Exemple #1
0
/*
 * Perform any necessary tasks before we enter congestion recovery.
 */
static void
newreno_cong_signal(struct cc_var *ccv, uint32_t type)
{
	u_int win;

	/* Catch algos which mistakenly leak private signal types. */
	KASSERT((type & CC_SIGPRIVMASK) == 0,
	    ("%s: congestion signal type 0x%08x is private\n", __func__, type));

	win = max(CCV(ccv, snd_cwnd) / 2 / CCV(ccv, t_maxseg), 2) *
	    CCV(ccv, t_maxseg);

	switch (type) {
	case CC_NDUPACK:
		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
			if (!IN_CONGRECOVERY(CCV(ccv, t_flags)))
				CCV(ccv, snd_ssthresh) = win;
			ENTER_RECOVERY(CCV(ccv, t_flags));
		}
		break;
	case CC_ECN:
		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
			CCV(ccv, snd_ssthresh) = win;
			CCV(ccv, snd_cwnd) = win;
			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
		}
		break;
	}
}
Exemple #2
0
static void
dctcp_ack_received(struct cc_var *ccv, uint16_t type)
{
	struct dctcp *dctcp_data;
	int bytes_acked = 0;

	dctcp_data = ccv->cc_data;

	if (CCV(ccv, t_flags) & TF_ECN_PERMIT) {
		/*
		 * DCTCP doesn't treat receipt of ECN marked packet as a
		 * congestion event. Thus, DCTCP always executes the ACK
		 * processing out of congestion recovery.
		 */
		if (IN_CONGRECOVERY(CCV(ccv, t_flags))) {
			EXIT_CONGRECOVERY(CCV(ccv, t_flags));
			newreno_cc_algo.ack_received(ccv, type);
			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
		} else
			newreno_cc_algo.ack_received(ccv, type);

		if (type == CC_DUPACK)
			bytes_acked = CCV(ccv, t_maxseg);

		if (type == CC_ACK)
			bytes_acked = ccv->bytes_this_ack;

		/* Update total bytes. */
		dctcp_data->bytes_total += bytes_acked;

		/* Update total marked bytes. */
		if (dctcp_data->ece_curr) {
			if (!dctcp_data->ece_prev
			    && bytes_acked > CCV(ccv, t_maxseg)) {
				dctcp_data->bytes_ecn +=
				    (bytes_acked - CCV(ccv, t_maxseg));
			} else
				dctcp_data->bytes_ecn += bytes_acked;
			dctcp_data->ece_prev = 1;
		} else {
			if (dctcp_data->ece_prev
			    && bytes_acked > CCV(ccv, t_maxseg))
				dctcp_data->bytes_ecn += CCV(ccv, t_maxseg);
			dctcp_data->ece_prev = 0;
		}
		dctcp_data->ece_curr = 0;

		/*
		 * Update the fraction of marked bytes at the end of
		 * current window size.
		 */
		if ((IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
		    SEQ_GEQ(ccv->curack, CCV(ccv, snd_recover))) ||
		    (!IN_FASTRECOVERY(CCV(ccv, t_flags)) &&
		    SEQ_GT(ccv->curack, dctcp_data->save_sndnxt)))
			dctcp_update_alpha(ccv);
	} else
		newreno_cc_algo.ack_received(ccv, type);
}
Exemple #3
0
/*
 * Perform any necessary tasks before we enter congestion recovery.
 */
static void
newreno_cong_signal(struct cc_var *ccv, uint32_t type)
{
	uint32_t cwin, ssthresh_on_loss;
	u_int mss;

	cwin = CCV(ccv, snd_cwnd);
	mss = CCV(ccv, t_maxseg);
	ssthresh_on_loss =
	    max((CCV(ccv, snd_max) - CCV(ccv, snd_una)) / 2 / mss, 2)
		* mss;

	/* Catch algos which mistakenly leak private signal types. */
	KASSERT((type & CC_SIGPRIVMASK) == 0,
	    ("%s: congestion signal type 0x%08x is private\n", __func__, type));

	cwin = max(cwin / 2 / mss, 2) * mss;

	switch (type) {
	case CC_NDUPACK:
		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
				CCV(ccv, snd_ssthresh) = ssthresh_on_loss;
				CCV(ccv, snd_cwnd) = cwin;
			}
			ENTER_RECOVERY(CCV(ccv, t_flags));
		}
		break;
	case CC_ECN:
		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
			CCV(ccv, snd_ssthresh) = ssthresh_on_loss;
			CCV(ccv, snd_cwnd) = cwin;
			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
		}
		break;
	case CC_RTO:
		CCV(ccv, snd_ssthresh) = ssthresh_on_loss;
		CCV(ccv, snd_cwnd) = mss;
		break;
	}
}
Exemple #4
0
void
tcp_timer_rexmt(void * xtp)
{
	struct tcpcb *tp = xtp;
	CURVNET_SET(tp->t_vnet);
	int rexmt;
	struct inpcb *inp;
#ifdef TCPDEBUG
	int ostate;

	ostate = tp->t_state;
#endif
	inp = tp->t_inpcb;
	KASSERT(inp != NULL, ("%s: tp %p tp->t_inpcb == NULL", __func__, tp));
	INP_WLOCK(inp);
	if (callout_pending(&tp->t_timers->tt_rexmt) ||
	    !callout_active(&tp->t_timers->tt_rexmt)) {
		INP_WUNLOCK(inp);
		CURVNET_RESTORE();
		return;
	}
	callout_deactivate(&tp->t_timers->tt_rexmt);
	if ((inp->inp_flags & INP_DROPPED) != 0) {
		INP_WUNLOCK(inp);
		CURVNET_RESTORE();
		return;
	}
	KASSERT((tp->t_timers->tt_flags & TT_STOPPED) == 0,
		("%s: tp %p tcpcb can't be stopped here", __func__, tp));
	tcp_free_sackholes(tp);
	if (tp->t_fb->tfb_tcp_rexmit_tmr) {
		/* The stack has a timer action too. */
		(*tp->t_fb->tfb_tcp_rexmit_tmr)(tp);
	}
	/*
	 * Retransmission timer went off.  Message has not
	 * been acked within retransmit interval.  Back off
	 * to a longer retransmit interval and retransmit one segment.
	 */
	if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
		tp->t_rxtshift = TCP_MAXRXTSHIFT;
		TCPSTAT_INC(tcps_timeoutdrop);
		if (tcp_inpinfo_lock_add(inp)) {
			tcp_inpinfo_lock_del(inp, tp);
			goto out;
		}
		tp = tcp_drop(tp, tp->t_softerror ?
			      tp->t_softerror : ETIMEDOUT);
		tcp_inpinfo_lock_del(inp, tp);
		goto out;
	}
	if (tp->t_state == TCPS_SYN_SENT) {
		/*
		 * If the SYN was retransmitted, indicate CWND to be
		 * limited to 1 segment in cc_conn_init().
		 */
		tp->snd_cwnd = 1;
	} else if (tp->t_rxtshift == 1) {
		/*
		 * first retransmit; record ssthresh and cwnd so they can
		 * be recovered if this turns out to be a "bad" retransmit.
		 * A retransmit is considered "bad" if an ACK for this
		 * segment is received within RTT/2 interval; the assumption
		 * here is that the ACK was already in flight.  See
		 * "On Estimating End-to-End Network Path Properties" by
		 * Allman and Paxson for more details.
		 */
		tp->snd_cwnd_prev = tp->snd_cwnd;
		tp->snd_ssthresh_prev = tp->snd_ssthresh;
		tp->snd_recover_prev = tp->snd_recover;
		if (IN_FASTRECOVERY(tp->t_flags))
			tp->t_flags |= TF_WASFRECOVERY;
		else
			tp->t_flags &= ~TF_WASFRECOVERY;
		if (IN_CONGRECOVERY(tp->t_flags))
			tp->t_flags |= TF_WASCRECOVERY;
		else
			tp->t_flags &= ~TF_WASCRECOVERY;
		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
		tp->t_flags |= TF_PREVVALID;
	} else
Exemple #5
0
void
tcp_timer_rexmt(void * xtp)
{
	struct tcpcb *tp = xtp;
	CURVNET_SET(tp->t_vnet);
	int rexmt;
	int headlocked;
	struct inpcb *inp;
#ifdef TCPDEBUG
	int ostate;

	ostate = tp->t_state;
#endif
	INP_INFO_RLOCK(&V_tcbinfo);
	inp = tp->t_inpcb;
	/*
	 * XXXRW: While this assert is in fact correct, bugs in the tcpcb
	 * tear-down mean we need it as a work-around for races between
	 * timers and tcp_discardcb().
	 *
	 * KASSERT(inp != NULL, ("tcp_timer_rexmt: inp == NULL"));
	 */
	if (inp == NULL) {
		tcp_timer_race++;
		INP_INFO_RUNLOCK(&V_tcbinfo);
		CURVNET_RESTORE();
		return;
	}
	INP_WLOCK(inp);
	if ((inp->inp_flags & INP_DROPPED) || callout_pending(&tp->t_timers->tt_rexmt)
	    || !callout_active(&tp->t_timers->tt_rexmt)) {
		INP_WUNLOCK(inp);
		INP_INFO_RUNLOCK(&V_tcbinfo);
		CURVNET_RESTORE();
		return;
	}
	callout_deactivate(&tp->t_timers->tt_rexmt);
	tcp_free_sackholes(tp);
	/*
	 * Retransmission timer went off.  Message has not
	 * been acked within retransmit interval.  Back off
	 * to a longer retransmit interval and retransmit one segment.
	 */
	if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
		tp->t_rxtshift = TCP_MAXRXTSHIFT;
		TCPSTAT_INC(tcps_timeoutdrop);
		in_pcbref(inp);
		INP_INFO_RUNLOCK(&V_tcbinfo);
		INP_WUNLOCK(inp);
		INP_INFO_WLOCK(&V_tcbinfo);
		INP_WLOCK(inp);
		if (in_pcbrele_wlocked(inp)) {
			INP_INFO_WUNLOCK(&V_tcbinfo);
			CURVNET_RESTORE();
			return;
		}
		if (inp->inp_flags & INP_DROPPED) {
			INP_WUNLOCK(inp);
			INP_INFO_WUNLOCK(&V_tcbinfo);
			CURVNET_RESTORE();
			return;
		}

		tp = tcp_drop(tp, tp->t_softerror ?
			      tp->t_softerror : ETIMEDOUT);
		headlocked = 1;
		goto out;
	}
	INP_INFO_RUNLOCK(&V_tcbinfo);
	headlocked = 0;
	if (tp->t_rxtshift == 1) {
		/*
		 * first retransmit; record ssthresh and cwnd so they can
		 * be recovered if this turns out to be a "bad" retransmit.
		 * A retransmit is considered "bad" if an ACK for this
		 * segment is received within RTT/2 interval; the assumption
		 * here is that the ACK was already in flight.  See
		 * "On Estimating End-to-End Network Path Properties" by
		 * Allman and Paxson for more details.
		 */
		tp->snd_cwnd_prev = tp->snd_cwnd;
		tp->snd_ssthresh_prev = tp->snd_ssthresh;
		tp->snd_recover_prev = tp->snd_recover;
		if (IN_FASTRECOVERY(tp->t_flags))
			tp->t_flags |= TF_WASFRECOVERY;
		else
			tp->t_flags &= ~TF_WASFRECOVERY;
		if (IN_CONGRECOVERY(tp->t_flags))
			tp->t_flags |= TF_WASCRECOVERY;
		else
			tp->t_flags &= ~TF_WASCRECOVERY;
		tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
		tp->t_flags |= TF_PREVVALID;
	} else
Exemple #6
0
/*
 * Perform any necessary tasks before we enter congestion recovery.
 */
static void
dctcp_cong_signal(struct cc_var *ccv, uint32_t type)
{
	struct dctcp *dctcp_data;
	u_int win, mss;

	dctcp_data = ccv->cc_data;
	win = CCV(ccv, snd_cwnd);
	mss = CCV(ccv, t_maxseg);

	switch (type) {
	case CC_NDUPACK:
		if (!IN_FASTRECOVERY(CCV(ccv, t_flags))) {
			if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
				CCV(ccv, snd_ssthresh) = mss *
				    max(win / 2 / mss, 2);
				dctcp_data->num_cong_events++;
			} else {
				/* cwnd has already updated as congestion
				 * recovery. Reverse cwnd value using
				 * snd_cwnd_prev and recalculate snd_ssthresh
				 */
				win = CCV(ccv, snd_cwnd_prev);
				CCV(ccv, snd_ssthresh) =
				    max(win / 2 / mss, 2) * mss;
			}
			ENTER_RECOVERY(CCV(ccv, t_flags));
		}
		break;
	case CC_ECN:
		/*
		 * Save current snd_cwnd when the host encounters both
		 * congestion recovery and fast recovery.
		 */
		CCV(ccv, snd_cwnd_prev) = win;
		if (!IN_CONGRECOVERY(CCV(ccv, t_flags))) {
			if (V_dctcp_slowstart &&
			    dctcp_data->num_cong_events++ == 0) {
				CCV(ccv, snd_ssthresh) =
				    mss * max(win / 2 / mss, 2);
				dctcp_data->alpha = MAX_ALPHA_VALUE;
				dctcp_data->bytes_ecn = 0;
				dctcp_data->bytes_total = 0;
				dctcp_data->save_sndnxt = CCV(ccv, snd_nxt);
			} else
				CCV(ccv, snd_ssthresh) = max((win - ((win *
				    dctcp_data->alpha) >> 11)) / mss, 2) * mss;
			CCV(ccv, snd_cwnd) = CCV(ccv, snd_ssthresh);
			ENTER_CONGRECOVERY(CCV(ccv, t_flags));
		}
		dctcp_data->ece_curr = 1;
		break;
	case CC_RTO:
		if (CCV(ccv, t_flags) & TF_ECN_PERMIT) {
			CCV(ccv, t_flags) |= TF_ECN_SND_CWR;
			dctcp_update_alpha(ccv);
			dctcp_data->save_sndnxt += CCV(ccv, t_maxseg);
			dctcp_data->num_cong_events++;
		}
		break;
	}
}