float)gbuf->y;
			for (x=0; x<gbuf->x; x++) {
				u = (float)(x+0.5f) / (float)gbuf->x;
				tc[0] = tc[1] = tc[2] = 0.f;
				for (p=0;p<4;p++) {
					np = (n<<2) + p;
					s = (u-0.5f)*scalef[np] + 0.5f;
					t = (v-0.5f)*scalef[np] + 0.5f;
					qd_getPixelLerp(gbuf, s*gbuf->x - 0.5f, t*gbuf->y - 0.5f, c);
					fRGB_colormult(c, cm[np]);
					sm = smoothMask(s, t)*0.25f;
					fRGB_madd(tc, c, sm);
				}
				p = (x + y*tbuf1->x)*tbuf1->type;
				tbuf1->rect[p] += tc[0];
				tbuf1->rect[p+1] += tc[1];
				tbuf1->rect[p+2] += tc[2];
			}
		}
		memcpy(gbuf->rect, tbuf1->rect, tbuf1->x*tbuf1->y*tbuf1->type*sizeof(float));
	}

	free_compbuf(tbuf1);
	free_compbuf(tbuf2);

	mixImages(dst, gbuf, 0.5f + 0.5f*ndg->mix);
	free_compbuf(gbuf);
}
void *FastGaussianBlurOperation::initializeTileData(rcti *rect)
{
#if 0
	lockMutex();
	if (!this->m_iirgaus) {
		MemoryBuffer *newBuf = (MemoryBuffer *)this->m_inputProgram->initializeTileData(rect);
		MemoryBuffer *copy = newBuf->duplicate();
		updateSize();

		int c;
		this->m_sx = this->m_data->sizex * this->m_size / 2.0f;
		this->m_sy = this->m_data->sizey * this->m_size / 2.0f;
		
		if ((this->m_sx == this->m_sy) && (this->m_sx > 0.f)) {
			for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
				IIR_gauss(copy, this->m_sx, c, 3);
		}
		else {
			if (this->m_sx > 0.0f) {
				for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
					IIR_gauss(copy, this->m_sx, c, 1);
			}
			if (this->m_sy > 0.0f) {
				for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
					IIR_gauss(copy, this->m_sy, c, 2);
			}
		}
		this->m_iirgaus = copy;
	}
	unlockMutex();
	return this->m_iirgaus;
#else

	lockMutex();
	if (this->m_iirgaus) {
		// if this->m_iirgaus is set, we don't do tile rendering, so
		// we can return the already calculated cache
		unlockMutex();
		return this->m_iirgaus;
	}
	updateSize();
	rcti dai;
	bool use_tiles = getDAI(rect, &dai);
	if (use_tiles) {
		unlockMutex();
	}

	MemoryBuffer *buffer = (MemoryBuffer *)this->m_inputProgram->initializeTileData(NULL);
	rcti *buf_rect = buffer->getRect();

	dai.xmin = max(dai.xmin, buf_rect->xmin);
	dai.xmax = min(dai.xmax, buf_rect->xmax);
	dai.ymin = max(dai.ymin, buf_rect->ymin);
	dai.ymax = min(dai.ymax, buf_rect->ymax);

	MemoryBuffer *tile = new MemoryBuffer(NULL, &dai);
	tile->copyContentFrom(buffer);

	int c;
	float sx = this->m_data->sizex * this->m_size / 2.0f;
	float sy = this->m_data->sizey * this->m_size / 2.0f;

	if ((sx == sy) && (sx > 0.f)) {
		for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
			IIR_gauss(tile, sx, c, 3);
	}
	else {
		if (sx > 0.0f) {
			for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
				IIR_gauss(tile, sx, c, 1);
		}
		if (sy > 0.0f) {
			for (c = 0; c < COM_NUMBER_OF_CHANNELS; ++c)
				IIR_gauss(tile, sy, c, 2);
		}
	}
	if (!use_tiles) {
		this->m_iirgaus = tile;
		unlockMutex();
	}
	return tile;
#endif
}
Exemple #4
0
static void lensDistort(CompBuf* dst, CompBuf* src, float kr, float kg, float kb, int jit, int proj, int fit)
{
	int x, y, z;
	const float cx = 0.5f*(float)dst->x, cy = 0.5f*(float)dst->y;

	if (proj) {
		// shift
		CompBuf* tsrc = dupalloc_compbuf(src);
		for (z=0; z<tsrc->type; ++z)
			IIR_gauss(tsrc, (kr+0.5f)*(kr+0.5f), z, 1);
		kr *= 20.f;
		for (y=0; y<dst->y; y++) {
			fRGB* colp = (fRGB*)&dst->rect[y*dst->x*dst->type];
			const float v = (y + 0.5f)/(float)dst->y;
			for (x=0; x<dst->x; x++) {
				const float u = (x + 0.5f)/(float)dst->x;
				qd_getPixelLerpChan(tsrc, (u*dst->x + kr) - 0.5f, v*dst->y - 0.5f, 0, colp[x]);
				if (tsrc->type == CB_VAL)
					colp[x][1] = tsrc->rect[x + y*tsrc->x];
				else
					colp[x][1] = tsrc->rect[(x + y*tsrc->x)*tsrc->type + 1];
				qd_getPixelLerpChan(tsrc, (u*dst->x - kr) - 0.5f, v*dst->y - 0.5f, 2, colp[x]+2);
			}
		}
		free_compbuf(tsrc);
	}
	else {
		// Spherical
		// Scale factor to make bottom/top & right/left sides fit in window after deform
		// so in the case of pincushion (kn < 0), corners will be outside window.
		// Now also optionally scales image such that black areas are not visible when distort factor is positive
		// (makes distorted corners match window corners, but really only valid if mk<=0.5)
		const float mk = MAX3(kr, kg, kb);
		const float sc = (fit && (mk > 0.f)) ? (1.f/(1.f + 2.f*mk)) : (1.f/(1.f + mk));
		const float drg = 4.f*(kg - kr), dgb = 4.f*(kb - kg);
		kr *= 4.f, kg *= 4.f, kb *= 4.f;

		for (y=0; y<dst->y; y++) {
			fRGB* colp = (fRGB*)&dst->rect[y*dst->x*dst->type];
			const float v = sc*((y + 0.5f) - cy)/cy;
			for (x=0; x<dst->x; x++) {
				int dr = 0, dg = 0, db = 0;
				float d, t, ln[6] = {0, 0, 0, 0, 0, 0};
				fRGB c1, tc = {0, 0, 0, 0};
				const float u = sc*((x + 0.5f) - cx)/cx;
				int sta = 0, mid = 0, end = 0;
				if ((t = 1.f - kr*(u*u + v*v)) >= 0.f) {
					d = 1.f/(1.f + sqrtf(t));
					ln[0] = (u*d + 0.5f)*dst->x - 0.5f, ln[1] = (v*d + 0.5f)*dst->y - 0.5f;
					sta = 1;
				}
				if ((t = 1.f - kg*(u*u + v*v)) >= 0.f) {
					d = 1.f/(1.f + sqrtf(t));
					ln[2] = (u*d + 0.5f)*dst->x - 0.5f, ln[3] = (v*d + 0.5f)*dst->y - 0.5f;
					mid = 1;
				}
				if ((t = 1.f - kb*(u*u + v*v)) >= 0.f) {
					d = 1.f/(1.f + sqrtf(t));
					ln[4] = (u*d + 0.5f)*dst->x - 0.5f, ln[5] = (v*d + 0.5f)*dst->y - 0.5f;
					end = 1;
				}
	
				if (sta && mid && end) {
					// RG
					const int dx = ln[2] - ln[0], dy = ln[3] - ln[1];
					const float dsf = sqrtf(dx*dx + dy*dy) + 1.f;
					const int ds = (int)(jit ? ((dsf < 4.f) ? 2.f : sqrtf(dsf)) : dsf);
					const float sd = 1.f/(float)ds;
					for (z=0; z<ds; ++z) {
						const float tz = ((float)z + (jit ? BLI_frand() : 0.5f))*sd;
						t = 1.f - (kr + tz*drg)*(u*u + v*v);
						d = 1.f / (1.f + sqrtf(t));
						qd_getPixelLerp(src, (u*d + 0.5f)*dst->x - 0.5f, (v*d + 0.5f)*dst->y - 0.5f, c1);
						if (src->type == CB_VAL) c1[1] = c1[2] = c1[0];
						tc[0] += (1.f-tz)*c1[0], tc[1] += tz*c1[1];
						dr++, dg++;
					}
					// GB
					{
						const int dx = ln[4] - ln[2], dy = ln[5] - ln[3];
						const float dsf = sqrtf(dx*dx + dy*dy) + 1.f;
						const int ds = (int)(jit ? ((dsf < 4.f) ? 2.f : sqrtf(dsf)) : dsf);
						const float sd = 1.f/(float)ds;
						for (z=0; z<ds; ++z) {
							const float tz = ((float)z + (jit ? BLI_frand() : 0.5f))*sd;
							t = 1.f - (kg + tz*dgb)*(u*u + v*v);
							d = 1.f / (1.f + sqrtf(t));
							qd_getPixelLerp(src, (u*d + 0.5f)*dst->x - 0.5f, (v*d + 0.5f)*dst->y - 0.5f, c1);
							if (src->type == CB_VAL) c1[1] = c1[2] = c1[0];
							tc[1] += (1.f-tz)*c1[1], tc[2] += tz*c1[2];
							dg++, db++;
						}
					}
				}
	
				if (dr) colp[x][0] = 2.f*tc[0] / (float)dr;
				if (dg) colp[x][1] = 2.f*tc[1] / (float)dg;
				if (db) colp[x][2] = 2.f*tc[2] / (float)db;
	
			}
		}

	}

}