Exemple #1
0
static void __init ixdp425_init(void)
{
	ixp4xx_sys_init();

	ixdp425_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	ixdp425_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

#if defined(CONFIG_MTD_NAND_PLATFORM) || \
    defined(CONFIG_MTD_NAND_PLATFORM_MODULE)
	ixdp425_flash_nand_resource.start = IXP4XX_EXP_BUS_BASE(3),
	ixdp425_flash_nand_resource.end   = IXP4XX_EXP_BUS_BASE(3) + 0x10 - 1;

	gpio_line_config(IXDP425_NAND_NCE_PIN, IXP4XX_GPIO_OUT);

	/* Configure expansion bus for NAND Flash */
	*IXP4XX_EXP_CS3 = IXP4XX_EXP_BUS_CS_EN |
			  IXP4XX_EXP_BUS_STROBE_T(1) |	/* extend by 1 clock */
			  IXP4XX_EXP_BUS_CYCLES(0) |	/* Intel cycles */
			  IXP4XX_EXP_BUS_SIZE(0) |	/* 512bytes addr space*/
			  IXP4XX_EXP_BUS_WR_EN |
			  IXP4XX_EXP_BUS_BYTE_EN;	/* 8 bit data bus */
#endif

	if (cpu_is_ixp43x()) {
		ixdp425_uart.num_resources = 1;
		ixdp425_uart_data[1].flags = 0;
	}

	platform_add_devices(ixdp425_devices, ARRAY_SIZE(ixdp425_devices));
}
static void __init nslu2_init(void)
{
	uint8_t __iomem *f;
	int i;

	ixp4xx_sys_init();

	nslu2_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	nslu2_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	i2c_register_board_info(0, nslu2_i2c_board_info,
				ARRAY_SIZE(nslu2_i2c_board_info));

	/*
                                                                 
                                                                
                                                            
  */
	(void)platform_device_register(&nslu2_uart);

	platform_add_devices(nslu2_devices, ARRAY_SIZE(nslu2_devices));

	pm_power_off = nslu2_power_off;

	if (request_irq(gpio_to_irq(NSLU2_RB_GPIO), &nslu2_reset_handler,
		IRQF_DISABLED | IRQF_TRIGGER_LOW,
		"NSLU2 reset button", NULL) < 0) {

		printk(KERN_DEBUG "Reset Button IRQ %d not available\n",
			gpio_to_irq(NSLU2_RB_GPIO));
	}

	if (request_irq(gpio_to_irq(NSLU2_PB_GPIO), &nslu2_power_handler,
		IRQF_DISABLED | IRQF_TRIGGER_HIGH,
		"NSLU2 power button", NULL) < 0) {

		printk(KERN_DEBUG "Power Button IRQ %d not available\n",
			gpio_to_irq(NSLU2_PB_GPIO));
	}

	/*
                                                           
                                                            
                                    
  */
	f = ioremap(IXP4XX_EXP_BUS_BASE(0), 0x40000);
	if (f) {
		for (i = 0; i < 6; i++)
#ifdef __ARMEB__
			nslu2_plat_eth[0].hwaddr[i] = readb(f + 0x3FFB0 + i);
#else
			nslu2_plat_eth[0].hwaddr[i] = readb(f + 0x3FFB0 + (i^3));
#endif
		iounmap(f);
	}
	printk(KERN_INFO "NSLU2: Using MAC address %pM for port 0\n",
	       nslu2_plat_eth[0].hwaddr);

}
Exemple #3
0
static void __init nslu2_init(void)
{
	uint8_t __iomem *f;
	int i;

	ixp4xx_sys_init();

	nslu2_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	nslu2_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	i2c_register_board_info(0, nslu2_i2c_board_info,
				ARRAY_SIZE(nslu2_i2c_board_info));

	/*
	 * This is only useful on a modified machine, but it is valuable
	 * to have it first in order to see debug messages, and so that
	 * it does *not* get removed if platform_add_devices fails!
	 */
	(void)platform_device_register(&nslu2_uart);

	platform_add_devices(nslu2_devices, ARRAY_SIZE(nslu2_devices));

	pm_power_off = nslu2_power_off;

	if (request_irq(gpio_to_irq(NSLU2_RB_GPIO), &nslu2_reset_handler,
		IRQF_DISABLED | IRQF_TRIGGER_LOW,
		"NSLU2 reset button", NULL) < 0) {

		printk(KERN_DEBUG "Reset Button IRQ %d not available\n",
			gpio_to_irq(NSLU2_RB_GPIO));
	}

	if (request_irq(gpio_to_irq(NSLU2_PB_GPIO), &nslu2_power_handler,
		IRQF_DISABLED | IRQF_TRIGGER_HIGH,
		"NSLU2 power button", NULL) < 0) {

		printk(KERN_DEBUG "Power Button IRQ %d not available\n",
			gpio_to_irq(NSLU2_PB_GPIO));
	}

	/*
	 * Map in a portion of the flash and read the MAC address.
	 * Since it is stored in BE in the flash itself, we need to
	 * byteswap it if we're in LE mode.
	 */
	f = ioremap(IXP4XX_EXP_BUS_BASE(0), 0x40000);
	if (f) {
		for (i = 0; i < 6; i++)
#ifdef __ARMEB__
			nslu2_plat_eth[0].hwaddr[i] = readb(f + 0x3FFB0 + i);
#else
			nslu2_plat_eth[0].hwaddr[i] = readb(f + 0x3FFB0 + (i^3));
#endif
		iounmap(f);
	}
	printk(KERN_INFO "NSLU2: Using MAC address %pM for port 0\n",
	       nslu2_plat_eth[0].hwaddr);

}
static void __init gtwx5715_init(void)
{
	ixp4xx_sys_init();

	gtwx5715_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	gtwx5715_flash_resource.end = IXP4XX_EXP_BUS_BASE(0) + SZ_8M - 1;

	platform_add_devices(gtwx5715_devices, ARRAY_SIZE(gtwx5715_devices));
}
static void __init avila_init(void)
{
	ixp4xx_sys_init();

	avila_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	avila_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	platform_add_devices(avila_devices, ARRAY_SIZE(avila_devices));
}
static void __init gtwx5715_init(void)
{
	ixp4xx_sys_init();

	if (!flash_resource)
		printk(KERN_ERR "Could not allocate flash resource\n");

	gtwx5715_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	gtwx5715_flash_resource.end = IXP4XX_EXP_BUS_BASE(0) + SZ_8M - 1;

	platform_add_devices(gtwx5715_devices, ARRAY_SIZE(gtwx5715_devices));
}
static void __init gateway7001_init(void)
{
	ixp4xx_sys_init();

	gateway7001_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	gateway7001_flash_resource.end = IXP4XX_EXP_BUS_BASE(0) + SZ_32M - 1;

	*IXP4XX_EXP_CS0 |= IXP4XX_FLASH_WRITABLE;
	*IXP4XX_EXP_CS1 = *IXP4XX_EXP_CS0;

	platform_add_devices(gateway7001_devices, ARRAY_SIZE(gateway7001_devices));
}
static void __init nslu2_init(void)
{
	ixp4xx_sys_init();

	nslu2_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	nslu2_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	pm_power_off = nslu2_power_off;

	platform_add_devices(nslu2_devices, ARRAY_SIZE(nslu2_devices));
}
static void __init ixdp425_init(void)
{
	ixp4xx_sys_init();

	ixdp425_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	ixdp425_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	platform_add_devices(ixdp425_devices, ARRAY_SIZE(ixdp425_devices));

#ifdef CONFIG_KGDB_8250
	kgdb8250_add_port(0, &ixdp425_serial_ports[0]);
	kgdb8250_add_port(1, &ixdp425_serial_ports[1]);
#endif
}
Exemple #10
0
static void __init dsmg600_init(void)
{
	ixp4xx_sys_init();

	/* Make sure that GPIO14 and GPIO15 are not used as clocks */
	*IXP4XX_GPIO_GPCLKR = 0;

	dsmg600_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	dsmg600_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	i2c_register_board_info(0, dsmg600_i2c_board_info,
				ARRAY_SIZE(dsmg600_i2c_board_info));

	/* The UART is required on the DSM-G600 (Redboot cannot use the
	 * NIC) -- do it here so that it does *not* get removed if
	 * platform_add_devices fails!
         */
        (void)platform_device_register(&dsmg600_uart);

	platform_add_devices(dsmg600_devices, ARRAY_SIZE(dsmg600_devices));

	pm_power_off = dsmg600_power_off;

	if (request_irq(gpio_to_irq(DSMG600_RB_GPIO), &dsmg600_reset_handler,
		IRQF_DISABLED | IRQF_TRIGGER_LOW,
		"DSM-G600 reset button", NULL) < 0) {

		printk(KERN_DEBUG "Reset Button IRQ %d not available\n",
			gpio_to_irq(DSMG600_RB_GPIO));
	}

	/* The power button on the D-Link DSM-G600 is on GPIO 15, but
	 * it cannot handle interrupts on that GPIO line.  So we'll
	 * have to poll it with a kernel timer.
	 */

	/* Make sure that the power button GPIO is set up as an input */
	gpio_line_config(DSMG600_PB_GPIO, IXP4XX_GPIO_IN);

	/* Set the initial value for the power button IRQ handler */
	power_button_countdown = PBUTTON_HOLDDOWN_COUNT;

	mod_timer(&dsmg600_power_timer, jiffies + msecs_to_jiffies(500));
}
Exemple #11
0
static int fsg_led_probe(struct platform_device *pdev)
{
    int ret;

    /* Map the LED chip select address space */
    latch_address = (unsigned short *) ioremap(IXP4XX_EXP_BUS_BASE(2), 512);
    if (!latch_address) {
        ret = -ENOMEM;
        goto failremap;
    }

    latch_value = 0xffff;
    *latch_address = latch_value;

    ret = led_classdev_register(&pdev->dev, &fsg_wlan_led);
    if (ret < 0)
        goto failwlan;

    ret = led_classdev_register(&pdev->dev, &fsg_wan_led);
    if (ret < 0)
        goto failwan;

    ret = led_classdev_register(&pdev->dev, &fsg_sata_led);
    if (ret < 0)
        goto failsata;

    ret = led_classdev_register(&pdev->dev, &fsg_usb_led);
    if (ret < 0)
        goto failusb;

    ret = led_classdev_register(&pdev->dev, &fsg_sync_led);
    if (ret < 0)
        goto failsync;

    ret = led_classdev_register(&pdev->dev, &fsg_ring_led);
    if (ret < 0)
        goto failring;

    return ret;

failring:
    led_classdev_unregister(&fsg_sync_led);
failsync:
    led_classdev_unregister(&fsg_usb_led);
failusb:
    led_classdev_unregister(&fsg_sata_led);
failsata:
    led_classdev_unregister(&fsg_wan_led);
failwan:
    led_classdev_unregister(&fsg_wlan_led);
failwlan:
    iounmap(latch_address);
failremap:

    return ret;
}
Exemple #12
0
static void __init nslu2_init(void)
{
	ixp4xx_sys_init();

	nslu2_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	nslu2_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	pm_power_off = nslu2_power_off;

	/*
	 * This is only useful on a modified machine, but it is valuable
	 * to have it first in order to see debug messages, and so that
	 * it does *not* get removed if platform_add_devices fails!
	 */
	(void)platform_device_register(&nslu2_uart);

	platform_add_devices(nslu2_devices, ARRAY_SIZE(nslu2_devices));
}
static void __init coyote_init(void)
{
	ixp4xx_sys_init();

	coyote_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	coyote_flash_resource.end = IXP4XX_EXP_BUS_BASE(0) + SZ_32M - 1;

	*IXP4XX_EXP_CS0 |= IXP4XX_FLASH_WRITABLE;
	*IXP4XX_EXP_CS1 = *IXP4XX_EXP_CS0;

	if (machine_is_ixdpg425()) {
		coyote_uart_data[0].membase =
			(char*)(IXP4XX_UART1_BASE_VIRT + REG_OFFSET);
		coyote_uart_data[0].mapbase = IXP4XX_UART1_BASE_PHYS;
		coyote_uart_data[0].irq = IRQ_IXP4XX_UART1;
	}

	platform_add_devices(coyote_devices, ARRAY_SIZE(coyote_devices));
}
Exemple #14
0
static void __init omixp_init(void)
{
	ixp4xx_sys_init();

	/* 16MiB Boot Flash */
	omixp_flash_resources[0].start = IXP4XX_EXP_BUS_BASE(0);
	omixp_flash_resources[0].end   = IXP4XX_EXP_BUS_END(0);

	/* 32 MiB Data Flash */
	omixp_flash_resources[1].start = IXP4XX_EXP_BUS_BASE(2);
	omixp_flash_resources[1].end   = IXP4XX_EXP_BUS_END(2);

	if (machine_is_devixp())
		platform_add_devices(devixp_pldev, ARRAY_SIZE(devixp_pldev));
	else if (machine_is_miccpt())
		platform_add_devices(miccpt_pldev, ARRAY_SIZE(miccpt_pldev));
	else if (machine_is_mic256())
		platform_add_devices(mic256_pldev, ARRAY_SIZE(mic256_pldev));
}
static void __init vulcan_init(void)
{
	ixp4xx_sys_init();

	
	vulcan_flash_resource.start	 = IXP4XX_EXP_BUS_BASE(0);
	vulcan_flash_resource.end	 = IXP4XX_EXP_BUS_BASE(0) + SZ_32M - 1;
	*IXP4XX_EXP_CS0 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_STROBE_T(3)	|
			  IXP4XX_EXP_BUS_SIZE(0xF)	|
			  IXP4XX_EXP_BUS_BYTE_RD16	|
			  IXP4XX_EXP_BUS_WR_EN;
	*IXP4XX_EXP_CS1 = *IXP4XX_EXP_CS0;

	
	vulcan_sram_resource.start	= IXP4XX_EXP_BUS_BASE(2);
	vulcan_sram_resource.end	= IXP4XX_EXP_BUS_BASE(2) + SZ_256K - 1;
	*IXP4XX_EXP_CS2 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_STROBE_T(1)	|
			  IXP4XX_EXP_BUS_HOLD_T(2)	|
			  IXP4XX_EXP_BUS_SIZE(9)	|
			  IXP4XX_EXP_BUS_SPLT_EN	|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	
	vulcan_uart_resources[2].start	= IXP4XX_EXP_BUS_BASE(3);
	vulcan_uart_resources[2].end	= IXP4XX_EXP_BUS_BASE(3) + 16 - 1;
	vulcan_uart_data[2].mapbase	= vulcan_uart_resources[2].start;
	vulcan_uart_data[3].mapbase	= vulcan_uart_data[2].mapbase + 8;
	*IXP4XX_EXP_CS3 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_STROBE_T(3)	|
			  IXP4XX_EXP_BUS_CYCLES(IXP4XX_EXP_BUS_CYCLES_MOTOROLA)|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	
	*IXP4XX_EXP_CS4 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	
	vulcan_max6369_resource.start	= IXP4XX_EXP_BUS_BASE(5);
	vulcan_max6369_resource.end	= IXP4XX_EXP_BUS_BASE(5);
	*IXP4XX_EXP_CS5 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	platform_add_devices(vulcan_devices, ARRAY_SIZE(vulcan_devices));
}
static void __init vulcan_init(void)
{
	ixp4xx_sys_init();

	/* Flash is spread over both CS0 and CS1 */
	vulcan_flash_resource.start	 = IXP4XX_EXP_BUS_BASE(0);
	vulcan_flash_resource.end	 = IXP4XX_EXP_BUS_BASE(0) + SZ_32M - 1;
	*IXP4XX_EXP_CS0 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_STROBE_T(3)	|
			  IXP4XX_EXP_BUS_SIZE(0xF)	|
			  IXP4XX_EXP_BUS_BYTE_RD16	|
			  IXP4XX_EXP_BUS_WR_EN;
	*IXP4XX_EXP_CS1 = *IXP4XX_EXP_CS0;

	/* SRAM on CS2, (256kB, 8bit, writable) */
	vulcan_sram_resource.start	= IXP4XX_EXP_BUS_BASE(2);
	vulcan_sram_resource.end	= IXP4XX_EXP_BUS_BASE(2) + SZ_256K - 1;
	*IXP4XX_EXP_CS2 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_STROBE_T(1)	|
			  IXP4XX_EXP_BUS_HOLD_T(2)	|
			  IXP4XX_EXP_BUS_SIZE(9)	|
			  IXP4XX_EXP_BUS_SPLT_EN	|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	/* XR16L2551 on CS3 (Moto style, 512 bytes, 8bits, writable) */
	vulcan_uart_resources[2].start	= IXP4XX_EXP_BUS_BASE(3);
	vulcan_uart_resources[2].end	= IXP4XX_EXP_BUS_BASE(3) + 16 - 1;
	vulcan_uart_data[2].mapbase	= vulcan_uart_resources[2].start;
	vulcan_uart_data[3].mapbase	= vulcan_uart_data[2].mapbase + 8;
	*IXP4XX_EXP_CS3 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_STROBE_T(3)	|
			  IXP4XX_EXP_BUS_CYCLES(IXP4XX_EXP_BUS_CYCLES_MOTOROLA)|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	/* GPIOS on CS4 (512 bytes, 8bits, writable) */
	*IXP4XX_EXP_CS4 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	/* max6369 on CS5 (512 bytes, 8bits, writable) */
	vulcan_max6369_resource.start	= IXP4XX_EXP_BUS_BASE(5);
	vulcan_max6369_resource.end	= IXP4XX_EXP_BUS_BASE(5);
	*IXP4XX_EXP_CS5 = IXP4XX_EXP_BUS_CS_EN		|
			  IXP4XX_EXP_BUS_WR_EN		|
			  IXP4XX_EXP_BUS_BYTE_EN;

	platform_add_devices(vulcan_devices, ARRAY_SIZE(vulcan_devices));
}
Exemple #17
0
static void __init avila_init(void)
{
	ixp4xx_sys_init();

	avila_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	avila_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	platform_add_devices(avila_devices, ARRAY_SIZE(avila_devices));

	avila_pata_resources[0].start = IXP4XX_EXP_BUS_BASE(1);
	avila_pata_resources[0].end = IXP4XX_EXP_BUS_END(1);

	avila_pata_resources[1].start = IXP4XX_EXP_BUS_BASE(2);
	avila_pata_resources[1].end = IXP4XX_EXP_BUS_END(2);

	avila_pata_data.cs0_cfg = IXP4XX_EXP_CS1;
	avila_pata_data.cs1_cfg = IXP4XX_EXP_CS2;

	platform_device_register(&avila_pata);

}
Exemple #18
0
static void __init fsg_init(void)
{
	DECLARE_MAC_BUF(mac_buf);
	uint8_t __iomem *f;

	ixp4xx_sys_init();

	fsg_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	fsg_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	*IXP4XX_EXP_CS0 |= IXP4XX_FLASH_WRITABLE;
	*IXP4XX_EXP_CS1 = *IXP4XX_EXP_CS0;

	/* Configure CS2 for operation, 8bit and writable */
	*IXP4XX_EXP_CS2 = 0xbfff0002;

	i2c_register_board_info(0, fsg_i2c_board_info,
				ARRAY_SIZE(fsg_i2c_board_info));

	/* This is only useful on a modified machine, but it is valuable
	 * to have it first in order to see debug messages, and so that
	 * it does *not* get removed if platform_add_devices fails!
	 */
	(void)platform_device_register(&fsg_uart);

	platform_add_devices(fsg_devices, ARRAY_SIZE(fsg_devices));

	if (request_irq(gpio_to_irq(FSG_RB_GPIO), &fsg_reset_handler,
			IRQF_DISABLED | IRQF_TRIGGER_LOW,
			"FSG reset button", NULL) < 0) {

		printk(KERN_DEBUG "Reset Button IRQ %d not available\n",
			gpio_to_irq(FSG_RB_GPIO));
	}

	if (request_irq(gpio_to_irq(FSG_SB_GPIO), &fsg_power_handler,
			IRQF_DISABLED | IRQF_TRIGGER_LOW,
			"FSG power button", NULL) < 0) {

		printk(KERN_DEBUG "Power Button IRQ %d not available\n",
			gpio_to_irq(FSG_SB_GPIO));
	}

	/*
	 * Map in a portion of the flash and read the MAC addresses.
	 * Since it is stored in BE in the flash itself, we need to
	 * byteswap it if we're in LE mode.
	 */
	f = ioremap(IXP4XX_EXP_BUS_BASE(0), 0x400000);
	if (f) {
#ifdef __ARMEB__
		int i;
		for (i = 0; i < 6; i++) {
			fsg_plat_eth[0].hwaddr[i] = readb(f + 0x3C0422 + i);
			fsg_plat_eth[1].hwaddr[i] = readb(f + 0x3C043B + i);
		}
#else

		/*
		  Endian-swapped reads from unaligned addresses are
		  required to extract the two MACs from the big-endian
		  Redboot config area in flash.
		*/

		fsg_plat_eth[0].hwaddr[0] = readb(f + 0x3C0421);
		fsg_plat_eth[0].hwaddr[1] = readb(f + 0x3C0420);
		fsg_plat_eth[0].hwaddr[2] = readb(f + 0x3C0427);
		fsg_plat_eth[0].hwaddr[3] = readb(f + 0x3C0426);
		fsg_plat_eth[0].hwaddr[4] = readb(f + 0x3C0425);
		fsg_plat_eth[0].hwaddr[5] = readb(f + 0x3C0424);

		fsg_plat_eth[1].hwaddr[0] = readb(f + 0x3C0439);
		fsg_plat_eth[1].hwaddr[1] = readb(f + 0x3C043F);
		fsg_plat_eth[1].hwaddr[2] = readb(f + 0x3C043E);
		fsg_plat_eth[1].hwaddr[3] = readb(f + 0x3C043D);
		fsg_plat_eth[1].hwaddr[4] = readb(f + 0x3C043C);
		fsg_plat_eth[1].hwaddr[5] = readb(f + 0x3C0443);
#endif
		iounmap(f);
	}
	printk(KERN_INFO "FSG: Using MAC address %s for port 0\n",
	       print_mac(mac_buf, fsg_plat_eth[0].hwaddr));
	printk(KERN_INFO "FSG: Using MAC address %s for port 1\n",
	       print_mac(mac_buf, fsg_plat_eth[1].hwaddr));

}
Exemple #19
0
static void __init gmlr_init(void)
{
	u8 __iomem *flash;
	int i, devices = 1; /* flash */

	ixp4xx_sys_init();

	if ((flash = ioremap(IXP4XX_EXP_BUS_BASE_PHYS, 0x80)) == NULL)
		printk(KERN_ERR "goramo-mlr: unable to access system"
		       " configuration data\n");
	else {
		system_rev = __raw_readl(flash + CFG_REV);
		hw_bits = __raw_readl(flash + CFG_HW_BITS);

		for (i = 0; i < ETH_ALEN; i++) {
			eth_plat[0].hwaddr[i] =
				flash_readb(flash, CFG_ETH0_ADDRESS + i);
			eth_plat[1].hwaddr[i] =
				flash_readb(flash, CFG_ETH1_ADDRESS + i);
		}

		__raw_writew(FLASH_CMD_READ_ID, flash);
		system_serial_high = flash_readw(flash, FLASH_SER_OFF);
		system_serial_high <<= 16;
		system_serial_high |= flash_readw(flash, FLASH_SER_OFF + 2);
		system_serial_low = flash_readw(flash, FLASH_SER_OFF + 4);
		system_serial_low <<= 16;
		system_serial_low |= flash_readw(flash, FLASH_SER_OFF + 6);
		__raw_writew(FLASH_CMD_READ_ARRAY, flash);

		iounmap(flash);
	}

	switch (hw_bits & (CFG_HW_HAS_UART0 | CFG_HW_HAS_UART1)) {
	case CFG_HW_HAS_UART0:
		memset(&uart_data[1], 0, sizeof(uart_data[1]));
		device_uarts.num_resources = 1;
		break;

	case CFG_HW_HAS_UART1:
		device_uarts.dev.platform_data = &uart_data[1];
		device_uarts.resource = &uart_resources[1];
		device_uarts.num_resources = 1;
		break;
	}
	if (hw_bits & (CFG_HW_HAS_UART0 | CFG_HW_HAS_UART1))
		device_tab[devices++] = &device_uarts; /* max index 1 */

	if (hw_bits & CFG_HW_HAS_ETH0)
		device_tab[devices++] = &device_eth_tab[0]; /* max index 2 */
	if (hw_bits & CFG_HW_HAS_ETH1)
		device_tab[devices++] = &device_eth_tab[1]; /* max index 3 */

	if (hw_bits & CFG_HW_HAS_HSS0)
		device_tab[devices++] = &device_hss_tab[0]; /* max index 4 */
	if (hw_bits & CFG_HW_HAS_HSS1)
		device_tab[devices++] = &device_hss_tab[1]; /* max index 5 */

	if (hw_bits & CFG_HW_HAS_EEPROM)
		device_tab[devices++] = &device_i2c; /* max index 6 */

	gpio_line_config(GPIO_SCL, IXP4XX_GPIO_OUT);
	gpio_line_config(GPIO_SDA, IXP4XX_GPIO_OUT);
	gpio_line_config(GPIO_STR, IXP4XX_GPIO_OUT);
	gpio_line_config(GPIO_HSS0_RTS_N, IXP4XX_GPIO_OUT);
	gpio_line_config(GPIO_HSS1_RTS_N, IXP4XX_GPIO_OUT);
	gpio_line_config(GPIO_HSS0_DCD_N, IXP4XX_GPIO_IN);
	gpio_line_config(GPIO_HSS1_DCD_N, IXP4XX_GPIO_IN);
	set_irq_type(gpio_irq(GPIO_HSS0_DCD_N), IRQ_TYPE_EDGE_BOTH);
	set_irq_type(gpio_irq(GPIO_HSS1_DCD_N), IRQ_TYPE_EDGE_BOTH);

	set_control(CONTROL_HSS0_DTR_N, 1);
	set_control(CONTROL_HSS1_DTR_N, 1);
	set_control(CONTROL_EEPROM_WC_N, 1);
	set_control(CONTROL_PCI_RESET_N, 1);
	output_control();

	msleep(1);	      /* Wait for PCI devices to initialize */

	flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	flash_resource.end = IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	platform_add_devices(device_tab, devices);
}
static void __init nas100d_init(void)
{
	uint8_t __iomem *f;
	int i;

	ixp4xx_sys_init();

	/* gpio 14 and 15 are _not_ clocks */
	*IXP4XX_GPIO_GPCLKR = 0;

	nas100d_flash_resource.start = IXP4XX_EXP_BUS_BASE(0);
	nas100d_flash_resource.end =
		IXP4XX_EXP_BUS_BASE(0) + ixp4xx_exp_bus_size - 1;

	i2c_register_board_info(0, nas100d_i2c_board_info,
				ARRAY_SIZE(nas100d_i2c_board_info));

	/*
	 * This is only useful on a modified machine, but it is valuable
	 * to have it first in order to see debug messages, and so that
	 * it does *not* get removed if platform_add_devices fails!
	 */
	(void)platform_device_register(&nas100d_uart);

	platform_add_devices(nas100d_devices, ARRAY_SIZE(nas100d_devices));

	pm_power_off = nas100d_power_off;

	if (request_irq(gpio_to_irq(NAS100D_RB_GPIO), &nas100d_reset_handler,
		IRQF_DISABLED | IRQF_TRIGGER_LOW,
		"NAS100D reset button", NULL) < 0) {

		printk(KERN_DEBUG "Reset Button IRQ %d not available\n",
			gpio_to_irq(NAS100D_RB_GPIO));
	}

	/* The power button on the Iomega NAS100d is on GPIO 14, but
	 * it cannot handle interrupts on that GPIO line.  So we'll
	 * have to poll it with a kernel timer.
	 */

	/* Make sure that the power button GPIO is set up as an input */
	gpio_line_config(NAS100D_PB_GPIO, IXP4XX_GPIO_IN);

	/* Set the initial value for the power button IRQ handler */
	power_button_countdown = PBUTTON_HOLDDOWN_COUNT;

	mod_timer(&nas100d_power_timer, jiffies + msecs_to_jiffies(500));

	/*
	 * Map in a portion of the flash and read the MAC address.
	 * Since it is stored in BE in the flash itself, we need to
	 * byteswap it if we're in LE mode.
	 */
	f = ioremap(IXP4XX_EXP_BUS_BASE(0), 0x1000000);
	if (f) {
		for (i = 0; i < 6; i++)
#ifdef __ARMEB__
			nas100d_plat_eth[0].hwaddr[i] = readb(f + 0xFC0FD8 + i);
#else
			nas100d_plat_eth[0].hwaddr[i] = readb(f + 0xFC0FD8 + (i^3));
#endif
		iounmap(f);
	}
	printk(KERN_INFO "NAS100D: Using MAC address %pM for port 0\n",
	       nas100d_plat_eth[0].hwaddr);

}