void InitEPwmGpio(void)
{
   #if DSP28_EPWM1
       InitEPwm1Gpio();
   #endif // endif DSP28_EPWM1
   #if DSP28_EPWM2
       InitEPwm2Gpio();
   #endif // endif DSP28_EPWM2
   #if DSP28_EPWM3
       InitEPwm3Gpio();
   #endif // endif DSP28_EPWM3
   #if DSP28_EPWM4
       InitEPwm4Gpio();
   #endif // endif DSP28_EPWM4
   #if DSP28_EPWM5
       InitEPwm5Gpio();
   #endif // endif DSP28_EPWM5
   #if DSP28_EPWM6
       InitEPwm6Gpio();
   #endif // endif DSP28_EPWM6
   #if DSP28_EPWM7
       InitEPwm7Gpio();
   #endif // endif DSP28_EPWM7
   #if DSP28_EPWM8
       InitEPwm8Gpio();
   #endif // endif DSP28_EPWM8
}
void InitEPwmGpio(void)
{
   InitEPwm1Gpio();
   InitEPwm2Gpio();
   InitEPwm3Gpio();
   InitEPwm4Gpio();
#if DSP28_EPWM5    
   InitEPwm5Gpio();
#endif // endif DSP28_EPWM5
#if DSP28_EPWM6
   InitEPwm6Gpio();
#endif // endif DSP28_EPWM6 
}
Exemple #3
0
static void init_peripherals_drivers(void)
{
    uint16_t i;

    /// Initialization of HRADC boards
    stop_DMA();

    decimation_factor = (uint16_t) roundf(HRADC_FREQ_SAMP / ISR_CONTROL_FREQ);
    decimation_coeff = 1.0 / (float) decimation_factor;


    HRADCs_Info.enable_Sampling = 0;
    HRADCs_Info.n_HRADC_boards = NUM_HRADC_BOARDS;

    Init_DMA_McBSP_nBuffers(NUM_HRADC_BOARDS, decimation_factor, HRADC_SPI_CLK);

    Init_SPIMaster_McBSP(HRADC_SPI_CLK);
    Init_SPIMaster_Gpio();
    InitMcbspa20bit();

    DELAY_US(500000);
    send_ipc_lowpriority_msg(0,Enable_HRADC_Boards);
    DELAY_US(2000000);

    for(i = 0; i < NUM_HRADC_BOARDS; i++)
    {
        Init_HRADC_Info(&HRADCs_Info.HRADC_boards[i], i, decimation_factor,
                        buffers_HRADC[i], TRANSDUCER_GAIN[i]);
        Config_HRADC_board(&HRADCs_Info.HRADC_boards[i], TRANSDUCER_OUTPUT_TYPE[i],
                           HRADC_HEATER_ENABLE[i], HRADC_MONITOR_ENABLE[i]);
    }

    Config_HRADC_SoC(HRADC_FREQ_SAMP);

    /**
     *
     * Initialization of PWM modules. PWM signals are mapped as the following:
     *
     *      ePWM  =>  Signal    POF transmitter
     *     channel     Name        on BCB
     *
     *     ePWM1A => Q1_MOD_1       PWM1
     *     ePWM1B => Q1_MOD_5       PWM2
     *     ePWM2A => Q2_MOD_1       PWM3
     *     ePWM2B => Q2_MOD_5       PWM4
     *     ePWM3A => Q1_MOD_2       PWM5
     *     ePWM3B => Q1_MOD_6       PWM6
     *     ePWM4A => Q2_MOD_2       PWM7
     *     ePWM4B => Q2_MOD_6       PWM8
     *     ePWM5A => Q1_MOD_3       PWM9
     *     ePWM5B => Q1_MOD_7       PWM10
     *     ePWM6A => Q2_MOD_3       PWM11
     *     ePWM6B => Q2_MOD_7       PWM12
     *     ePWM7A => Q1_MOD_4       PWM13
     *     ePWM7B => Q1_MOD_8       PWM14
     *     ePWM8A => Q2_MOD_4       PWM15
     *     ePWM8B => Q2_MOD_8       PWM16
     *
     */

    g_pwm_modules.num_modules = 8;

    PWM_MODULATOR_Q1_MOD_1_5 = &EPwm1Regs;
    PWM_MODULATOR_Q2_MOD_1_5 = &EPwm2Regs;
    PWM_MODULATOR_Q1_MOD_2_6 = &EPwm3Regs;
    PWM_MODULATOR_Q2_MOD_2_6 = &EPwm4Regs;
    PWM_MODULATOR_Q1_MOD_3_7 = &EPwm5Regs;
    PWM_MODULATOR_Q2_MOD_3_7 = &EPwm6Regs;
    PWM_MODULATOR_Q1_MOD_4_8 = &EPwm7Regs;
    PWM_MODULATOR_Q2_MOD_4_8 = &EPwm8Regs;

    disable_pwm_outputs();
    disable_pwm_tbclk();
    init_pwm_mep_sfo();

    init_pwm_module(PWM_MODULATOR_Q1_MOD_1_5, PWM_FREQ, 0, PWM_Sync_Master, 0,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    init_pwm_module(PWM_MODULATOR_Q2_MOD_1_5, PWM_FREQ, 1, PWM_Sync_Slave, 180,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    cfg_pwm_module_h_brigde_q2(PWM_MODULATOR_Q2_MOD_1_5);

    init_pwm_module(PWM_MODULATOR_Q1_MOD_2_6, PWM_FREQ, 0, PWM_Sync_Slave, 45,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    init_pwm_module(PWM_MODULATOR_Q2_MOD_2_6, PWM_FREQ, 3, PWM_Sync_Slave, 225,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    cfg_pwm_module_h_brigde_q2(PWM_MODULATOR_Q2_MOD_2_6);

    init_pwm_module(PWM_MODULATOR_Q1_MOD_3_7, PWM_FREQ, 0, PWM_Sync_Slave, 90,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    init_pwm_module(PWM_MODULATOR_Q2_MOD_3_7, PWM_FREQ, 5, PWM_Sync_Slave, 270,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    cfg_pwm_module_h_brigde_q2(PWM_MODULATOR_Q2_MOD_3_7);

    init_pwm_module(PWM_MODULATOR_Q1_MOD_4_8, PWM_FREQ, 0, PWM_Sync_Slave, 135,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    init_pwm_module(PWM_MODULATOR_Q2_MOD_4_8, PWM_FREQ, 7, PWM_Sync_Slave, 315,
                    PWM_ChB_Independent, PWM_DEAD_TIME);
    cfg_pwm_module_h_brigde_q2(PWM_MODULATOR_Q2_MOD_4_8);

    InitEPwm1Gpio();
    InitEPwm2Gpio();
    InitEPwm3Gpio();
    InitEPwm4Gpio();
    InitEPwm5Gpio();
    InitEPwm6Gpio();
    InitEPwm7Gpio();
    InitEPwm8Gpio();

    /// Initialization of timers
    InitCpuTimers();
    ConfigCpuTimer(&CpuTimer0, C28_FREQ_MHZ, 1000000);
    CpuTimer0Regs.TCR.bit.TIE = 0;
}
//
// Main
//
void main(void)
{
//
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the F2837xS_SysCtrl.c file.
//
    InitSysCtrl();

//
// Step 2. Initialize GPIO:
// This example function is found in the F2837xS_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
//
//    InitGpio();

//
// enable PWM2, PWM6, PWM7 and PWM8
//

    CpuSysRegs.PCLKCR2.bit.EPWM2=1;
    CpuSysRegs.PCLKCR2.bit.EPWM6=1;
    CpuSysRegs.PCLKCR2.bit.EPWM7=1;
    CpuSysRegs.PCLKCR2.bit.EPWM8=1;

//
// For this case just init GPIO pins for PWM2, PWM6, PWM7 and PWM8
// These functions are in the F2837xS_EPwm.c file
//

    InitEPwm2Gpio(); //
    InitEPwm6Gpio();
    InitEPwm7Gpio();
    InitEPwm8Gpio();

//
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
//
    DINT;

//
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the F2837xS_PieCtrl.c file.
//
    InitPieCtrl();

//
// Disable CPU interrupts and clear all CPU interrupt flags:
//
    IER = 0x0000;
    IFR = 0x0000;

//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in F2837xS_DefaultIsr.c.
// This function is found in F2837xS_PieVect.c.
//
    InitPieVectTable();

//
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
//
    EALLOW; // This is needed to write to EALLOW protected registers
    PieVectTable.EPWM2_INT = &epwm2_isr;
    PieVectTable.EPWM6_INT = &epwm6_isr;
    PieVectTable.EPWM7_INT = &epwm7_isr;
    PieVectTable.EPWM8_INT = &epwm8_isr;
    EDIS;   // This is needed to disable write to EALLOW protected registers

//
// For this example, only initialize the ePWM
//
    EALLOW;
    CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 0;
    EDIS;
    InitEPwm2Example();
    InitEPwm6Example();
    InitEPwm7Example();
    InitEPwm8Example();
    EALLOW;
    CpuSysRegs.PCLKCR0.bit.TBCLKSYNC = 1;
    EDIS;

//
// Step 4. User specific code, enable interrupts:
//

//
// Enable CPU INT3 which is connected to EPWM1-3 INT:
//
    IER |= M_INT3;

//
// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
//

    PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
    PieCtrlRegs.PIEIER3.bit.INTx6 = 1; // ePWM6
    PieCtrlRegs.PIEIER3.bit.INTx7 = 1; // ePWM7
    PieCtrlRegs.PIEIER3.bit.INTx8 = 1; // ePWM8

//
// Enable global Interrupts and higher priority real-time debug events:
//
    EINT;  // Enable Global interrupt INTM
    ERTM;  // Enable Global realtime interrupt DBGM

//
// Step 5. IDLE loop. Just sit and loop forever (optional):
//
    for(;;)
    {
        asm ("    NOP");
    }
}